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Abstract: Psoriasis is an inflammatory skin disease mainly associated with an epidermal disorder.
However, the involvement of the dermal extracellular matrix (ECM) composition in psoriasis is still
poorly understood. This study aimed to investigate the expression of ECM components in psoriatic
skin substitutes (PS−) compared with healthy skin substitutes (HS−), as well as the effect of an n-3
polyunsaturated fatty acid, namely α-linolenic acid (ALA), on the psoriatic dermal compartment
(PSALA+). Liquid chromatography tandem mass spectrometry analyses revealed that the lipidome
of PS− contained higher amounts of n-6 derived prostaglandins (PGE2) and lipoxygenase products
(9-HODE and 15-HETE). ALA supplementation increased the levels of PGE3, 13-HOTrE, 15-HEPE,
and 18-HEPE, and decreased the levels of PGE2, 15-HETE, and 9-HOPE compared with PS−, in-
dicating that ALA modulates the dermal lipidome of psoriatic skin substitutes. Gene expression
profiling showed that several genes encoding for different ECM proteins were overexpressed in
PS− compared with HS−, namely COL1A1 (4.2-fold), COL1A2 (3-fold), COL3A1 (4.4-fold), COL4A1
(2.3-fold), COL4A2 (6.3-fold), COL5A1 (3.3-fold), COL5A2 (5.2-fold), and COL5A3 (4.6-fold). Moreover,
the expression of collagen IV (Col IV), collagen VII (Col VII), and laminin was found to be increased
in PS− compared with HS−, and to be restored with ALA (PSALA+) according to immunofluorescence
staining, while only the collagen I to collagen III ratio was altered according to dot blot analyses.
Linear regression analysis revealed several positive correlations, including Col III with 14-HDHA
levels, fibronectin with 12-HETE and 15-HETE levels, the dermo-epidermal junction Col IV with
PGF2α, 9-HODE, and 13-HODE levels, and laminin with levels of PGF2α, 9-HODE, 13-HODE, 5-
HETE, 12-HETE, and 15-HETE. These results suggest that the ECM plays an underestimated role in
the pathogenesis of psoriasis and that ALA supplementation can regulate the ECM composition.

Keywords: psoriasis; inflammatory disease; n-3 PUFA; alpha-linolenic acid; bioactive lipid mediators;
extracellular matrix; fibronectin; collagen; laminin

1. Introduction

Psoriasis is an inflammatory skin disease characterized by erythematosquamous
plaques covered by white scales [1]. Psoriasis is primarily associated with the epider-
mis; however, psoriatic skin exhibits pathological changes in most, if not all, cutaneous
cell types [2]. Psoriatic skin is characterized by hyperproliferative keratinocytes, whose
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presence leads to epidermal thickening (acanthosis) combined with the incomplete dif-
ferentiation of the keratinocytes. Other defining histologic hallmarks of psoriasis include
significant leukocyte infiltration as well as markedly increased vascularization [3]. Vari-
ous treatments have been developed for the management of psoriasis, including topical,
systemic, and biological agents [4,5]. Among the topical treatments, various combinations
of topical ointments (such as vitamin D derivatives, topical corticosteroids, urea, and an-
thralin) have been proposed [6]. As shown recently, a formulation based on an alcohol-free
foam with a predetermined association of a synthetic steroid/synthetic vitamin D3 analog
appears to be a safe and effective way to treat mild to moderate forms of psoriasis, reducing
the PASI score by up to 90% after 1 month of once-daily application of this treatment [7].
In recent years, a better understanding of the immunological basis of psoriasis has led
to the development of several targeted biological therapies. Thus, the main therapeutic
approaches focus on the modulation of T cell activity (alefacept, efalizumab, ustekinumab);
the inhibition of the p19 subunit of the IL-23 cytokine, an actor that promotes the develop-
ment and expansion of IL-17-producing T helper cells (guselkumab, risankizumab); IL-17
itself and its receptor (secukinumab, ixekizumab, brodalumab); and the inhibition of the
tumor necrosis factor alpha (TNFα) cytokine (etanercept, infliximab, adalimumab) [8,9].
The complex etiology of psoriasis remains incompletely defined and mechanistic studies
for effective therapeutic approaches are still ongoing [10]. Although the psoriatic epidermis
has been comprehensively investigated, the role of dermal fibroblasts has been little studied,
which may have contributed to an underestimation of the role of the latter in psoriasis.
Indeed, the crosstalk between the dermis and the epidermis is essential for the maintenance
of skin homeostasis [11].

The dermis is a connective tissue composed of fibroblasts that produce the extracellular
matrix (ECM), mainly consisting of collagen fibers, elastic fibers, glycosaminoglycans, and
proteoglycans [12]. The dermal collagen network that forms the principal skeleton of the
ECM consists mainly of types I (Col I), III (Col III), and V (Col V) collagens and represents
70–80% of the skin’s weight [13]. Another important collagen network composes the
basement membrane (BM) at the dermo-epidermal junction. This BM is formed from type
IV collagen (Col IV), type VII collagen (Col VII), and laminins, with its function being
to support the epidermis and preserve its integrity [14–16]. The ECM proteins and their
receptors of the integrin family have been identified as important regulators of epidermal
homeostasis, influencing the balance between cell renewal and differentiation [17]. The
ECM composition of psoriatic skin is poorly documented. Among the ECM proteins,
fibronectin has been the most associated with psoriasis, followed by laminin and type IV
collagen. The expression of these proteins was found to increase in psoriasis [18–22].

