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Tsunamis in the geological record: Making waves with a
cautionary tale from the Mediterranean
Nick Marriner,1* David Kaniewski,2,3,4 Christophe Morhange,5 Clément Flaux,2 Matthieu Giaime,5

Matteo Vacchi,5,6 James Goff1,7

From 2000 to 2015, tsunamis and storms killed more than 430,000 people worldwide and affected a further
>530 million, with total damages exceeding US$970 billion. These alarming trends, underscored by the tragic
events of the 2004 Indian Ocean catastrophe, have fueled increased worldwide demands for assessments of
past, present, and future coastal risks. Nonetheless, despite its importance for hazard mitigation, discriminating
between storm and tsunami deposits in the geological record is one of the most challenging and hotly contended
topics in coastal geoscience. To probe this knowledge gap, we present a 4500-year reconstruction of “tsunami”
variability from the Mediterranean based on stratigraphic but not historical archives and assess it in relation to
climate records and reconstructions of storminess. We elucidate evidence for previously unrecognized “tsunami
megacycles” with three peaks centered on the Little Ice Age, 1600, and 3100 cal. yr B.P. (calibrated years before
present). These ~1500-year cycles, strongly correlated with climate deterioration in the Mediterranean/North Atlantic,
challenge up to 90% of the original tsunami attributions and suggest, by contrast, that most events are better
ascribed to periods of heightened storminess. This timely and provocative finding is crucial in providing appropriately
tailored assessments of coastal hazard risk in the Mediterranean and beyond.
INTRODUCTION
Storms and tsunamis are key, and often devastating, motors of coastal
change over large regions of the globe (1–5). In the present context of
global change and sea-level rise (6), the threat of these natural hazards
sits uneasily with seaboard megacities (7) and high coastal population
densities, particularly in developing countries (8, 9). Demographic pro-
jections suggest that almost 1 billion people will live in low-elevation
coastal areas by 2030 (8). To aid planners and policy makers in formu-
lating appropriate adaptive strategies and successfullymitigating against
future disasters, it is therefore critical to improve the understanding of
past littoral hazards, including their driving mechanisms, magnitudes,
and frequencies (10). Nonetheless, unequivocally differentiating be-
tween storm and tsunami deposits in the geological record is a contro-
versial and strongly debated topic (11–15). Since the early 2000s, in
particular, there has been an exponential growth in tsunami science,
triggered notably by the tragic events of the 2004 Indian Ocean
catastrophe, in which >225,000 people lost their lives (1), spawning
a rapid demand for assessments of tsunami risk worldwide.

The “storm versus tsunami” debate is particularly strong in the
Mediterranean, an area that is prone to both multisite seismic ac-
tivity (16–18) and storm events (19–21). At present, around 130million
people live along theMediterranean seaboard (22). It is also the world’s
top tourist destination,withmore than 230million international visitors
a year (23). The Mediterranean accommodates several significant
waterfront cities including Istanbul (a megacity of >14 million people),
Barcelona (>5.3million),Alexandria (>4.8million),TelAviv (>3.6million),
Izmir (>3 million), Algiers (>2.6 million), and Naples [>2.1 million; (24)].
Many of these cities have been important urban centers for thousands of
years, and bygone natural disasters related to storms and tsunamis are
well documented by historical records (25–35).

Since ~2000, much of the Mediterranean literature has focused on
Holocene records of tsunami risk, whereas archives of storm events
have been relegated to a secondary position (36). It is unclear whether
this reflects the reality of the Mediterranean’s geological record or, by
contrast, the rise of awider neocatastrophist paradigm that has polarized
research efforts toward tsunami investigations in the wake of globally
mediatized disasters such as Sumatra and Fukushima (37).

To put this in perspective, we analyzed “tsunami” and “storm” data
contained in the EM-DAT (Emergency Events Database) database,
an international data repository of disasters, for the period 1900–2015
(Fig. 1). Worldwide, during this time, a total of 59 tsunami events and
3050 storm events were recorded (1). Overall, and in contrast to the pre-
sent media-driven “discourses of fear” (36), the data demonstrate that
storms aremore than eight times deadlier andmore costly than tsunamis.
For instance, between 1900 and 2015, storms accounted for 84% of total
“tsunami + storm” deaths (n = 1,632,020) and 81% of total tsunami +
storm costs (n = US$1,206,648,076). Furthermore, we elucidated an
interesting cyclicity in the storm time series (Fig. 2), which is notmirrored
in the tsunami data. These trends in storminess mesh tightly with well-
known climate pacemakers (for example, the 11-year solar cycle), a
finding that provides further context for the storm versus tsunami debate,
particularly in the light of the present human-induced global change.

