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A new fuzzy rule based 
multi‑objective optimization 
method for cross‑scale injection 
molding of protein electrophoresis 
microfluidic chips
Zhiying Shan1,2, Wangqing Wu1,2*, Yihua Lei1,2 & Baishun Zhao1,2

Injection molding is one of the most promising technologies for the large-scale production and 
application of polymeric microfluidic chips. The multi-objective optimization of injection molding 
process for substrate and cover plate on protein electrophoresis microfluidic chip is performed to solve 
the problem that the forming precision is difficult to coordinate because of the cross-scale structure 
characteristics for chip in this paper. The innovation for this research is that an optimization approach 
and a detailed fuzzy rule determination method are proposed in multi-objective optimization for 
protein electrophoresis microfluidic chip. In more detail, firstly, according to the number and level 
of process parameters, the orthogonal experimental design is carried out. Then, the experiments 
are performed. Secondly, the grey relational analysis (GRA) approach is employed to process the 
response data to gain the grey relational coefficient (GRC). Thirdly, the grey fuzzy decision making 
method which combines triangular membership function and gaussian membership function is 
adopted to obtain the grey fuzzy grade (GFG). After that, the optimal scheme of process parameters 
was predicted by the grey fuzzy grade analysis. Finally, the superiority of Taguchi grey fuzzy decision 
making method are verified by comparing the results of original scheme, optimal scheme and 
prediction scheme. As a result, compared with the original design, the residual stress of substrate 
plate (RSS), residual stress of cover plate (RSC), warpage of substrate plate (WS), warpage of cover 
plate (WC) and replication fidelity of microchannel for substrate plate (RFM) on the prediction scheme 
for Taguchi grey fuzzy decision making method were reduced by 32.816%, 29.977%, 88.571%, 
74.390% and 46.453%, respectively.

In recent years, with the progress of science and technology, the requirements of laboratory testing technology 
are becoming higher and higher (shorter detection time, Higher detection sensitivity, More automation, etc.), 
especially in chemical analysis, medical testing, life science and other fields1,2. Microfluidic chips have been 
attracted great attention worldwide and have high application prospects in the above fields due to the analysis 
and detection process is characterized by miniaturization, integration, rapidness, low cost, few reagents and 
high throughput3.

At present, most of the research on microfluidic chip is focused on the molding technology4–9, bonding 
technology10,11 and application technology12,13. The main molding methods of microfluidic chips include hot 
pressing, injection molding and laser ablation. As the most widely used technology, injection molding has the 
advantages of low cost, high efficiency, and high precision. Injection molding is a key technology for mass pro-
duction and application of microfluidic chips, many scholars have carried out research on chip of cross-scale 
injection molding. Calaon et al. evaluated the key factors affecting the reproduction quality of microchannels 
and designed the microfluidic chip14. Xie et al. adopted single-factor experiment method to eliminate the bubble 
defects in the injection molding process of the chip, and obtained a microfluidic chip with good surface quality 
and high dimensional accuracy15. Jiang et al. optimized the microchannel cross section size of triple-channel 
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microfluidic chip and obtained the optimal process parameters16. Marson et al. realized low warpage of micro-
fluidic chip by optimizing the design of injection mold17. Jena et al. researched and optimized the residual stress 
of microfluidic chip18. Due to the narrow process window and many parameters, the problem of how to obtain 
precise chip forming process efficiently has not been solved yet. During the forming process, the cross-scale 
geometric deviation between the macroscopic warping deformation of chip and the deformation of microchannel 
is difficult to coordinate, and the accuracy is difficult to ensure. Meanwhile, a qualified microchannel chip needs 
not only high replication fidelity of microchannel, but also good bonding quality. However, the warpage and 
residual stress of substrate and cover plate for microfluidic ship will seriously affect the bonding quality of the 
chip, which will lead to non-sealing and deformation of the chip. Most of the existing researches only consider 
one objective to carry out single-objective optimization16–18. Nevertheless, the residual stress, the warpage and 
the replication fidelity of microchannel for the substrate and cover on microfluidic chips should be considered 
simultaneously to meet the needs of high-performance chips. Few studies have explicitly proposed a detailed 
method for multi-objective optimization of injection molding on microfluidic chip.

Similar to the optimization of all Microinjection molding products, there are two primary assessment criteri-
ons on microfluidic chip molding: the shape accuracy of plate and the molding quality of microchannel, which are 
in conflict to some extent (the plates of substrate and the cover being formed in the same mold simultaneously). 
Therefore, it is necessary to establish a balance between them. The optimization of substrate and cover plates for 
microfluidic chip needs to consider the influence of multiple aspects on the overall performance (the replica-
tion fidelity of microchannel, the warpage and the residual stress, etc.), which is a multi-objective optimization 
problem (MOOP). In the past three decades, scholars have put forward many effective approaches to solve this 
problem. Normally, there are two main directions employed to deal with the multi-objective problem. One is 
the global optimization method combining optimization algorithm and surrogate model, named SMOA; the 
other is the method using a multi-criterial decision method to search the best solution among all sample points, 
named MCDM (Table 1). To be more specific:

(1)	 In order to obtain the global optimal solution, many optimization algorithms are proposed, such as: genetic 
algorithm (GA)19, non-dominated sorting genetic algorithm (NSGA-II)20, multi-objective particle swarm 
optimization algorithm (MOPSO)21, multi-objective genetic algorithm (MOGA)22, etc.

(2)	 In order to reduce the experimental workload and improve the optimization efficiency, a large number of 
surrogate models are adopted. Such as: Kriging model23, radial basis function (RBF)24, response surface 
methodology (RSM)25, etc.

(3)	 To quickly determine the best compromise, multi-criterial decision making (MCDM) methods are also 
widely employed. Such as: grey relational analysis (GRA)26, technique for order preference by similarity to 
ideal solution (TOPSIS)27, fuzzy logics (FL)28 etc.