Many pathological models are used to study complex skin diseases such as psoriasis
in order to evaluate the innocuity and efficacy of potential new treatments [23]. Over
the past decade, three-dimensional tissue-engineered human skin models produced with
cells from psoriasis patients have been shown to have the most prominent features of
psoriasis, including a hyperproliferative epidermis, abnormal keratinocyte differentiation,
and altered gene expression [24–27]. Previously, our group explored the potential of n-3
polyunsaturated fatty acids (PUFAs) as a treatment for psoriasis in a tissue-engineered pso-
riatic skin model, focusing on the biological activity of n-3 PUFAs on psoriatic keratinocytes.
We have shown that n-3 PUFAs decrease psoriatic keratinocyte proliferation and increase
their differentiation, leading to the formation of a normal-looking epidermis. These effects
were mediated by increased amounts of n-3 derived lipid mediators, decreased amounts of
n-6-derived lipid mediators, and the activation of the extracellular signal-regulated kinase
1/2 (ERK1/2) signaling pathway [28]. In the present study, we expanded our analyses to
study the expression of the dermal extracellular matrix in psoriasis as well as the impact of
the n-3 fatty acid α-linolenic acid (ALA) on the psoriatic dermal compartment.
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2. Materials and Methods
2.1. Cell Culture and Production of Tissue-Engineered Skin Substitutes

The Research Ethics Committee of the CHU de Québec-Université Laval approved
the study and the volunteers signed a consent form in accordance with the Declaration
of Helsinki and the guidelines of the Research Ethics Committee of the CHU de Québec-
Université Laval. Healthy fibroblasts and keratinocytes were extracted from the breast
reduction skin biopsies of three Caucasian women aged 18, 46, and 49 years old. Psoriatic
fibroblasts and keratinocytes were extracted from 6 mm biopsy punches taken directly
from the plaques of three psoriatic patients aged 46, 49, and 64 years old. The cells were
extracted according to the method based on thermolysin, trypsin, and collagenase digestion
described elsewhere [29].

Skin substitutes were produced according to the self-assembly method presented
elsewhere [30,31]. Human fibroblasts (passage 6) were seeded in 6-well culture plates
(1 × 104 cells/cm2) with Dulbecco’s Modified Eagle’s (DME) medium (Gibco, Life Tech-
nologies, New York, NY, USA) supplemented with 10% Fetal Calf premium Serum (FCS)
(Wisent Inc., St-Bruno, QC, Canada), 60 µg/mL penicillin (Sigma, Oakville, ON, Canada),
25 µg/mL gentamicin (Gemini Bio-Products, Sacramento, CA, USA), and 50 µg/mL ascor-
bic acid (Sigma, Oakville, ON, Canada). The 6-well plates were then incubated for 25 days.
On the 25th day, two sheets of fibroblasts were superimposed and cultured for 3 days in
a 100 mm Petri plate to form the dermal layer of the skin substitutes. The fusion of these
sheets allowed the production of the dermal equivalents required for the seeding of primary
human keratinocytes (passage 3, 1.2× 106 cells per dermal equivalent). The skin substitutes
were kept in submerged conditions for 7 days in DME mixed with Ham’s F12 medium (3:1)
(DMEH) (Gibco, Life Technologies, New York, NY, USA) including 5% FetalClone II serum
(Galenova, Saint-Hyacinthe, QC, Canada), 5 µg/mL insulin, 0.4 µg/mL hydrocortisone,
10−10 M cholera toxin (Sigma, Oakville, ON, Canada), 10 ng/mL human epidermal growth
factor (EGF) (Ango Inc, San Ramon, CA, USA), 60 µg/mL penicillin, 25 µg/mL gentamicin,
and 50 µg/mL ascorbic acid. The skin substitutes with keratinocytes were then cultured at
the air–liquid interface for 3 additional weeks in DMEH medium supplemented with 5%
FetalClone II serum, 5 µg/mL insulin, 0.4 µg/mL hydrocortisone, 10−10 M cholera toxin,
60 µg/mL penicillin, 25 µg/mL gentamicin, and 50 µg/mL ascorbic acid.

Reconstructed substitutes were produced either with all culture media supplemented
with ALA (HSALA+ and PSALA+) or with culture media supplemented with the correspond-
ing volume of ethanol (0.003% EtOH) (HS− and PS−). For n-3 PUFA supplementation, a
stock solution was produced by dissolving ALA (Sigma, Oakville, ON, Canada) in 99%
ethanol (Greenfield Global, Brampton, ON, Canada) [32,33]. Culture media were then
supplemented so as to contain a final concentration of 10 µM ALA, a concentration selected
according to our previous dose–response study [30]. The ALA solution was incorporated
directly into the serum, which contained abundant bovine serum albumin, in order to
increase its solubility in the complete culture medium. All cells were incubated at 37 ◦C
under atmospheric conditions of 8% CO2. Culture media were changed three times a week.