Here, we propose a novel meta-analysis of Mediterranean tsunami
events in the geological record for the past 4500 years, which is com-
pared and contrasted with detailed records of storminess (19, 21). This
analysis was designed to compare statistical patterns of high-energy
events interpreted from the sedimentary, not historical, record using
a consistent methodology. The Mediterranean constitutes a textbook
study example because natural archives for high-energy coastal events
are particularly prevalent along its seaboard (38). For instance, lagoon
sequences are common in clastic systems, whereas boulder records are
frequently used on rocky coasts.
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In stratigraphic terms, storms and tsunamis constitute “event
deposits,” namely, episodic facies of short duration resulting from
abnormal high-energy processes. There is no formal or precise def-
inition of “event,” and unequivocally differentiating between storm
and tsunami deposits in the geological record is challenging. Recent
research has focused on comparing historical examples of storm
and tsunami deposits [for example, see the studies of Goff et al.
(39) and Tuttle et al. (40)]. Onshore, storms tend to generate wedge-
like units dominated by bed load, whereas tsunamis generally produce
sheetlike deposits characterized by suspended load. However, the na-
ture of any storm or tsunami deposit is strongly governed by sediment
availability and, as such, could be composed entirely of silt or boul-
ders. An important difference between these two depositional pro-
cesses is wave periodicity: Tsunamis are composed of long period
Marriner et al., Sci. Adv. 2017;3 : e1700485 11 October 2017
waves and storms are characterized by short period waves. This in-
variably leads to tsunami deposits extending farther inland than their
storm counterparts (12, 41), thusmaking a study of their lateral continuity
a key research criterion. Therefore, differentiating between the two origins
in core sequences, which has been a preferred tool for Mediterranean
paleotsunami reconstructions, is extremely difficult, particularly in con-
texts very close to the shoreline that are equally vulnerable to both types
of hazard. Some authors have usedmicropaleontological proxies to help
distinguish deposits of storms from tsunamis (42). However, on the basis
of a foraminifera-based study in Portugal, Kortekaas and Dawson (43)
found only very subtle differences betweenhistorical stormand tsunami
facies and concluded that multiproxy lines of investigation were imper-
ative. It is nowwidely recognized that any realistic attempt to differentiate
between storm and tsunami deposits must use a multiproxy approach
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Fig. 1. Costs and deaths associated with storms (left) and tsunamis (right) between 1900 and 2015, based on the EM-DAT disaster database. The data dem-
onstrate that tsunamis are rare and unpredictable natural hazards but that, cumulatively, storms are deadlier and more costly. The threat of storms and tsunami hazards
has been aggravated by global change and sea-level rise, particularly in densely populated coastal areas, which presently account for ~40% of the world’s population
(8). In particular, low-lying coastal areas are experiencing rapid and disproportionate demographic growth in comparison to the global average, driven notably by the
importance of their natural resources and ocean-related recreation.
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including geological, biological, geochemical, geomorphological, ar-
chaeological, anthropological, and contextual proxies, where possible
(13). In essence, themore proxies used, the easier it is to determine the
source mechanism. At present, one of the most controversial fields of
tsunami geology is the interpretation of coarse-grained deposits, par-
ticularly boulders, transported by either storms or tsunamis. Boulders
have been widely used to infer tsunami deposition in Mediterranean
studies (see references in the database), although, by contrast, based
on a study of “megaclast” accumulations produced by large storm
surges on the Atlantic coast of Ireland, Williams and Hall (44) have
cautioned against these systematic tsunami attributions. In addition,
geomorphological features such as washover fans, lobes, chevrons, or
ridges have also been used as evidence for tsunamis, despite sparsemod-
ern analogs and a lack of corroborating proxies, and despite the fact that
storm flooding can also generate these deposits. Another controversial
hypothesis in Mediterranean tsunami science is that of “homogenites”
Marriner et al., Sci. Adv. 2017;3 : e1700485 11 October 2017
as evidence for deep-sea tsunamis (45–47). These wide-ranging ex-
amples underscore the challenges of interpreting the stratigraphic
record of high-energy coastal events and demonstrate that careful and
detailed multiproxy analyses are important to effectively differentiate
between geological archives of storms and tsunamis. Furthermore, two
potential caveats relating to the preservation potential of these deposits
are that (i) not all high-energy events are large enough to cause severe
flooding and leave deposits in the geological record and (ii) later events,
or even normal on-site conditions, could potentially erode evidence of
previous episodes. Although difficult to quantify, we therefore stress
that the stratigraphic record of these high-energy events is probably
incomplete and underestimates the actual number.