According to the literature on multi-objective optimization of injection molding, the multi-objective optimi-
zation based on surrogate model and optimization algorithm is the mainstream optimization method at present. 
However, most of the existing algorithms can work effectively with less than three optimization objectives. In 
SMOA, when more optimization objectives need to be considered, the application of optimization algorithms 
will be limited29,30. In addition, in order to obtain an accurate surrogate model, a large number of sample points 
are needed, which is a great challenge to establish an accurate surrogate model. Moreover, because of the strong 
nonlinearity of the replication fidelity for microchannel on microfluidic chip, the low precision of the established 
surrogate model will lead to a large deviation between the results of the optimal scheme obtained by the optimiza-
tion algorithm and the experimental value, which can not ensure the effectiveness of the global optimal scheme 
(as shown in Table 7). Therefore, surrogate model and optimization algorithm is not suitable for multi-objective 
optimization in injection molding of microfluidic chip.

In MCDM, the GRA is also widely applied to solve multi-objective optimization problems. Therefore, a 
method combining GRA and Taguchi design was proposed by researchers31,32, which can not only overcome 
the defect that Taguchi method cannot solve multi-objective optimization33, but also mine the information of 
the whole parameter space with limited sample size as much as possible. However, the GRA cannot provide an 
optimal solution of highly robust for a given multi-objective optimization problem, because this method cannot 
quantitatively or qualitatively distinguish the ideal case of foraging problem with no solution (black) and unique 
solution (white)34. In detail, different normalized formulas are applied on the basis of target characteristics, and 
then the grey relational coefficient and GRG are calculated, which leads to the uncertainty of the optimal solution 
of GRA​35,36. Thus, applying GRA method to solve multi-objective optimization problems has certain limitations.

Fuzzy logic was proposed by Zadeh in 1965, which is usually adopted to solve problems of uncertainty and 
ambiguity37. In addition, fuzzy logic has been applied to the field of multi-objective optimization in recent 

Table 1.   The methods of multi-objective optimization.

Optimization direction Method Detailedness

SMOA
Surrogate model Kriging model, RBF, RSM, etc

Optimization algorithm GA, NSGA-II, MOPSO, MOGA, etc

MCDM Multi-criterial decision making GRA, TOPSIS, FL, etc
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years, because of its applicability, simple and flexible. Tran et al. employed the mothed of grey fuzzy reasoning 
grade analysis to execute optimization on carbon fiber–reinforced polymer38. Yao et al. optimized the beam-like 
structure by applying the fuzzy decision method34. Saini et al. proposed a novel forecast method by combining 
particle swarm optimization algorithm with fuzzy inference system tree39. Shen et al. realized energy manage-
ment and optimal control by establishing a fuzzy model of automobile fuel cell40. At present, the research of 
multi-objective fuzzy decision making is relatively simple, and there is no definition and guidance for the writing 
of fuzzy rules. In addition, the existing multi-objective fuzzy decision-making system only applies to the case 
where the weights of each index are equal, and there is no effective scheme for the case where the weights of each 
index are different. Therefore, a novel fuzzy decision making method and specific fuzzy rule writing method are 
proposed to solve the problem of different objective weights and rule generate in multi-objective optimization.

In this paper, the Taguchi design, the grey relational analysis and fuzzy decision method are simultaneously 
applied to optimize the injection molding process parameters of substrate and cover plates for typical microfluidic 
chip (protein electrophoresis microfluidic chip).

Protein electrophoresis microfluidic chip experiment
Design for protein electrophoresis microfluidic chip.  In this paper, a cross protein electrophoresis 
microfluidic chip with a single channel structure was designed. The chip is composed of substrate plate and cover 
plate, of which the length, width and thickness for the substrate plate are 50 mm, 28 mm and 0.8 mm respec-
tively, while the length, width and thickness for the cover plate are 50 mm, 28 mm and 0.6 mm respectively. The 
detailed structure and size of chip are shown in Fig. 1.

Experimental material and equipment.  PMMA was selected as the material for the production of pro-
tein electrophoresis microfluidic chips due to its advantages of high light transmittance, good solvent and chemi-
cal compatibility in this study. To be more specific, the PMMA CM-205 produced by ChiMei from Taiwan in 
China was applied, and the properties are shown in Table 2. In addition, the injection molding system (Fig. 2a) 
includes three parts: the precision injection molding machine, the feeder and the mold temperature machine. 
This molding system has the advantages of programmable, stable process performance and high temperature 
control accuracy. The detailed product models, company and production areas are shown in Table 3. Meanwhile, 
a dual-type cavity mold core that can simultaneously form the substrate and cover plate for the chip was adopted, 
as shown in Fig. 2b.

The theory of multi‑objective optimization for protein electrophoresis microfluidic 
chip
The multi‑objective optimization method.  In this paper, the Taguchi orthogonal design method, the 
grey relational analysis method, the grey Taguchi fuzzy decision method and the factor influence analysis are 
simultaneously adopted in multi-objective optimization of protein electrophoresis microfluidic chip. Firstly, the 
design approach for multi-objective optimization is determined and the optimization objectives are determined 
according to the application requirements of protein electrophoresis microfluidic chip. Secondly, the change 
level of design variables is determined according to the original design parameters. Then, the orthogonal experi-
mental design is carried out. Thirdly, the response data of optimization objectives is obtained by performing 

Figure 1.   The detailed structure and size of protein electrophoresis microfluidic chip.

Table 2.   The properties of PMMA CM-205.

Material
Glass-transition 
temperature (℃) Density (g/cm3)

Coefficient of 
thermal expansion 
(/℃) Poisson ratio

Light transmittance 
(%) Biocompatibility

PMMA 105 1.2 0.00005 0.33 90 Better
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practical experiments. Fourthly, the grey relational analysis method is applied to process the response data to 
obtain the grey relation grade. In addition, the membership functions for input variables, the membership func-
tions for output variables and corresponding fuzzy subset levels are confirmed. Meanwhile, the fuzzy rules are 
compiled according to the weights of optimization target. Moreover, the grey fuzzy grade (GFG) was analyzed 
to predict the optimal combination of process parameters. Finally, the superiority and effectiveness of Taguchi 
grey fuzzy decision making method are verified by comparing the original scheme, the optimal scheme and the 
prediction scheme. The flow chart of multi-objective optimization method for protein electrophoresis microflu-
idic chip is shown in Fig. 3.