2.2. Histological Analysis

The biopsies were fixed in HistoChoice (AMRESCO, Inc., Solon, OH, USA) and encased
in paraffin. Masson’s trichrome staining was executed on 5 micrometer-thick sections. Two
substitutes for each of the three donors were analyzed (n = 6). The thickness of the
dermis and the epidermis was measured on Masson’s trichrome-stained sections using
ImageJ software (National Institutes of Health, USA, http://imagej.nih.gov/ij, accessed on
12 May 2021). Ten measurements in three different sections of each biopsy were made.

2.3. Immunofluorescence

Tissue sections with a thickness of 5 µm were incubated for 10 min in cold acetone
for effective fixation. Thereafter, the tissue sections were incubated for 45 min in a dark
humidified chamber with the primary antibodies (Table S1) diluted in PBS containing
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1% bovine serum albumin (BSA). After an adequate washout of the primary antibodies,
the tissue sections were incubated for 30 min in a dark humidified chamber with the
secondary antibodies (Table S1) diluted in PBS with 1% BSA. The slides were assembled in
a mounting medium containing 4′-6′-diamidino-2-phenylindole (DAPI) (Fluoromount-G,
SouthernBiotech, AL, USA), which stains the cell nucleus. A Zeiss microscope equipped
with an AxioCam HR Rev3 camera (Oberkochen, Germany) was used to observe the tissues.

2.4. Profiling Gene Expression

Total RNA was isolated from skin substitutes using the RNeasy Mini Kit (QIAGEN,
Toronto, ON, Canada), and its quality was determined (2100 bioanalyzer, Agilent Technolo-
gies, Mississauga, ON, Canada) as described in the article by Rioux et al. [26]. The labeling
of Cyanine 3-CTP labeled targets, their hybridization on a G4851A SurePrint G3 Human
GE 8x60K array slide (Agilent Technologies, Santa-Clara, CA, USA), data acquisition, and
analysis were all executed as indicated previously [26].

2.5. Protein Extract Preparation

The dermis was removed mechanically from the epidermis using forceps and a scalpel.
Tissues were transferred to 2 mL Safe-Lock Eppendorf tubes (ATS Scientific Inc., Burlington,
ON, Canada) containing a 9 mm stainless steel ball and crushed using a Cryomill MM400
(Retsch®, Newtown, PA, USA). Samples were incubated in 250 µL of RIPA buffer with
the protease inhibitor cOmplete (Roche, Mannheim, Germany) for 20 min on ice. The
tubes were then centrifuged at 20,000× g for 20 min at 4 ◦C, after which the supernatants
containing the proteins were collected and stored at−80 ◦C until their analysis. The proteins
were quantified using a PierceTM BCA protein assay kit, following the recommendations of
the manufacturer (Thermo Scientific, Rockford, IL, USA).

2.6. Dot Blots

A nitrocellulose membrane was placed in the Bio-Dot Apparatus (Bio-Rad, Missis-
sauga, ON, Canada) and was rehydrated by injecting 100 µL of a tris-buffered solution
(TBS) into each well. Total protein extract (5 µg or 10 µg) was loaded in the wells, and
then each well was rinsed twice with 200 µL of TBS. The nitrocellulose membrane was
removed from the device and rinsed in TBS with 0.1% Tween-10 solution (TBS-T). The
antigenic sites were blocked for 1 h in TBS-T with a 5% powdered milk solution (Non-Fat
Powdered Milk, Bio Basic, Markham, ON, Canada). The membranes were incubated for
1 h with the primary antibodies and for an additional hour with the secondary antibodies
(Table S1). The proteins of interest were detected using an ECL Prime Western Blotting
Detection Reagent (GE Healthcare, Little Chalfont, UK) and the Fusion F × 7 imager (MBI
Lab Equipment, Kirkland, QC, Canada). Quantification of the dot blots was performed
through densitometry using ImageJ (Wayne Rasband, National Institute of Health, USA).

2.7. LC-MS/MS

The analysis of lipid mediators was performed as described in Simard et al. [28,33].
Briefly, the dermis was reduced to a fine powder (as described in Section 2.5), which was
then suspended in 500 µL Tris-hydrochloride 50 mM (pH 7) and immediately denatured
in one volume of cold methanol containing the internal standard (Table S2). Lipids were
extracted using an acidified methanol–chloroform method as described elsewhere [34]. The
extracted lipids were reconstituted in 50 µL of a liquid chromatography solvent (Solvent
A and B, 50/50) and 40 µL was injected onto a reversed-phase HPLC column (Kinetex
C8, 150 × 2.1 mm, 2.6 µm; Phenomenex, Torrance, CA, USA) in a LC-MS/MS system [35].
Solvent A was composed of water containing 0.05% acetic acid and 1 mM ammonium
cation, while solvent B was composed of acetonitrile with water (95/5, v/v), 0.05% acetic
acid, and 1 mM ammonium cation. Finally, lipids were quantified using calibration curves
generated with pure standards in triplicates.
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2.8. Statistics

Data are expressed as mean ± standard deviation, except when stated otherwise.
Statistical analyses were performed using ANOVAs followed by Tukey’s post-hoc tests.
Only values of p < 0.05 were considered significant. All calculations were performed with
Prism version 7 software (GraphPad Software, La Jolla, CA, USA).

