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Purification of the origin recognition complex (ORC) from wild-type budding yeast cells

more than two decades ago opened up doors to analyze the initiation of eukaryotic

chromosomal DNA replication biochemically. Although revised methods to purify ORC

from overproducing cells were reported later, purification of mutant proteins using these

systems still depends on time-consuming processes including genetic manipulation

to construct and amplify mutant baculoviruses or yeast strains as well as several

canonical protein fractionations. Here, we present a streamlined method to construct

mutant overproducers, followed by purification of mutant ORCs. Use of mammalian

cells co-transfected with conveniently mutagenized plasmids bearing a His tag excludes

many of the construction and fractionation steps. Transfection is highly efficient. All the six

subunits of ORC are overexpressed at a considerable level and isolated as a functional

heterohexameric complex. Furthermore, use of mammalian cells prevents contamination

of wild-type ORC from yeast cells. The method is applicable to wild-type and at least

three mutant ORCs, and the resultant purified complexes show expected biochemical

activities. The rapid acquisition of mutant ORCs using this system will boost systematic

biochemical dissection of ORC and can be even applied to the purification of protein

complexes other than ORC.
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INTRODUCTION

Purification of mutant proteins from overproducing cells constituted a milestone in biochemistry
to analyze proteins of interest. However, construction of mutant overproducers and purification of
the mutant proteins from these overproducers under native conditions depend on time-consuming
processes, especially when the activities of high-order protein complexes are to be examined in
vitro.

The origin recognition complex (ORC), consisting of Orc1/2/3/4/5/6, is one such protein
complex (Duncker et al., 2009; Kawakami and Katayama, 2010; Li and Stillman, 2012). ORC binds
to eukaryotic chromosomal replication origins in an ATP-dependent manner to recruit Cdc6,
Cdt1, and the MCM2-7 helicase core onto double-stranded DNA (Boos et al., 2012; Bell and
Kaguni, 2013; Yardimci andWalter, 2014; Tognetti et al., 2015). In the budding yeast Saccharomyces
cerevisiae, replication origins are called autonomously replicating sequences (ARSs). ARSs bear two
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major functional elements, namely, the essential A element
containing the ARS consensus sequence and the stimulatory B
elements (Figure 1). The A and B1 elements are essential for ORC
binding. All ORC subunits except for Orc6 are highly conserved
among eukaryotes and belong to the AAA+ (ATPases associated
with a variety of cellular activities) superfamily, although only
Orc1 and Orc5 bind to ATP. ORC ATPase activity is repressed
by ARS DNA in vitro and thought to ensure timely recruitment
of the MCM2-7 helicase. Orc1/2/3/4/5 also bear one or two
winged-helix DNA-binding motifs at the C-terminus. Orc1 bears
an extension at the N-terminus called the BAH (bromo-adjacent
homology) domain that binds to transcription-related proteins.
The linker region between BAH and AAA+ bears a highly
conserved, basic residue-rich motif called the eukaryotic origin
sensor (EOS) that solely and directly scans the essential element

FIGURE 1 | Cartoons summarizing ORC-ARS binding. (A) The

ORC-binding regions of ARS. The A and B1 elements and the ARS consensus

sequence are indicated. (B) Direct recognition of the A element by EOS with a

low affinity. Orc1 and Orc2/3/4/5 are shown in pink and white, respectively.

Orc6 and the WH domains of Orc2/3/4/5 are omitted for clarity. (C)

Recognition of the A element via EOS and other domains in a mutually

supportive manner with a higher affinity. The initial interaction of EOS with the

A element leads to additional interactions with other domains (possibly AAA+

and WH domains), resulting in high-affinity binding. The ORC subunits are

shown as in panel (B).

in ARS with a low affinity to achieve high-affinity binding of
the ORC hexamer to ARS (Figure 1; Kawakami et al., 2015).
Elimination of one subunit (except for Orc6) from the ORC
hexamer abolishes high-affinity binding of ORC to ARS (Lee
and Bell, 1997), suggesting that purification of the entire ORC
complex rather than individual subunits is important to analyze
the biological functions of ORC.