The evaluation criteria of multi‑objective optimization.  The optimization of protein electropho-
resis microfluidic chip has two main evaluation criteria: the shape accuracy of plate and the molding quality 
of microchannel. To be more specific, the protein electrophoresis microfluidic chip will warp and crack during 
the storage process because of the residual stress. Hence, the residual stress is one of the shape accuracy criteria. 
Meanwhile, warpage directly affects the bonding quality of protein electrophoresis microfluidic chips. Therefore, 
the warpage is one of the shape accuracy criteria. As the main functional unit of protein electrophoresis micro-
fluidic chip, the molding quality of microchannel is particularly important. Accordingly, the replication fidelity 
is the molding quality of microchannel for evaluation criteria. In particular, the residual stress of the protein 
electrophoresis microfluidic chip can be characterized by the birefringence effect of the chip. The relationship 
between refraction value and residual stress can be expressed as σ = �S

K×H , where σ is the residual stress, �S rep-
resents the refraction value, K donates the pressure optical coefficient, H is the thickness of the measured part. 
The larger the residual stress, the stronger the birefringence effect and the larger the measured value. Likewise, 
the warpage of the protein electrophoresis microfluidic chip can be characterized by the distance between the 
maximum value and the minimum value in the vertical direction of the chip surface. In addition, the replication 
fidelity of microchannel is represented by the mean square root of the ideal microchannel contour and the actual 
microchannel contour. The formula is as follows41:

where MSR represents the value of the mean square root, ni is the point of the actual microchannel contour, 
Ni denotes the point of the ideal microchannel contour, i is the amount of the point for microchannel contour. 
Table 4 and Fig. 4 show the test equipment and models adopted for residual stress, warpage and replication 
fidelity of microchannel for protein electrophoresis microfluidic chip.

The evaluation criteria for protein electrophoresis microfluidic chip include: (1) the value of residual stress 
for substrate plate and cover plate, (2) the value of warpage for substrate plate and cover plate, (3) the replication 
fidelity of microchannel for substrate plate. In this study, the birefringence value for substrate plate and cover 
plate represents the residual stress for substrate plate and cover plate (Fig. 5a). In Fig. 5a, the substrate plate and 
cover plate of the microfluidic chip manufactured by injection molding are shown on the left of figure, and the 

(1)MSR =

√

(N1 − n1)
2 + (N2 − n2)

2 + · · · + (Ni − ni)
2

i
,

Figure 2.   The injection molding system and the mold core of protein electrophoresis microfluidic chips (a) The 
injection molding system (b) The mold core.

Table 3.   The product models and production areas of injection molding system.

Injection molding system Precision injection molding machine Feeder Mold temperature machine

Product models 370S (500–100) SCD-20U/30H SIC-3A

Company ARBURG​ SHINI SHINI

Production areas Germany China China
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birefringence effect of the substrate plate and cover plate is shown on the right of figure. The distance between 
the maximum and minimum value of line B in transverse symmetry for substrate and cover plate represents 
the warpage for substrate plate and cover plate (Fig. 5b). The mean square root of the microchannel at point A, 
20 mm from the short edge of the substrate, denotes the replication fidelity of microchannel for substrate plate 
(Fig. 5c). In Fig. 5c, the positions of microchannels to be measured in the substrate are shown on the left side 
of the figure. The microchannel morphology of point A measured by laser confocal microscopy is shown in the 
middle of the figure. The comparison between the actual and ideal microchannel morphology is shown in the 
right side of the figure.

The design of experiment design for multi‑objective optimization
Design variables.  According to the existing researches on the replication fidelity of microchannel, the war-
page and the residual stress of microfluidic chips in injection molding14,16–18 and experience in protein electro-
phoresis microfluidic chip production, five major process parameters were selected as design variables, including 
the melt temperature (MT), the injection pressure (IP), the injection speed (IS), the packing pressure (PP) and 
the packing time (PT), in this paper. Five experimental levels are selected for all design variables. The range of 
process parameters on injection molding for protein electrophoresis microfluidic chip is shown in Table 5.

The design and results of experiment.  An Orthogonal experimental design, L25(55), was carried out 
for the injection molding process parameters of five factors and five levels in Table 5. Then, according to orthogo-
nal experimental design, the practical experiments are carried out, as shown in Table 6 (each experiment result 
is the average value of three experiments under the condition of stable process).

Determine optimization objectives

Determine design variables and levels

Design of experiment

Obtain objective response

Data normalization

Obtain grey relational coefficient

Obtain grey relational grade

Fuzzification

Fuzzy rule base

Fuzzy inference

Defuzzification

Obtain grey fuzzy grade

Compare the grey relational grade

and the grey fuzzy grade

Factor effect analysis

Obtain prediction scheme

Compare the original scheme, the optimial

scheme and the prediction scheme

Verified the superiority of Taguchi grey

fuzzy decision making method

Grey relational
analysis method

Taguchi grey fuzzy
decision making method

Comparison and
verification of the
prediction scheme

Figure 3.   The flow chart of multi-objective optimization method for protein electrophoresis microfluidic chip.

Table 4.   The models of test equipment for protein electrophoresis microfluidic chip.

Evaluation criteria Residual stress Warpage Replication fidelity

Equipment Double refraction instrument Three coordinate measuring system Laser scanning confocal microscope

Models WPA-200 GLOBAL STATUS575 Axio LSM700

Company Photonic Lattic Brown & Sharpe Inc Zeiss

Production areas Japan America Germany
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Optimization objectives.  In the process of protein electrophoresis microfluidic chip optimization, vari-
ous criteria of substrate plate and cover plate should be considered. In general, the residual stress and the war-
page are employed to assess the shape accuracy. In addition, the replication fidelity of microchannel is applied 
to evaluate the molding quality of microchannel. Hence, five optimization objectives are selected for multi-
objective optimization of protein electrophoresis microfluidic chip in this research, which are the residual stress 
of substrate, the residual stress of cover, the warpage of substrate, the warpage of cover and the replication fidelity 
of microchannel. The specific objectives are as follows:

(1)	 The value of birefringence for substrate plate;
(2)	 The value of birefringence for cover plate;
(3)	 The distance between the maximum and minimum value of line B in transverse symmetry for substrate 

plate;
(4)	 The distance between the maximum and minimum value of line B in transverse symmetry for cover plate;
(5)	 The mean square root of the ideal microchannel contour and the actual microchannel contour for the 

microchannel at point A on the substrate.