3. Results
3.1. Characterization of the Skin Substitute Morphology

Healthy (HS) and psoriatic (PS) human skin substitutes were produced according to
the self-assembly method with either culture media supplemented with ALA (HSALA+ and
PSALA+) or unsupplemented (HS− and PS−) in order to identify the effect of ALA on the
cutaneous morphology of the skin substitutes (Figure 1). According to their macroscopic
aspect, PS− displayed a more disorganized epidermis than HS− (Figure 1a,c). In addi-
tion, the epidermis was significantly thicker in PS− than in HS−, showing that psoriatic
keratinocytes preserved their hyperproliferative characteristic when cultivated in a 3D
psoriatic skin model (Figure 1e,g,j). Interestingly, PSALA+ had a more homogeneous epider-
mis and a significantly thinner epidermis than PS−, suggesting that treatment with ALA
improved epidermal morphology notably by decreasing psoriatic keratinocyte proliferation
(Figure 1c,d,g,h,j). The dermis, in which collagen fibers are stained in blue by Masson’s
trichrome, was not significantly different between the various conditions (Figure 1e–h).
The dermal thickness tended to increase after ALA supplementation in both HSALA+ and
PSALA+, although this was not statistically significant (Figure 1i).
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Figure 1. Biological activity of α-linolenic acid on skin substitute morphology. (a–d) Macroscopic
appearance and (e–h) histological appearance after Masson’s trichrome staining of the skin substitutes.
Scale bar: (a–d) 1 cm; (e–h) 100 µm. Thickness measurements of the dermis (i) and the epidermis (j)
(N = 3 donors, n = 2 skin substitutes per donor). (i,j) Statistical significance was determined using
one-way ANOVA followed by Tukey’s post-hoc test. **** p < 0.0001. Abbreviations: ALA—α-linolenic
acid; HS—healthy substitute; PS—psoriatic substitute.
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3.2. Dual Effects of ALA Treatment on Lipid Mediator Levels in Psoriatic Skin Substitute Dermis

The levels of 20 bioactive lipid mediators were assayed using LC-MS/MS analyses
to investigate the modulation of the lipidome of the skin substitute dermis by the ALA
treatment (Table S3 and Figure 2). Significant alterations of lipid mediator levels were
observed between PS− and HS− (Figure 2a). The most prominent lipid mediators found in
the skin substitutes dermis were prostaglandins, followed by 15-LO metabolites such as
13-HODE, 15-HEPE, and 15-HETE (Figure 2a). The lipidome of the PS− was significantly
different from that of the HS− (Figure 2a). Of note, significant increases were observed
in the PS− dermal levels of AA-derived metabolites, including prostaglandin E2 (PGE2),
9-HODE, and 15-HETE (Figure 2b). Treatment with ALA resulted in both increases in the
n-3-derived lipid mediators and decreases in the n-6-derived lipid mediators (Figure 2a).
As expected, the levels of ALA-derived 13-HOTrE were higher in PSALA+ dermis, while
it was not detected in PS− dermis (Figure 2c). Additionally, the levels of EPA-derived
PGE3, 15-HEPE, and 18-HEPE were also increased in PSALA+ compared with both HS− and
PS− (Figure 2b,c). In contrast, the levels of LA-derived 9-HODE, AA-derived PGE2, and
15-HETE were all decreased in PSALA+ compared with PS− (Figure 2b). These results show
that ALA treatment modulates the dermal lipidome of psoriatic skin substitutes, leading to
a profile enriched in bioactive lipid mediators associated with anti-inflammatory properties.
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Figure 2. Levels of lipid mediators in the dermis. (a) Heatmap of bioactive lipid mediators found
in the dermis of the skin substitutes as determined by targeted LC-MS/MS (N = 3). (b) n-6-derived
and (c) n-3-derived bioactive lipid mediators from (a) that were the most differentially measured
between HS−, PS−, and PSALA+ dermis. Statistical significance was determined in (b,c) using two-
way ANOVA followed by Tukey’s post-hoc test, with the exception of 13-HOTrE, for which statistical
significance was determined using one-way ANOVA followed by Tukey’s post-hoc test. * p < 0.05;
** p < 0.01; *** p < 0.001; **** p < 0.0001. Abbreviations: AEA—N-arachidonoyl-ethanolamine;
ALA—α-linolenic acid; DHEA—N-docosahexaenoyl-ethanolamine; EPEA—N-eicosapentaenoyl-
ethanolamine; HEPE—hydroxyeicosapentaenoic acid; HETE—hydroxyeicosatetraenoic acid; HFA—
hydroxy-fatty acid; HODE—hydroxyoctadecadienoic acid; HOTrE—hydroxyoctadecatrienoic acid;
HS—healthy substitute; MaR—maresin; PG—prostaglandin; PS—psoriatic substitute; Rv—resolvin.