Purification of ORC was first achieved from wild-type
yeast cells (Bell and Stillman, 1992) and later revised using
overproducing cells. One approach is to use insect cells co-
transfected with three types of baculoviruses carrying two of
the six ORC subunits (Bell et al., 1995; Fujita et al., 1998; Sun
et al., 2012, 2013; Samel et al., 2014). Another approach is
to construct a yeast strain with inducible promoters (Remus
et al., 2009; Hizume et al., 2013). Although both approaches
can be used to analyze wild-type ORC, site-directed mutagenesis
of ORC is time-consuming with the aforementioned systems
because the former requires construction and amplification of
baculoviruses and the latter requires yeast genetics for integration
of the overproducing cassettes into the yeast genome. Both
approaches require several classical fractionation processes,
which are rate-limiting, to purify several mutant ORCs. In the
latter system, endogenous wild-type ORC might contaminate
the mutant ORC fractions, which would falsely indicate that the
mutants have hypomorphic phenotypes. Recently, an improved
method was developed to overcome part of these problems
in purification of ORC containing a site-specifically mutated
Orc4 subunit (Frigola et al., 2013; Coster et al., 2014). In
this method, CBP (calmodulin-binding peptide)-tagged Orc1,
mutant Orc4, and intact Orc2/3/5/6 were co-expressed in a
yeast strain in which endogenous wild-type Orc4 is Flag-
tagged. Affinity chromatography via the CBP-tagged Orc1 co-
purifies both wild-type and mutant Orc4; the contaminated
wild type is then excluded by immunodepletion during further
purification including HPLC-based fractionation steps. Although
this approach may be applicable to purification of ORC hexamers
containing any of the other mutant subunits, extra tagging(s)
to endogenous ORC loci for immunodepletion, as well as the
above-mentioned iterated gene integrations and still laborious
purification steps, should be required to obtain each of mutant
ORCs desired. Indeed, mutant ORC hexamers purified to date
are limited to those with point mutations in the representative
AAA+ domains (Klemm et al., 1997; Klemm and Bell, 2001;
Bowers et al., 2004; Speck et al., 2005; Speck and Stillman, 2007;
Coster et al., 2014) and deletion of the Orc1 BAH (Frigola et al.,
2013; Hizume et al., 2013).

The novel method described herein uses co-transfection
of mammalian cells with conveniently mutagenized plasmids
bearing a His tag (shorter than a CBP tag), which excludes
many of the construction and fractionation steps. HPLC-based
procedure in this method is kept minimum. Furthermore, use
of mammalian cells prevents contamination of wild-type ORC
from yeast cells, which eliminates immunodepletion step(s) of
wild type mentioned above. Purified wild-type and mutant
ORCs using this system showed expected biochemical activities;
therefore, the rapid acquisition of mutant ORCs using this highly
versatile system will boost systematic biochemical dissection of
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ORC and can be even applied to purify protein complexes other
than ORC.

MATERIALS AND METHODS

Buffers
Buffer H′ contained 50mM Hepes-KOH (pH 7.6), 0.02% NP-40,
10% [v/v] glycerol, 1mM benzamidine, 2.5 µg/ml pepstatin A,
0.1 mg/ml bacitracin, and 0.5mM PMSF. Lysis buffer was the
same as buffer H′ except that 0.3% NP-40, 400mMKCl, 5mM β-
mercaptoethanol, and 17.5mM imidazole were included. Wash
buffer was the same as lysis buffer except that 0.02% NP-40
was added. Elution buffer was the same as wash buffer except
that 500mM imidazole was added. H/0.2 and H/0.4 were the
same as buffer H′ except that 200 and 400 mM KCl were
added, respectively, as well as 1mM each of EDTA, EGTA, and
DTT. Buffer K contained 45mM Hepes-KOH [pH 7.6], 4.5mM
magnesium acetate, 140mM KCl, and 9% [v/v] glycerol.