Taguchi grey fuzzy decision making method
Grey relational analysis method.  According to the experimental results of protein electrophoresis 
microfluidic chip shown in Table 6, the process parameters of design variables MT, IP, IS, PP and PT are taken 
as the input of the model, while the RSS, RSC, WS, WC and RFM are the output. Meanwhile, different methods 
were adopted to fit the surrogate models [Kriging model, FRB model, RSM (first order), RSM (second order) 
and RSM (third order)]. The accuracy (R2) of each surrogate model is shown in Table 7. As can be seen from 
Table 7, the highest accuracy is 0.880 and the lowest accuracy is 0 in the surrogate model. Because of the low 

Figure 4.   The test equipment for protein electrophoresis microfluidic chip. (a) The double refraction 
instrument. (b) The three-coordinate measuring system. (c) The laser scanning confocal microscope.
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accuracy of the established surrogate model, it is not suitable to apply the method of combining surrogate model 
and optimization algorithm for optimization.

Grey relational analysis is a multi-index decision making method proposed by Deng in the 1980s34. The GRA 
can transform multi-objective optimization problems into single-objective optimization problems to solve the 
disadvantages and limitations of Taguchi method that can only deal with single-objective problems. In the data 

Figure 5.   The measurement method of evaluation criteria for protein electrophoresis microfluidic chip. (a) 
The birefringence value. (b) The measuring position of warpage. (c) The measuring position and detail for 
replication fidelity of microchannel.

Table 5.   The range of process parameters on injection molding for protein electrophoresis microfluidic chip.

Level MT (°C) IP (MPa) IS (cm3/s) PP (MPa) PT (s)

1 250 150 45 60 4

2 255 160 50 70 5

3 260 170 55 80 6

4 265 180 60 90 7

5 270 190 65 100 8

Table 6.   The design and results of experiment.

No.

Design of experiment Experiment results

MT IP IS PP PT RSS RSC WS WC RFM

1 1 5 5 5 5 187.366 191.820 0.325 0.033 5.233

2 2 2 3 4 5 152.551 159.813 0.170 0.049 7.699

3 1 2 2 2 2 111.336 136.645 0.041 0.054 4.846

4 2 4 5 1 2 192.178 200.867 0.807 1.067 4.740

5 3 2 4 1 3 186.764 202.091 0.398 0.885 4.625

6 3 4 1 3 5 182.647 150.300 0.790 0.152 6.900

7 4 2 5 3 1 110.865 126.295 0.800 0.078 10.395

8 4 4 2 5 3 100.503 118.507 0.788 0.162 6.227

9 5 2 1 5 4 110.261 137.909 0.046 0.166 6.151

… … … … … … … … … … …

25 5 4 3 2 1 174.700 186.004 0.060 1.055 4.925
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preprocessing stage, different normalization formulas are selected to deal with the original sequences accord-
ing to the different directions of optimization objective characteristic. To be more specific, on the basis of the 
characteristics of the target direction "the-bigger-the-better", “the-lower-the-better”, and “the-closer to the target 
objective value-the-better”, three normalization formulas can be adopted in this approach.

If the optimized direction of original sequence is “the-lower-the-better”, the original sequence can be nor-
malized as follows30:

If the optimized direction for original sequence is “the-bigger-the-better”, the original sequence can be nor-
malized as follows:

If the optimized direction of original sequence is a target value, namely the feature for original sequence is 
“the-closer to the target objective value-the-better”, the original sequence can be normalized as follows:

where x∗i (t) represents the sequence generated by the grey relation, xi(t) denotes the original sequence of experi-
ment results for ith element in the sequence of tth, Maxtxi(t) is the maximum value for the sequence of tth, 
Mintxi(t) represents the minimum value for the sequence of tth, i = 1, 2, 3…n1 and t = 1, 2, 3,…n2, n1 is the sample 
size of Taguchi design and n2 denotes the quantity of optimization objectives, T is the target value.

In this paper, the residual stress of substrate plate, the residual stress of cover plate, the warpage of substrate 
plate, the warpage of cover plate and the replication fidelity of microchannel should be lowest. Hence, formula (2) 
is applied to normalize the original sequences of experiment results to [0, 1], as shown in Table 8. Normally, the 
reference sequence is defined as 1, representing the optimum performances in theory. Therefore, the comparable 
sequence which is closest to 1 will be considered the optimal scheme.

The relation between reference sequence and comparable sequence can be confirmed by grey relational coef-
ficient (GRC). Then, the calculation formula is as follows:

where γ
(
x∗r (t), x

∗
i (t)

)
 is the grey relational coefficient, u denotes the distinguishing coefficient, u ∈ [0,1], in 

general, the value of distinguishing coefficient is 0.5, �ri(t) , �min , �max can be deduced by:

Formula (5) is adopted to calculate the normalized results to obtain GRC (Table 8). The grey relational grade 
(GRG) can be gained by employing GRC. If the weight for each optimization objective is equal, the following 
formula is used for calculation:

If the weight of each optimization objective is different, GRG can be calculated as follows:

(2)x∗i (t) =
Maxtxi(t)− xi(t)

Maxtxi(t)−Mintxi(t)
.

(3)x∗i (t) =
xi(t)−Mintxi(t)

Maxtxi(t)−Mintxi(t)
.

(4)x∗i (t) = 1−
|xi(t)− T|

MAX{Maxtxi(t)− T ,T −Mintxi(t)}
,

(5)γ
(
x∗r (t), x

∗
i (t)

)
=

�min + u�max

�ri(t)+ u�max
,

(6)�ri(t) =
∣
∣x∗r (t)− x∗i (t)

∣
∣,

(7)
�min = min

︸︷︷︸

∀i

min
︸︷︷︸

∀t

�ri(t),

(8)
�max = max

︸︷︷︸

∀i

max
︸︷︷︸

∀t

�ri(t),

(9)ϕ
(
x∗r , x

∗
i

)
=

1

n

n∑

t=1

γ
(
x∗r (t), x

∗
i (t)

)
.