3.3. Expression of the Extracellular Matrix Proteins in Healthy and Psoriatic Skin Substitutes

The expression of genes coding for the various proteins of the dermal extracellular
matrix in healthy and psoriatic substitutes was studied using gene profiling on microarrays
(Table 1). Genes with a linear signal higher than 100 were considered to be expressed in the
skin substitutes, while genes with a linear signal under 100 were considered not to be de-
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tected under our experimental conditions. Thus, all collagen genes were expressed in both
HS− and PS−, with type I collagen genes (COL1A1 and COL1A2) being the predominantly
expressed collagen genes. Moreover, the expression of genes coding for types I (COL1), III
(COL3), and V (COL5) collagens were all at least 2-fold higher in PS− than in HS−. Indeed,
enhanced expression of COL1A1 (4.2-fold), COL1A2 (3-fold), COL3A1 (4.4-fold), COL5A1
(3.3-fold), COL5A2 (5.2-fold), and COL5A3 (4.6-fold) was found in PS−. Interestingly, two
of the type IV collagen (COL4) genes were overexpressed in PS−, namely COL4A1 (2.3-fold)
and COL4A2 (6.3-fold). Finally, the expression of COL7A1 was not different between HS−

and PS−.

Table 1. Expression of genes encoding collagens in healthy and psoriatic skin substitutes.

Gene
Symbol Gene Name Linear Signal

HS−
Linear Signal

PS−
Fold Change

PS−/HS−

COL1A1 Type I collagen, alpha-1 chain 18,221 76,915 4.2 *
COL1A2 Type I collagen, alpha-2 chain 24,079 73,190 3.0 *

COL3A1 Type III collagen, alpha-1
chain 2759 12,201 4.4 *

COL4A1 Type IV collagen, alpha-1
chain 360 2229 2.3 *

COL4A2 Type IV collagen, alpha-2
chain 2279 14,503 6.3 *

COL4A5 Type IV collagen, alpha-5
chain 750 608 0.8

COL4A6 Type IV collagen, alpha-6
chain 505 332 0.7

COL5A1 Type V collagen, alpha-1
chain 1248 4116 3.3 *

COL5A2 Type V collagen, alpha-2
chain 1909 9909 5.2 *

COL5A3 Type V collagen, alpha-3
chain 100 460 4.6 *

COL7A1 Type VII collagen, alpha-1
chain 1118 1358 1.2

LAMA1 Laminin subunit alpha-1 105 118 1.1
LAMA2 Laminin subunit alpha-2 718 1586 2.2
LAMA3 Laminin subunit alpha-3 3650 1606 0.4
LAMA4 Laminin subunit alpha-4 187 225 1.2
LAMA5 Laminin subunit alpha-5 231 213 0.9

LAMB1 Laminin subunit beta-1 576 1357 2.4
LAMB2 Laminin subunit beta-2 2566 5487 2.1
LAMB3 Laminin subunit beta-3 9875 6013 0.6
LAMB4 Laminin subunit beta-4 119 120 1.0

LAMC1 Laminin subunit gamma-1 1669 4506 2.7
LAMC2 Laminin subunit gamma-2 1580 977 0.6
LAMC3 Laminin subunit gamma-3 59 56 0.9

* Considered different.

3.4. Impact of ALA Treatment on the Expression of Extracellular Matrix Proteins in the
Skin Substitutes

The expression of the different extracellular matrix proteins was studied using indirect
immunofluorescence and dot blot analyses in order to confirm their presence in HS− and
PS− and to evaluate whether ALA affects their expression (Figure 3). According to the
immunofluorescence analyses, Col I and Col III were expressed uniformly throughout
the reconstructed dermis both for HS− and PS− (Figure 3a). For their part, elastin and
fibronectin were dispersed diffusely with a predominant localization at the bottom of
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the dermis (Figure 3a). The expression of ECM proteins in PS− dermis was not found to
be significantly altered compared with HS− dermis under our experimental conditions.
Indeed, although levels of Col I and Col III tended to be slightly higher in PS− than in HS−,
the difference was not significant (Figure 3b,c). Interestingly, the Col I to Col III ratio was
significantly higher in PS− than in HS− (Figure 3c). Furthermore, elastin and fibronectin
levels were not different in PS− compared with HS− (Figure 3b,c). Of note, high inter-
individual variability was observed regarding the basal expression of extracellular matrix
proteins. Regarding ALA treatment, the levels of Col I, Col III, elastin, and fibronectin were
not statistically different between PSALA+ and PS−, although levels of Col I and Col III
tended to be higher in PSALA+ than in PS− (Figure 3b,c).