Plasmids
The mammalian overexpression vector version (ver.) 3–5 (Uno
et al., 2012) was a gift from Dr. Hisao Masai. pHK106 (ORC1),
pHK107 (ORC2), pHK108 (ORC3), pHK109 (ORC4), pHK110
(ORC5), and pHK111 (ORC6) were constructed by sequence-
and ligation-independent cloning (SLIC; Li and Elledge, 2007) so
that PCR-amplified ORC1/2/3/4/5/6 fragments could be inserted
between the Kozak sequence and the HpaI site of ver. 3–5 and
that theHis andHA tags of ver. 3–5 were eliminated. pHK118was
constructed by QuikChange site-directed mutagenesis (Agilent)
using pHK106 so that a hexahistidine tag could be appended
to the C-terminus of Orc1 with a linker (WNLYFQS; identical
to a TEV recognition sequence). pHK122 was constructed by
Gibson assembly (Gibson et al., 2009) using pHK118 and
pACYCDuet-1 (Novagen) so that the p15Aori-cat cassette could
replace the ColE1ori-bla cassette of pHK118. pHK123 (orc1
K362A-His) and pHK124 (orc1 R367A-His) were constructed
by QuikChange mutagenesis using pHK118. pKSEO212 is a
plasmid for expression of mAG-6His-tagged hRad9. The hRad9
cDNA fragment was inserted into BamHI-XbaI sites of CSII-EF-
MCS-mAG-6His-Claspin-3Flag plasmid (Uno and Masai, 2011),
replacing the Claspin-3Flag with hRad9. The cloned genes and
flanking regions of the abovementioned plasmids were verified
by sequencing.

Overexpression of ORC Subunits
Overexpression in 293T cells was performed by transfection
using the PEI method as described previously (Uno et al.,
2012) except that 0.26 µg of each plasmid per 10 cm plate was
transfected, unless specified otherwise.

Western Blotting
Monoclonal antibodies against Orc1 (SB13) and His tag were
gifts from Dr. Bruce Stillman. Chemiluminescent signals were
detected in an ImageQuant LAS 4010 imager (GE Healthcare).

Quantitative Biochemistry
An electrophoretic mobility shift assay using Cy5-labeled ARS1
DNA was performed as described previously (Kawakami et al.,

2015). ORC ATPase activity, which is repressible by ARS, was
assayed as described previously (Klemm et al., 1997) with slight
modifications. Briefly, a 76-bp segment of wild-type ARS1
(position 818–893) or a mutant (–ACS) was amplified by PCR
using primers HK301 (CTTGCCTGCAGGCCTTTTG) and
HK302 (ATCTTTACATCTTGTTATTTTACAGATTTTATG).
The amplified DNA was incubated with 0.4 pmol of ORC, 15
µM [α-32P]ATP, and 3 pmol of a 290-bp GC-rich competitor
(Speck et al., 2005) for 45min at 25◦C in 10 µl of buffer K. The
reaction was stopped by adding 5 µl of 2% SDS. The resultant
radiolabeled ADP was quantified by thin layer chromatography,
followed by phosphoimaging as described previously (Kawakami
et al., 2005).

RESULTS AND DISCUSSION

Construction of S. cerevisiae
ORC-Overproducing Plasmids for a
Mammalian Expression System
To overproduce S. cerevisiae ORC in mammalian cells, we
modified the ver. 3–5 vector for transfection, which was originally
developed to overexpress proteins that are not overexpressed
well in bacterial or insect cells (Figure 2; Uno and Masai, 2011;
Uno et al., 2012). Ver. 3–5 is a shuttle vector carrying PEF−1α, a
Kozak sequence, a His tag, a multiple cloning site, and an HA
tag. Ver. 3–5 also bears an SV40 origin, which could help to
maintain the vector episomally in mammalian cells expressing
the large T antigen, such as 293T cells. To maintain the plasmid
in Escherichia coli, ver. 3–5 also bears bla and ColE1 ori. We
first cloned one of the ORC1/2/3/4/5/6 genes into ver. 3–5 so
that the N-terminal His tag and C-terminal HA tag of the vector
were eliminated, yielding pHK106 through to pHK111. By site-
directed mutagenesis, a hexahistidine sequence with a linker
was appended just before the stop codon of ORC1, yielding
pHK118. This tag, consisting of 13 amino acids, is shorter than
a CBP-TEV tag previously used for Orc1 tagging (Frigola et al.,
2013). Addition of a short tag, such as His12 or His-Strep II, to
the C-terminus of Orc1 does not affect Orc1 function in vivo
(Kawakami et al., 2015). We noticed that introduction of certain
orc1 mutations into pHK118 by site-directed mutagenesis was
unsuccessful. Because the same mutation could be introduced
into anotherORC1 plasmid under the control of the nativeORC1
promoter using the same mutagenic primers (Kawakami et al.,
2015), one plausible idea is that leaky expression of Orc1 from
pHK118 may be extremely toxic in E. coli cells only when a
certain orc1 mutation is introduced. Because Orc1 solely binds
to the ARS sequence via a domain termed EOS (Kawakami et al.,
2015), similar binding to a similar sequence in the E. coli genome
may be affected by the mutation and interfere with a certain
cellular process in vivo. Alternatively, adverse interactions of the
Orc1 AAA+ domain with other AAA+ proteins in E. coli could
be stimulated in certain orc1mutants.