Table 7.   Accuracy of the surrogate model by using different methods.

Model

Accuracy/R2

RSS RSC WS WC RFM

Kriging 0.880 0.726 0.675 0.165 0.343

RBF 0.000 0.355 0.541 0.000 0.000

RSM (first-order) 0.000 0.000 0.000 0.000 0.000

RSM (second-order) 0.210 0.677 0.667 0.458 0.195

RSM (third-order) 0.287 0.677 0.700 0.617 0.296
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where wt denotes the weight of tth optimization objective, n represents the amount of the optimization objectives.
In this study, the weights of optimization objectives are different. Hence, GRG is obtained by using formula 

(10). Meanwhile, the importance of each optimization objective is the replication fidelity of microchannel, the 
warpage and the residual stress. Moreover, the weights for warpage on the plates of substrate and cover are the 
same, as is the residual stress for the plates of substrate and cover. The weights of the residual stress of substrate 
plate, the residual stress of cover plate, the warpage of substrate plate, the warpage of cover plate and the rep-
lication fidelity of microchannel are set as 0.1250, 0.1250, 0.1750, 01,750 and 0.4000, respectively (Table 9). As 
shown in Table 10, the GRGs of experimental results are ranked from big to small, while the No.3 shows the 
biggest value of GRG in 25 experiments. Therefore, the No.3 is the best scheme for multi-objective optimization 
of protein electrophoresis microfluidic chip.

Grey Fuzzy decision making method.  Fuzzy logic, first proposed by Zadeh, is a method to deal with 
imprecise and undefined boundary problems36. Fuzzy decision systems can reason output and calculation results 

(10)ϕ
(
x∗r , x

∗
i

)
=

n∑

t=1

wtγ
(
x∗r (t), x

∗
i (t)

)
,

Table 8.   The grey relational generation of each objective.

No

Normalization results

RSS RSC WS WC RFM

Ideal 1.000 1.000 1.000 1.000 1.000

1 0.155 0.339 0.657 1.000 0.895

2 0.465 0.628 0.844 0.986 0.467

3 0.832 0.836 1.000 0.981 0.962

4 0.112 0.258 0.076 0.068 0.980

5 0.160 0.246 0.569 0.232 1.000

6 0.197 0.713 0.097 0.893 0.606

7 0.837 0.930 0.084 0.959 0.000

8 0.929 1.000 0.099 0.884 0.722

9 0.842 0.825 0.994 0.880 0.736

… … … … … …

25 0.268 0.392 0.977 0.078 0.948

Table 9.   The weights of optimization objectives.

Optimization objectives RSS RSC WS WC RFM

Weight 0.1250 0.1250 0.1750 0.1750 0.4000

Table 10.   The results of grey relational coefficient and grey relational grade.

No

Grey relational coefficient

Grey relational grade OrderRSS RSC WS WC RFM

Ideal 1.000 1.000 1.000 1.000 1.000

1 0.372 0.431 0.593 1.000 0.826 0.710 9

2 0.483 0.573 0.763 0.792 0.484 0.629 15

3 0.749 0.754 1.000 0.964 0.929 0.903 1

4 0.360 0.402 0.351 0.349 0.962 0.603 18

5 0.373 0.399 0.537 0.394 1.000 0.660 12

6 0.384 0.636 0.356 0.823 0.559 0.557 22

7 0.754 0.877 0.353 0.925 0.333 0.561 20

8 0.875 1.000 0.357 0.811 0.643 0.696 11

9 0.760 0.741 0.988 0.807 0.654 0.763 5

… … … … … … … …

25 0.406 0.451 0.956 0.352 0.906 0.698 10



10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13159  | https://doi.org/10.1038/s41598-022-15935-8

www.nature.com/scientificreports/

by using fuzzy set theory, and fuzzy sets can provide accurate description by using mathematical expressions.
in this study, in order to solve the problems of the uncertainty in GRA optimization results, the fuzzy decision 
method under different weights and the writing of fuzzy rules, a new fuzzy decision method and specific writ-
ing of fuzzy rules are proposed. The new grey fuzzy decision making method can be divided into four steps for 
analysis and calculation. Meanwhile, the software of MATLAB® is adopted for fuzzy logic analysis in this study.

Step 1 Fuzzification.  The principle of fuzzification is to apply language variables to transform clear values into 
fuzzy quantities. Different and appropriate membership functions are selected to assign membership degrees for 
each language item. There are many membership functions that can be applied, for instance: triangular function, 
gaussian function, trapezoidal function, γ function and sigmoidal membership function, etc38. Among these 
membership functions, the triangular function was widely adopted due to its simplicity and high calculation 
efficiency in the existing study42. However, in the case of many optimization objectives and high uncertainty of 
optimization scheme, the selection of triangular function will cause different schemes to have the same fuzzy 
grade and the order of optimization results is not clear (Table 16). Therefore, the triangular function and the 
gaussian function are adopted simultaneously to avoid the situation of the same fuzzy grade for output in this 
study, namely, the gaussian function is employed for input and the triangular function is employed for output. 
The triangular and gaussian functions are defined as follows34,37,38:

where x represents the variable; a, b, and c are the vertices of a triangle; σ denotes the coefficient of a gaussian 
function; m is the center of symmetry of a gaussian function.

In this paper, the GRCs of the optimization objectives are adopted as the input variables. Then, the gaussian 
membership function (12) is applied to fuzzify GRCs into 3 levels: high (H), medium (M) and low (L), namely, 
the fuzzy subsets of input are divided as 3 grades: H, M and L, as shown in Fig. 6. Correspondingly, the output 
variables are defined as 11 levels using the triangular membership function (11), which are very very very high 
(VVVH), very very high (VVH), very high (VH), high (H), between medium and high (MH), medium (M), 
between medium and low (ML), low(L), very low (VL), very very low (VVL) and very very very low (VVVL) 
respectively. Likely, the fuzzy subsets of output are divided as 11 grades: VVVL, VVL, VL, H, MH, M, ML, L, VL, 
VVL and VVVL, as shown in Fig. 7. The value range of fuzzy subset of input and output is shown in Table 11.