Linear regression analyses were performed to determine whether the expression of
the ECM proteins correlated with the levels of bioactive lipid mediators (Figure 3d and
Table 2). Interestingly, Col III expression was positively correlated with levels of n-3-derived
lipid mediator 14-HDHA. In contrast, fibronectin levels were positively correlated with
AA-derived (n-6) lipid mediator levels, specifically 12-HETE and 15-HETE (Figure 3d and
Table 2). Additionally, the Col I/Col III ratio was positively correlated with the levels of
RvE4 as well as the levels of most n-6 derived lipid mediators (Table 2 and Figure S1). Col I
and elastin levels were not correlated to any lipid mediator levels (Table 2). Of note, PGF2α
was detected in only two samples; therefore, linear regression analyses were not considered
reliable for this metabolite.

Table 2. Linear regression comparing ECM protein levels to the lipid mediator levels.

Lipid
Mediators Collagen I Collagen III Col I/Col III Elastin Fibronectin Collagen IV Laminin

r p r p r p r p r p r p r p

PGE3 0.384 0.452 0.410 0.419 −0.259 0.621 −0.322 0.941 −0.149 0.777 −0.540 0.269 −0.149 0.534
PGF3α 0.803 0.055 0.908 0.012 −0.360 0.483 −0.244 0.570 0.009 0.987 −0.279 0.593 0.009 0.641

13-HOTrE 0.585 0.223 0.807 0.052 −0.637 0.174 −0.191 0.875 −0.086 0.871 −0.314 0.544 −0.086 0.717
12-HEPE 0.562 0.246 0.668 0.147 −0.450 0.371 −0.339 0.952 −0.164 0.756 −0.537 0.272 −0.164 0.511
15-HEPE 0.518 0.293 0.717 0.109 −0.470 0.346 −0.097 0.808 −0.038 0.943 −0.309 0.551 −0.038 0.855
18-HEPE 0.345 0.503 0.483 0.332 −0.555 0.253 −0.343 0.681 −0.264 0.614 −0.632 0.178 −0.264 0.506

14-HDHA 0.639 0.172 0.815 0.048 −0.578 0.230 −0.251 0.973 −0.024 0.964 −0.449 0.371 −0.024 0.631
17-HDHA 0.256 0.625 −0.065 0.902 0.495 0.319 −0.225 0.098 0.450 0.371 −0.159 0.764 0.450 0.668

RvE4 −0.174 0.742 −0.471 0.346 0.843 0.035 0.239 0.294 0.526 0.283 0.396 0.436 0.526 0.649
MaR2 −0.402 0.430 −0.664 0.151 0.580 0.227 0.035 0.559 0.098 0.854 0.248 0.635 0.098 0.948
PGE2 −0.342 0.507 −0.553 0.255 0.911 0.011 0.529 0.572 0.556 0.252 0.681 0.136 0.556 0.281

PGF2α −0.483 0.332 −0.544 0.265 0.877 0.022 0.910 0.835 0.782 0.066 0.856 0.030 0.782 0.012
9-HODE −0.424 0.402 −0.489 0.325 0.842 0.035 0.859 0.974 0.727 0.101 0.906 0.013 0.727 0.028
13-HODE −0.406 0.424 −0.446 0.375 0.823 0.044 0.901 0.901 0.770 0.073 0.903 0.014 0.770 0.014
5-HETE −0.351 0.495 −0.400 0.432 0.757 0.081 0.826 0.942 0.807 0.052 0.795 0.059 0.807 0.043

12-HETE −0.116 0.827 −0.170 0.748 0.813 0.049 0.829 0.876 0.931 0.007 0.724 0.104 0.931 0.041
15-HETE −0.387 0.448 −0.501 0.312 0.917 0.010 0.823 0.925 0.829 0.041 0.802 0.055 0.829 0.044

Values in green are significant.
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Figure 3. Impact of α-linolenic acid (ALA) on the levels of components of the dermal extracellular
matrix in healthy and psoriatic skin substitutes. (a) Indirect immunofluorescence staining of collagen
I (green), collagen III (green), fibronectin (red), and elastin (red). Nuclei were stained with DAPI
(blue). Scale bar: 100 µm. (b) Dot blot analysis of collagen I, collagen III, fibronectin, and elastin.
(c) Densitometric analysis of the dot blot from panel b. Statistical significance was determined using
one-way ANOVA followed by Tukey’s post-hoc test. * p < 0.05. (d) Linear regression analyses
assessing the correlation of ECM proteins to specific lipid mediators. The correlation coefficient
was determined according to Pearson’s correlation coefficient (r), and the significance according to
two-tailed test p-value (p). Values are means ± SD (N = 3 donors, n = 2 skin substitutes per donor).
Abbreviations: ALA—α-linolenic acid; HETE—hydroxyeicosatetraenoic acid; HS—healthy substitute;
PG—prostaglandin; PS—psoriatic substitute.
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3.5. Impact of ALA Supplementation on the Expression of the Dermo-Epidermal Junction Proteins
in the Skin Substitutes