To reduce the total leaky expression level, the plasmid
replication origin along with the selectable marker was replaced
so that the plasmid copy number in E. coli could be reduced.
The resultant plasmid pHK122 bears a p15A ori with the
cat gene and the mutant plasmids pHK123 and pHK124
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FIGURE 2 | Construction of ORC-overproducing plasmids. All the pHK plasmids used in this study are derivatives of ver. 3–5. See text for details.

were successfully constructed, supporting the aforementioned
hypothesis regarding the risk of toxicity using pHK118.

Overexpression of ORC Subunits by
Convenient Co-Transfection
To test if Orc1 is overexpressed in 293T cells using the
constructed plasmid, a series of transient co-expression

experiments were performed. A control experiment using a
plasmid expressing mAG-tagged hRad9 indicated that most
cells were successfully transfected (Figure 3A). Under this
condition, expression of His-tagged Orc1 co-transfected with
Orc6 was confirmed by Western blotting (Figure 3B). When
intact Orc2/3/4/5/6 plasmids were co-transfected with His-
tagged Orc1 plasmid, expression of His-tagged Orc1 was also
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FIGURE 3 | Co-overexpression of Orc1 and other ORC subunit(s). (A) Estimation of the transfection efficiency. 293T cells were transfected with a plasmid

bearing mAG-tagged hRad9 and incubated for 48 h. Microscopic observation was performed, and phase-contrast and fluorescence images are shown. (B) 293T

cells were co-transfected with the indicated ORC plasmids and incubated for 48 h. Whole cells were lyzed and analyzed by 9% SDS-PAGE, followed by Western

blotting using an anti-Orc1 antibody. Ponceau staining was also performed as a loading control. (C) Isolation of ORC and Orc1–5 by pulldown. Orc1-His, Orc2, Orc3,

Orc4, and Orc5 with (+) or without (–) Orc6 were co-overexpressed. Cleared lysates (input; INP) were subjected to a pulldown assay (PD) and analyzed by 9%

SDS-PAGE, followed by Coomassie staining. All lanes originate from the same gel.

detected at a level similar to that observed when only His-tagged
Orc1 plasmid was transfected. Degradation of Orc1 was not
observed. Orc1-His and five major proteins corresponding to
Orc2/3/4/5/6 were co-pulled down (Figure 3C), suggesting that
all of the ORC subunits were co-overexpressed and formed a
complex. Although Uno et al. successfully co-transfected up
to three plasmids simultaneously (Uno and Masai, 2011; Uno
et al., 2012), our data demonstrated that co-transfection of six
plasmids was tolerable for co-overexpression using this system.

Hereafter, 0.26 µg of each plasmid per 10-cm plate was used
during the course of this study.

Purification of ORC Lacking the Orc6
Subunit (Orc1–5)
To minimize and simplify the column chromatography steps
during purification, we first established a purification method of
Orc1–5, which takes only 2 days (Figure 4). Orc1/2/3/4/5 form
a stable heteropentamer (Lee and Bell, 1997; Chen et al., 2008).
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FIGURE 4 | Workflow of overexpression and purification of mutant ORCs using a mammalian expression system. See text for details.

The method to purify Orc1–5 from cells using 40 15-cm plates is
detailed below.

1. Resuspend the cells in 50ml of lysis buffer.
2. Add 4500 units of TurboNuclease (Accelagen) and incubate

for 30min.
3. Centrifuge at 15,000× g for 20min.
4. Transfer the supernatant to 2.5ml bed volume of MagneHis

beads (Promega), prewashed with 50ml of water, and mix
gently for 1 h on a rotation wheel.