Step 2 Fuzzy rule base.  Fuzzy rule base is a collection of fuzzy rules, which can be applied to express the 
relationship between input variables and output variables. In fuzzy decision making, fuzzy rules are the key to 
perform reasoning. At present, IF–THEN rule is most commonly used and can be expressed as:

The new and detailed grey fuzzy rules are written as follows: ① Carried out the full-factor design according 
to the optimization objectives and fuzzy subset grades of the optimization objectives (the fuzzy subset grades 
of input). ② Divide and match the value 1 according to the grade of the output fuzzy subsets. ③ Redistribute 

(11)Triangle(x, a, b, c) =







0, x < a
x−a
b−a , a ≤ x ≤ b
c−x
c−b , b < x ≤ c
0, c < x,

(12)Gaussian(x) = exp

[

−(x −m)2

2σ 2

]

, σ > 0,m > 0,

if premise (antecedent), then conclusion
(
consequent

)
.

Figure 6.   The input membership function.
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the weight of each optimization objective according to the weight values of the optimization objectives and 
the fuzzy subset grades of input. ④ Replace The grade of fuzzy subset for each optimization objective in the 
full-factor design by the corresponding weight value. ⑤ Add the weight values of the same design to obtain the 
comprehensive weight value, and round the result to one decimal place. ⑥ Obtain the final fuzzy rule scheme 
by substituting the comprehensive weight value with the corresponding the fuzzy subset grades of input.

To be more specific, during this research, the fuzzy rule base is defined by the criterion that the larger the 
GRC of each optimization objective is, the higher the GFG value is. the input of fuzzy rule base is composed of 
five optimization objectives, which are RSS, RSC, WS, WC and RFM respectively. Meanwhile, one output is set, 
which is GFG. The number of fuzzy subset grades for optimization objectives is 3, and the number of optimi-
zation objectives is 5. Therefore, the amount of fuzzy rules should be 243 (35). The full-factor design based on 
optimization objectives (RSS, RSC, WS, WC and RFM) and fuzzy subset grades of input (H, M and L) is shown in 
Table 12. The weight values of the fuzzy subset grades on the input for each optimization objective are shown in 
Table 13. Namely, the weights of H, M and L grades on the fuzzy subset for RSS and RSC are 0.1250, 0.0625 and 
0, respectively; the weights of H, M and L grades on the fuzzy subset for WS and WC are 0.1750, 0.0875 and 0, 
respectively; the weights of H, M and L grades on the fuzzy subset for RFM are 0.4000, 0.2000 and 0, respectively. 
The values and the fuzzy subset grades of output are shown in Table 14. Namely, the corresponding values the 
VVVH, VVH, VH, H, MH, M, ML, L, VL, VVL and VVVL grade for the output fuzzy subsets are 1.0, 0.9, 0.8, 
0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1 and 0, respectively. The weight values of the grades for each input fuzzy subset, the 
comprehensive weight value and the grades of corresponding output fuzzy subsets are shown in Table 15 (the 
“CV” column is the comprehensive weight). The final fuzzy rule scheme of this study is as follows:

Rule 1 : if "RSS is H and RSC is H andWS is H andWC is H and RFM is H"then "GF is VVVH"; else

Figure 7.   The output membership function.

Table 11.   Fuzzy subsets parameter of input and output.

MF Input MF Output

Gaussian Level Value Triangular Level Value

H 0.07432, 0.825 VVVH 0.94, 1.00, 1.06

M 0.07432, 0.650 VVH 0.88, 0.94, 1.00

L 0.07432, 0.475 VH 0.82, 0.88, 0.94

H 0.76, 0.82, 0.88

MH 0.70, 0.76, 0.82

M 0.64, 0.70, 0.76

ML 0.58, 0.64, 0.70

L 0.52, 0.58, 0.64

VL 0.46, 0.52, 0.58

VVL 0.40, 0.46, 0.52

VVVL 0.34, 0.40, 0.46
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Rule 2 : if "RSS is L and RSC is L andWS is H andWC isM and RFM is H"then"GFGisH"; else

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(13)Rule 243 : if "RSS is L and RSC is L andWS is L andWC is L and RFM is L"then"GFGisVVVL"

Table 12.   The full-factor design based on optimization objectives and fuzzy subset grades of input.

Full-factor design Input fuzzy grades replacement

No RSS RSC WS WC RFM RSS RSC WS WC RFM

1 1 1 1 1 1 H H H H H

2 2 2 1 1 1 M M H H H

3 2 3 1 1 1 M L H H H

4 3 3 1 2 1 L L H M H

5 2 3 2 2 1 M L M M H

6 1 3 3 3 1 H L L L H

7 3 3 2 2 2 L L M M M

8 2 2 3 3 2 M M L L M

9 3 3 2 2 3 L L M M L

10 2 2 3 3 3 M M L L L

… … … … … … … … … … …

243 3 3 3 3 3 L L L L L

Table 13.   The weight values of the fuzzy subset grades on the input for each optimization objective.

Optimization objectives RSS RSC WS WC RFM

Weight 0.1250 0.1250 0.1750 0.1750 0.4000

Fuzzy subset grades of input H M L H M L H M L H M L H M L

Weight 0.1250 0.0625 0 0.1250 0.0625 0 0.1750 0.0875 0 0.1750 0.0875 0 0.4000 0.2000 0

Table 14.   The values and the fuzzy subset grades of output.

Fuzzy subset grades of output VVVH VVH VH H MH M ML L VL VVL VVVL

Value 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0

Table 15.   The transformation of input fuzzy grade and output fuzzy grade.