The expression of the proteins at the dermo-epidermal junction was investigated using
indirect immunofluorescence staining and dot blot analyses in order to evaluate whether
their expression is disturbed in PS− and whether ALA affects their expression (Figure 4).
Based on the immunofluorescence analyses, all three proteins were expressed mainly at
the dermo-epidermal junction (Figure 4a). However, while the expression of laminin was
exclusively restricted to the dermo-epidermal junction, the diffuse expression of Col IV and
Col VII was also observed throughout the rest of the dermis in the skin substitutes, and more
markedly in the psoriatic substitutes (Figure 4a). Immunofluorescence analyses suggested
that the levels of all three proteins were higher in PS− compared with HS−, showing
increased production of ECM proteins at the dermo-epidermal junction in psoriatic skin
substitutes. However, the expression of ECM proteins was not found to be significantly
altered in PS− dermis compared with HS− dermis under our experimental conditions
according to dot blot analyses (Figure 4b,c).
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Figure 4. Impact of α-linolenic acid (ALA) supplementation on the levels of proteins at the dermo-
epidermal junction of healthy and psoriatic skin substitutes. (a) Indirect immunofluorescence staining
of collagen IV (green), collagen VII (green), and laminin (red). Nuclei were stained with DAPI
(blue). Scale bar: 100 µm. (b) Dot blot analysis of collagen IV and laminin. (c) Densitometric
analysis of the dot blot from panel (b) (N = 3 donors, n = 2 skin substitutes per donor). Statistical
significance was determined using one-way ANOVA followed by Tukey’s post-hoc test. Abbre-
viations: ALA—α-linolenic acid; HODE—hydroxyoctadecadienoic acid; HS—healthy substitute;
PS—psoriatic substitute.
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Based on immunofluorescence analyses, the levels of all three proteins were lower
in PSALA+ than in PS−, suggesting that ALA treatment had a beneficial impact on the
expression of the proteins of the dermo-epidermal junction in PS− (Figure 4a). Moreover,
ALA seemed to reduce the presence of Col IV and Col VII in the dermis to a more restricted
localization at the dermo-epidermal junction (Figure 4a). In contrast, the expression of
Col IV and laminin was not found to be significantly decreased in PSALA+ dermis com-
pared with PS− dermis under our experimental conditions according to dot blot analyses
(Figure 4b,c). On the other hand, correlations were found between the expression of Col IV
and laminin and the levels of n-6-derived lipid mediators in the psoriatic skin substitute
dermis (Table 2 and Figure S2). Indeed, Col IV was positively correlated with the levels
of PGF2α, 9-HODE, and 13-HODE, while laminin was positively correlated with PGF2α,
9-HODE, 13-HODE, 5-HETE, 12-HETE, and 15-HETE.

4. Discussion

Psoriasis is an immune-driven skin disease mainly associated with an epidermal disor-
der including keratinocyte hyperproliferation and disturbed differentiation. The functional
significance of the ECM in controlling epidermal stem cell fate has been investigated in
many studies [36–38]. However, the implication of the ECM composition in psoriasis is
still poorly understood. Moreover, while n-3 PUFAs were found to decrease psoriatic
keratinocyte proliferation, improve psoriatic keratinocyte differentiation, and modulate
epidermal protein expression [28,39,40], the impact of n-3 PUFAs on the dermal compart-
ment of psoriatic skin was not studied. In the present study, ALA treatment regulated the
ECM composition in psoriatic substitutes.

An increased expression of the genes encoding Col I, Col III, Col IV, and laminin
was measured in psoriatic substitutes compared with healthy substitutes in our study.
Other studies also seem to indicate an increase in the expression of collagen genes in
psoriatic skin, as well as an increase in the levels of collagenase [41–45]. In contrast with
our transcriptomic analyses, our dot blot analyses did not confirm altered ECM component
expression at a protein level in psoriatic skin substitutes compared with healthy substitutes,
thus suggesting a greater turnover of collagen in psoriatic skin substitutes. Accordingly,
while the collagen protein levels reported in psoriatic skin vary between studies, all at least
seem to agree on there being a greater turnover of collagen in psoriatic skin [46]. Of note,
one study showed that collagen and elastin fibers tended to assemble in large bundles
in native psoriatic skin, while smaller, more homogeneously spread fibers were found in
healthy native skin [47]. Secondly, an increased type I/III collagen ratio was measured in
psoriatic dermis compared to healthy dermis under our culture conditions. During wound
healing, the type I/III collagen ratio is decreased in early granulated tissues, while the ratio
is increased in mature scars [48]. Moreover, higher type I/III collagen ratios were found in
disorders associated with loss of tissue compliance [49–51].