5. Wash the magnetic beads five times with 50ml of wash buffer.
6. Elute the beads four times with 1.7–2.5ml of elution buffer.
7. Concentrate the peak fractions on a mini SP Sepharose

column, followed by a step elution with buffer H/0.4.
8. Load the peak fractions onto a Superdex 200 column

equilibrated with buffer H/0.2.
9. Concentrate the peak fractions using another mini SP

Sepharose column, divide into aliquots, and snap-freeze in
liquid nitrogen.

Proteins at each step were monitored by SDS-PAGE (Figure 5).
Most cellular proteins were soluble (lanes 1 and 2). Enrichment
of a band at ∼110 kDa was observed after MagneHis pulldown,
corresponding to Orc1-His (106 kDa; lane 5). Some proteins
including Orc2/3/4/5 were also enriched (lane 5). Orc1-His and
Orc2/3/4/5 were concentrated by SP Sepharose (lane 7 and
Table 1A). These proteins co-migrated during gel filtration (lanes
9–14), suggesting that they form a complex. The resultant ORC
complex was purified to almost homogeneity. Concentration of
the peak fractions yielded ∼0.7mg of protein, which is sufficient
for most biochemical applications (Table 1).

Purification of the ORC Hexamer
Containing Orc1 K362A
We next attempted to purify mutant ORC hexamers. This time,
we purified ORC containing His-tagged Orc1 K362A from cells
using 20 15-cm plates, half the number that was used for Orc1–
5. This time we substituted HisTrap column chromatography
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FIGURE 5 | Purification of Orc1–5. 293T cells co-overexpressing Orc1-His,

Orc2, Orc3, Orc4, and Orc5 were lyzed and fractionated. The indicated

volume was taken and analyzed using 9% SDS-PAGE, followed by Coomassie

staining. The migration of each ORC subunit is indicated. W, whole cells; INP,

input; FT, flow-through; W5, the fifth wash fraction; E, eluate; and 14–21,

fraction numbers.

TABLE 1 | Purification tables of mutant ORCs.

Fraction Step Volume Concentration Protein Yield

(ml) (mg/ml) (mg) (%)

(A) ORC

I. Lysate 12 28 340a [100]

II. HisTrap 10 0.84 8.4 2.5

III. SP Sepharose (first) 1.0 2.6 2.6 0.76

IV. Superdex 200 6.0 N.D. N/A N/A

V. SP Sepharose (second) 0.65 1.1 0.72 0.21

(B) Orc1–5

I. Lysate 50 N.D. N/Ab

II. MagneHis 9.0 1.8 16 [100]

III. SP Sepharose (first) 1.0 6.5 6.5 41

IV. Superdex 200 6.0 0.73 4.4 28

V. SP Sepharose (second) 0.50 4.6 2.3 14

(C) ORC containing Orc1 K362A

I. Lysate 9.5 10 97c [100]

II. HisTrap 9.0 0.39 3.5 3.6

III. SP Sepharose (first) 1.0 1.2 1.2 1.2

IV. Superdex 200 6.0 0.12 0.73 0.75

V. SP Sepharose (second) 0.38 1.1 0.40 0.41

(D) ORC containing Orc1 R367A

I. Lysate 10 16 156d [100]

II. HisTrap 9.0 0.61 5.5 3.5

III. SP Sepharose (first) 1.0 2.1 2.1 1.3

IV. Superdex 200 6.0 0.19 1.2 0.77

V. SP Sepharose (second) 0.75 1.0 0.74 0.47

aFrom ∼2.4ml of wet cells (20 15-cm plates).
bFrom 4ml of wet cells (40 15-cm plates).
cFrom ∼1ml of wet cells (20 15-cm plates).
dFrom ∼1.7ml of wet cells (20 15-cm plates).

FIGURE 6 | Purification of ORC containing Orc1 K362A. 293T cells

co-overexpressing Orc1 K362A-His, Orc2, Orc3, Orc4, Orc5, and Orc6 were

lyzed and fractionated using HisTrap (A) and SP Sepharose and Superdex 200

columns (B). The indicated volume was taken and analyzed using 9%

SDS-PAGE, followed by Coomassie staining. The migration of each ORC

subunit is indicated.