Full-factor design and input fuzzy grades 
replacement Weight values replacement

Output 
fuzzy grades 
replacement

No RSS RSC WS WC RFM RSS RSC WS WC RFM CV GFG

1 H H H H H 0.1250 0.1250 0.1750 0.1750 0.4000 1.0 VVVH

2 M M H H H 0.0625 0.0625 0.1750 0.1750 0.4000 0.9 VVH

3 M L H H H 0.0625 0.0000 0.1750 0.1750 0.4000 0.8 VH

4 L L H M H 0.0000 0.0000 0.1750 0.0875 0.4000 0.7 H

5 M L M M H 0.0625 0.0000 0.0875 0.0875 0.4000 0.6 MH

6 H L L L H 0.1250 0.0000 0.0000 0.0000 0.4000 0.5 M

7 L L M M M 0.0000 0.0000 0.0875 0.0875 0.2000 0.4 ML

8 M M L L M 0.0625 0.0625 0.0000 0.0000 0.2000 0.3 L

9 L L M M L 0.0000 0.0000 0.0875 0.0875 0.0000 0.2 VL

10 M M L L L 0.0625 0.0625 0.0000 0.0000 0.0000 0.1 VVL

… … … … … … … … … … … … …

243 L L L L L 0.0000 0.0000 0.0000 0.0000 0.0000 0 VVVL
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Step 3 Fuzzy inference.  The maximum and minimum operation on Mamdani approach is adopted to execute 
fuzzy inference for multiple response outputs, and the fuzzy output values are obtained by using fuzzy rule base. 
The output formula of fuzzy inference is:

where the Fi is the fuzzy subsets of output defined by membership functions; yi denotes the value of output; xi 
represents the value of input for mth optimization objective; β is the range of coefficient;  AXm denotes the mth 
fuzzy rules; βFi

(
yi
)
 is the grade of fuzzy inference for output. In this paper, formula (14) is employed to calculate 

the grade of grey fuzzy inference.

Step 4 Defuzzification.  The principle of defuzzification is to convert the language output into clear and concrete 
values. Currently, the center of gravity method can effectively transform fuzzy inference into clear value, which 
is called fuzzy grade as yi . The calculation formula is as follows:

In this study, (15) is adopted to convert the calculated grades of grey fuzzy inference into clarity values.

(14)βFi
(
yi
)
= max

[

min
j
{βAX1(x1),βAX2(x2),βAX3(x3) · · ·βAXm(xi)}

]

,

(15)yi =

∫

s
yiβFi(yi)dy

∫

s
βFi(yi)dy

.

Table 16.   The grades and rank by adopting different approaches.

Experiment
Grey relational 
analysis Triangular + gaussian Triangular

No GRG​ Order GFG Order GFG Order

1 0.710 9 0.736 10 0.700 10

2 0.629 15 0.677 13 0.653 15

3 0.903 1 0.938 1 0.700 10

4 0.603 18 0.641 16 0.64 17

5 0.660 12 0.673 14 0.700 10

6 0.557 22 0.578 23 0.578 22

7 0.561 20 0.636 18 0.640 17

8 0.696 11 0.721 11 0.700 10

9 0.763 5 0.805 5 0.833 4

… … … … … … …

25 0.698 10 0.759 8 0.760 7

Figure 8.   Comparison between the GFGs and the GRGs.
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Results and discussion
Grey fuzzy grade.  The GFGs combining the triangular membership function and gaussian membership 
function, the GFGs of the triangular membership function and the GRGs of the GRA method are listed and 
arranged from large to small in Table 16. As can be seen from Table 16, some GFGs obtained by adopting tri-
angular membership function are the same, which leads to unclear ordering of optimization results (No. 1, 3, 5 
and 8 have the same GFGs). However, this problem does not exist in the combination of triangular membership 
function and gaussian membership function. Therefore, the GFGs obtained by combining triangular member-
ship function with gaussian membership function has higher accuracy and discrimination.

By comparing the GFGs combining the triangular membership function and gaussian membership func-
tion with the GRGs of the GRA method, it can be found that the rank of GFGs and GRGs are mostly the same, 
except for a few schemes with some differences. Meanwhile, compared with the same scheme, the value of GFG is 
greater than the GRG. Figure 8 makes a more intuitive comparison between the GFGs combining the triangular 
membership function and the gaussian membership function and the GRGs of the GRA method. The uncertainty 
of the scheme with grey fuzzy decision method is obviously reduced, and the grade is closer to the ideal value 
1. Therefore, the method of Taguchi grey fuzzy decision making can provide a more reliable, qualitative and 
robust multi-objective optimization platform. In addition, as shown in Table 16, the value of GFG (the triangular 
membership function and gaussian membership function) and GRG (GRA) of scheme No.3 is the largest. Thus, 
the No.3 is the optimal compromise among 25 experiments.

Influence analysis of factors.  In Taguchi grey-fuzzy decision making, the average grey fuzzy grade 
(AGFG) on each design variable for the same level is a significant target to decide the importance on design 
variables and the optimal parameter combination. The AGFG on each design variable for the same level can 
be obtained by classification and calculation of each design variable in orthogonal table at the same level. The 
calculation formula is as follows:

where the vou represents the AGFG of oth design variable on uth level; Nou is the GFG of oth design variable on 
uth level; o denotes the number of levels; u is the number of design variables.

In this study, formula (16) is employed to classify and calculate the AGFGs (the triangular membership func-
tion and the gaussian membership function) in Table 16. The calculation results are shown in Table 17. Moreover, 
the main effect diagram (Fig. 9) clearly shows the influence of design variables on each optimization objective. 
It can be seen from Table 17 and Fig. 9 that the maximum values of AGFGs for design variables MT, IP, IS, PP 
and PT are 0.8182, 0.7458, 0.7378, 0.7692 and 0.7462, respectively. Therefore, the scheme of MT1, IP2, IS4, PP3 
and PT2 (MT: 250 °C, IP:160 MPa, IS: 65 cm3/s, PP: 80 MPa and PT: 5 s) is the optimal parameter combination 
that can simultaneously improve the performance of each optimization objective.

As shown in Table 17, the differences value between the minimum and maximum of AGFGs, arranged from 
big to small, are the TM, PP, IS, IP and PT. Hence, the design variable (MT) is the most significant to improve 
the performance of each optimization target for protein electrophoresis microfluidic chip. In addition, all design 
variables have uncertain effects on the performance of each optimization objective for protein electrophoresis 
microfluidic chip, according to the slope of GFG curve in Fig. 9. This results also show that the multi-objective 
optimization of process parameters is necessary to ensure the integrated performance for protein electrophoresis 
microfluidic chips.