Subsequently, the unaltered levels of fibronectin, collagen IV, and laminin found in pso-
riatic substitutes compared with healthy substitutes show contrast with previous reports.
The most studied ECM protein in psoriasis is fibronectin (more specifically, fibronectin-
EDA), which was found to be significantly increased in native psoriatic and in imiquimod-
mouse skin compared with their respective controls (healthy native skin, healthy mouse
skin) [20,21,52]. Transforming growth factor-beta (TGF-β) together with fibronectin and
5β1 integrin (a fibronectin-specific receptor) were suggested to play a crucial role in the
pathogenesis of psoriasis by influencing inflammation and keratinocyte hyperprolifera-
tion [53,54]. Furthermore, increased levels of Col IV were also found in native psoriatic skin
and in imiquimod-treated mice [22,43]. Finally, most studies reported laminin disruption
in psoriasis [20,21,52,55]. The expression of laminin in native psoriatic skin depends on the
particular chains (α, β and γ) and isoforms measured. Toti and co-workers reported de-
creased laminin α2 chain and normal laminin α1, β1 and γ1 chains in psoriatic lesions [55],
while Natsumi and co-workers reported increased laminin-332 (laminin α3, β3 and γ2; also
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known as laminin 5) and laminin-511 (laminin α5, β1 and γ1; also known as laminin 10) in
psoriasis [22].

The impact of n-3 PUFAs on the expression of collagen has been studied widely,
leading to a myriad of conclusions depending on the cell types, the model, the mode of
administration, the various n-3 PUFAs, the tissues, and the diseases [56–63]. Based on the
available data, the impact of PUFAs on collagen synthesis seems to be separated into two
different responses, depending on whether the effects were assessed in a fibrotic tissue or
in a wound-healing tissue. On the one hand, n-3 PUFA treatments seem to reduce collagen
synthesis in fibrotic tissues [56–59]. Indeed, decreased collagen synthesis was measured
after n-3 PUFA administration in a male Sprague–Dawley rat model of cholestasis, in a
canine pacing model of atrial cardiomyopathy, in mice on a high-fat diet, and in mice with
renal interstitial fibrosis [56–61]. On the other hand, most studies using EPA and DHA
reported delayed wound healing and collagen synthesis [62,63]. In contrast, pro-resolving
lipid mediators were shown to promote wound healing and, consequently, to stimulate
collagen synthesis in wounded tissues [61].

The impact of n-3 PUFAs on the ECM proteins in psoriatic skin has not been directly
investigated, and whether psoriatic dermis can be better associated with a fibrotic or a
wounded tissue is not clear. Indeed, a few studies have compared psoriatic lesions to an
everlasting wound that cannot be healed, while the enhanced collagen synthesis found in
psoriatic skin is more closely related to fibrotic tissue conditions [64]. Interestingly, deeper
analyses of the correlation between specific lipid mediators and ECM proteins seem to be
the key to better understanding the divergent biological activities of n-3 and n-6 PUFAs in
various conditions. In the present study, the levels of fibronectin, Col IV, and laminin were
found to correlate with the levels of n-6-derived lipid mediators, while the levels of Col III
correlated with the levels of n-3-derived lipid mediators. Fibronectin expression was also
reported as being linked with the arachidonic cascade [65,66], or more specifically, with
the levels of 12-HETE in vascular smooth muscle cells [67]. Moreover, stimulation with
EPA and DHA was shown to have no impact on the expression of fibronectin in mesangial
cell cultures [66], thus reinforcing the conclusion that fibronectin levels are regulated by
n-6 metabolites and not n-3 metabolites. The overexpression of 12-LO (responsible for
the conversion of AA into 12-HETE) in cardiac fibroblasts was associated with increased
fibronectin levels and collagen synthesis [68]. However, other reports claimed that AA
could trigger fibronectin degradation [69] and that it inhibited collagen synthesis [70]. Of
note, various AA-derived lipid mediators seem to exert different and specific effects on
the dermal ECM. For instance, PGE2 was shown to inhibit the mRNA expression of type I
collagen α1 chain (COL1A1) in human dermal fibroblasts cultured in vitro [71]. Moreover,
5-HETE, 12-HETE, and LTB4 were found to be potent fibroblast chemoattractants [70]. In
the present study, the levels of collagen III were found to correlate with the levels of PGF3
and 14-HDHA. To our knowledge, our study is the first to show such a link. It is interesting
to note that collagen III synthesis is important during wound healing [72].

5. Conclusions

In conclusion, the mRNA expression of several ECM proteins and the levels of n-
6-derived lipid mediators were higher in the psoriatic skin substitute dermis compared
with healthy skin substitute dermis. These results seem to indicate an alteration of the
dermal compartment in psoriatic skin. Supplementation of the culture medium with ALA
modulated the dermal lipidome of psoriatic substitutes, resulting in increased levels of
PGE3, 13-HOTrE, 15-HEPE, and 18-HEPE and decreased levels of PGE2, 15-HETE, and
9-HODE. Furthermore, the levels of bioactive lipid mediators were found to correlate with
the levels of certain ECM proteins, showing that some lipid mediators may regulate the
synthesis of the extracellular matrix in the dermis. Indeed, 14-HDHA would increase the
expression of collagen III, while LA- and AA-derived lipid mediators would modulate the
expression of fibronectin, collagen IV, and laminin.
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