for MagneHis (Figure 4) to perform a linear gradient elution.
The revised method takes only 1 week, including the DNA
work such as site-directed mutagenesis. Orc1 K362A-His and
Orc1 R367A-His were overexpressed in 293T cells as soluble
proteins, similar to wild-type Orc1 (Supplementary Figure 1).
When HisTrap column chromatography was performed, Orc1
K362A-His was eluted relatively broadly, peaking at fraction
numbers 19–21 (Figure 6A). Somemajor proteins corresponding
to Orc2/3/4/5/6 co-migrated slightly slower, peaking at fraction
numbers 23 and 24 (Figure 6A), suggesting that His-tagged Orc1
K362A and His-tagged Orc1 K362A containing Orc2/3/4/5/6
eluted at slightly different imidazole concentrations. Fractions
containing all of the ORC subunits were pooled, concentrated,
and further fractionated by gel filtration. As expected, His-
tagged Orc1-K362A was separated into two fractions, the faster
co-migrated with Orc2/3/4/5/6 and the slower eluted alone
(Figure 6B). Each band was nearly stoichiometric, suggesting
that His-tagged Orc1 K362A as well as Orc2/3/4/5/6 formed a
stoichiometric hexamer. Similar results were obtained during
preparation of wild-type ORC and ORC containing His-tagged
Orc1 R367A; ∼0.4–0.7mg of purified ORC was yielded under
these conditions, which is sufficient for typical biochemical assays
(Table 1).
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FIGURE 7 | In vitro activities of mutant ORC proteins. (A) The

ARS-binding activity of Orc1–5 was examined by an electrophoretic mobility

shift assay using Cy5-labeled wild-type (WT) or mutant (A− B2− B3−) ARS1

DNA. (B–D) Repression of ORC ATPase activity by ARS1 DNA in an

EOS-dependent manner. WT or mutant (–ACS) ARS1 DNA was incubated with

WT ORC (B), ORC containing Orc1 K362A (C), or ORC containing Orc1

R367A (D), yielding ATPase rates in the absence of DNA of 0.33 (B), 0.28 (C),

and 0.25 (D) pmol/min/pmol ORC, respectively.

Evaluation of Biochemical Activities
To assess if the purified wild-type and mutant ORCs can be
used for downstream applications such as biochemical analyzes,
we first performed an electrophoretic mobility shift assay using
Orc1–5 and wild-type and mutant ARS1 DNA. ORC and Orc1–
5 bind to ARS at the nanomolar level in S. cerevisiae (Speck
et al., 2005; Chen et al., 2008). Indeed, an Orc1–5-dependent

band shift was seen at concentrations ≤2 nM with wild-type
ARS1, whereas such shifts were not observed with mutant ARS1
(Figure 7A).

Next, the effects of ARS1 DNA on ORC ATPase activity
were assessed using ORC containing Orc1 K362A or Orc1
R367A. ORC ATPase activity was repressed by double-
stranded DNA in a wild-type ARS sequence-dependent manner
(Figure 7B), consistent with a previous finding (Klemm et al.,
1997). By contrast, only partial or no significant repression
was observed using ORC containing Orc1 K362A and Orc1
R367A, respectively (Figures 7C,D), consistent with the in vivo
residual ARS-binding activity of Orc1 K362A and Orc1 R367A
(Kawakami et al., 2015). These results suggest that mutant ORCs
purified using the method reported herein can be used for
biochemical applications.

Versatility of the Devised System
In this study, we established a rapid method for the
overexpression and purification of mutant ORC hexamers.
Compared with previously published methods, the method
described in this paper is especially more suitable to purify ORC
mutants with multiple mutation sites or lethal effect. Many of the
commonly used eukaryotic shuttle vectors bear a ColE1 origin
that confers replication at high copy numbers on the shuttle
vectors in E. coli. Although this property is technically beneficial
to yield a large amount of DNA for downstream applications
such as cloning and transformation/transfection, it may also
cause toxicity in E. coli cells when a certain gene is cloned.
Replacement of the origin with a lower copy number replicon
may overcome such cloning problems in such circumstances.
Indeed, Wang and Mullins reported that certain lentivirus-
derived sequences can be cloned into a vector bearing a p15A
ori, but not into vectors bearing a ColE1 ori such as pBluescript
and pUC (Wang and Mullins, 1995). The combination of
293T cells with the modified expression vector reported in this
study will be a powerful tool for future protein overexpression
to perform further mutational analyzes of Orc1 and the
other ORC subunits, and even purification of proteins other
than ORC.
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