Optimal scheme prediction and validation.  In order to verify the feasibility and performance improve-
ment effect of the optimal scheme for protein electrophoresis microfluidic chip, the GFG of the optimal scheme 
must be predicted theoretically and tested in practice after determining the optimal scheme of protein electro-
phoresis microfluidic chip. The prediction formula of GFG is38:

(16)vou =
N1u + N2u + N3u + · · · + Nou

o
,

(17)τP = τp +

u∑

i=1

(
τh − τp

)
,

Table 17.   Main influences of factors for GFGs.

Level

Factor

MT IP IS PP PT

1 0.8182 0.7286 0.6912 0.6756 0.6544

2 0.6886 0.7458 0.7284 0.7258 0.7462

3 0.5816 0.6364 0.7252 0.7692 0.7062

4 0.6924 0.6968 0.7378 0.6478 0.7392

5 0.7308 0.7040 0.6290 0.6932 0.6656

Max–min 0.2366 0.1094 0.1088 0.1214 0.0918
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where τp is the total mean value of the AGFGs; τh denotes the mean value of the best parameter combination in 
the AGFGs; u is the amount for design variables.

The experimental results and the GFG of the prediction scheme, the optimal scheme and the original scheme 
are shown in Table 18 (each experiment result is the average value of three experiments under the condition of 
stable process). Specifically, the “Original” column is the original design, the “Triangular + gaussian” column is the 
grey fuzzy decision making method applying the triangular membership function and the gaussian membership 
function, the “Optimal” column is the best scheme obtained by adopting the grey fuzzy decision making method 
with the triangular membership function and the gaussian membership function, the “Prediction” column is 
the method of prediction, the “Theory” column is the theory value of prediction method, the “Experiment” 
column is the experiment value of prediction method, the “Error (%)” column is the relative deviation between 
the prediction result and the optimal result, the “Improvement (%)” column is the relative deviation between the 
prediction result and the original design, the “Grey fuzzy grade (new)” column is the grey fuzzy grade obtained 
by grey fuzzy decision making method after adding the prediction scheme and original design (27 sample 
points), the “Grey fuzzy grade (old)” column is the GFG obtained by grey fuzzy decision making method (25 
sample points). It can be seen from Table 18 that the GFG of the theory prediction (1.008) and the GFG of the 
experiment prediction (0.902) are differing greatly. The reason for this difference is that after the addition of the 
prediction scheme and the original scheme, the minimum value of the target sequence is changed, which leads 
to the change of all the grey relational coefficients and the change of the overall GFGs. (the difference between 
the Grey fuzzy grade (new) and the grey fuzzy grade (old)). In addition, compared with the original design, the 
RSS, RSC, WS, WC and RFM of the prediction scheme were reduced by 32.816%, 29.977%, 88.571%, 74.390% 
and 46.453%, respectively. Compared with the optimal scheme of grey fuzzy decision making method, the RSS, 
RSC, WS, WC and RFM of the prediction scheme were reduced by − 12.016%, − 5.192%, 12.195%, 61.111% 
and 30.210%, respectively. Moreover, the GFG of the original design, optimal scheme and prediction scheme is 
0.616, 0.874 and 0.902, respectively. The GFGs ranking (high to low) are the prediction scheme, optimal scheme 
and original design. Figure 10 shows a comparison result of the original scheme, the optimal scheme and the 
prediction scheme in an experiment. In conclusion, the optimal scheme is the prediction scheme using grey fuzzy 
decision making method. Accordingly, Taguchi grey fuzzy decision making method can be adopted to optimize 
protein electrophoresis microfluidic chip effectively.

Figure 9.   The main effect diagram of factors on GFG.

Table 18.   Comparison of the original scheme, the optimal scheme and the prediction scheme.

Optimization objective

Triangular + gaussian Prediction

Original Optimal Theory Experiment Error (%) Improvement (%)

RSS (nm) 185.704 111.336 – 124.764 12.016 − 32.816

RSC (nm) 188.961 136.645 – 143.654 5.192 − 29.977

WS (mm) 0.315 0.041 – 0.036 − 12.195 − 88.571

WC (mm) 0.082 0.054 – 0.021 − 61.111 − 74.390

RFM 6.316 4.846 – 3.382 − 30.210 − 46.453

Grey fuzzy grade (new) 0.616 0.874 1.008 0.902 3.204 46.429

Grey fuzzy grade (old) 0.658 0.938 – – – –
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Figure 10.   Comparison of the original scheme, the optimal scheme and the prediction scheme in an 
experiment. (a) The residual stress of substrate and cover plate. (b) The warpage of substrate and cover plate. (c) 
The replication fidelity of microchannel for substrate plate.
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Conclusion
During this research, a multi-objective optimization approach and detailed optimization process are proposed 
for substrate and cover production on protein electrophoresis microfluidic chip, and the effectiveness of the 
prediction scheme is evaluated through experiments. In more detail, the Taguchi orthogonal design method, 
the grey relational analysis method, the Taguchi grey fuzzy decision making method and the factor influence 
analysis are simultaneously adopted in multi-objective optimization of protein electrophoresis microfluidic chip. 
The main conclusions of this study include:

(1)	 In the optimization of protein electrophoresis microfluidic chip, the grey fuzzy decision making method 
using the triangular membership function has the problem of insufficient accuracy, which will lead to the 
same GFG in different schemes, while the grey fuzzy decision method which combines triangular member-
ship function and gaussian membership function can solve this problem and get the appropriate GFG.

(2)	 The detailed fuzzy rule determination method can effectively solve the multi-objective optimization prob-
lem with different weights of optimization objectives.

(3)	 Compared with the GRG of the GRA method, the GFG of the grey fuzzy decision making method is closer 
to the ideal value. The grey fuzzy decision making method can provide a more reliable, qualitative and 
robust multi-objective optimization platform.

(4)	 The results show that the optimal scheme is achieved when the MT is 250 °C, the IP is 160 MPa, the IS is 
65 cm3/s, the PP is 80 MPa and the PT is 5 s.

(5)	 Compared with the original design, the RSS, RSC, WS, WC and RFM of the prediction scheme for Taguchi 
grey fuzzy decision making method were reduced by 32.816%, 29.977%, 88.571%, 74.390% and 46.453%, 
respectively.

Data availability
All data generated or analysed during this study are included in this published article [and its supplementary 
information files].
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