In summary, probing the stratigraphic dimensions of the storm
versus tsunami question is paramount to (i) furnishing more accurate
quantitative and probabilistic predictions of tsunami and storm risks
and (ii) providing robust, cost-effective, and better-adapted assessments
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Fig. 2. Occurrence of storm events and related mortality for the period 1900–2015. The data were analyzed using a Loess smoothing (with bootstrap and
smoothing of 0.05) and a sinusoidal regression model (phase Free) to detect the periodicity associated with the extreme events. The algorithm used in the model
is a “LOWESS” (locally weighted scatterplot smoothing), with a bootstrap that estimates a 95% confidence band (based on 999 random replicates). The sinusoidal
regression was used to model periodicities in the time series generated by the Loess smoothing. The “total deaths per year” signal was further investigated using a
wavelet transform with Morlet as the basis function. The scalograms are shown as periods on a linear age scale.
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of present and future hazards in coastal areas in both theMediterranean
and further afield.
RESULTS AND DISCUSSION
The geological tsunami time series comprises 135 events from 54
Holocene records across theMediterranean (Fig. 3 and tables S1 to S3).
Geological events were dated using either radiocarbon, optically stim-
ulated luminescence (OSL), archaeological, or composite chronolo-
gies (see the individual references for details on the dating methods
used to constrain particular sedimentary events). Ages of tsunami
data range from 4450 cal. yr B.P. (calibrated years before present)
to the present day and span eight countries: Algeria (n = 1), Cyprus
(n = 1), Egypt (n = 2), Greece (n = 26), Israel (n = 4), Italy (n = 15),
Lebanon (n = 1), Spain (n = 3), and Turkey (n = 1). The cumulative
number of tsunami events was summed to generate a continuous
time series for theMediterranean region. This method is particularly
useful for detecting multicentennial/millennial-scale changes in
event frequency. Furthermore, it overcomes problems associated
with individual stratigraphic records that can often be fragmentary
and affected by local environmental bias. It is stressed that this geo-
logical time series does not include (i) Holocene records interpreted
as storms and (ii) written historical records of tsunami events (see
the Supplementary Materials).

Figure 4 shows the data for tsunami events in the Mediterranean.
Collectively, this record constitutes the first geological tsunami chronol-
ogy with decadal-scale resolution in theMediterranean. Event numbers
range from 2 to 28 at 25-year sampling intervals. Overall, the histogram
gives a clear picture of how these Mediterranean coastal hazards have
varied during the mid- to late Holocene. Before 2000 cal. yr B.P., tsu-
nami events varied between 2 and 11, whereas after 2000 cal. yr B.P.,
these figures increased to 8 and 28. The changes are particularly
pronounced for the last 2000 years, a factor that we attribute to
the better archiving of the more recent events in the geological record.

Cluster analyses differentiate three previously undocumented
tsunami peak-and-trough couplets between 4500 cal. yr B.P. and pre-
sent, with roughly 1500-year (±100 years) spacing between peaks
Marriner et al., Sci. Adv. 2017;3 : e1700485 11 October 2017
(Figs. 5 and 6). This 1500-year periodicity is statistically supported
by REDFIT spectral and wavelet analyses of the data set, which also
highlight further periodicities of 740 and 450 years (fig. S1). Tsunami
event peaks are centered on 200 cal. yr B.P. (20 events), 1600 cal. yr B.P.
(26 events), and 3100 cal. yr B.P. (11 events).

It is striking that the main phases of increased tsunami events in
the Mediterranean fit tightly with periods of mid- and late Holocene
cooling in the Northern Hemisphere (48–50). Specifically, our data fol-
low the trajectory of North Atlantic climate cycles, with periods of
heightened and prolonged tsunami activity corresponding to increased
drift-ice transport in addition to windier and stormier conditions in the
North Atlantic (51), eastern North America (52), and northwestern
(NW) Europe (49). Furthermore, the deteriorating climate regime
may have been amplified by reduced North Atlantic Deep Water for-
mation that was concurrent with several of these cooling events (53).
Significantly, we find that 90% (n = 123) of the sedimentary events
interpreted as tsunamis share chronological intercepts with periods
of heightened storm activity in the Mediterranean (Fig. 4). There is
also significant overlap with periods of storm activity in NW Europe
(49). These patterns lead us to suggest that most of the geological
events previously interpreted as tsunamis could instead be attributed
to periods of more intense storm activity. Because chronological
overlap is not an unequivocal argument to exclude tsunami origins,
we further tested this hypothesis by investigating periodicities in the
historical tsunami data (figs. S2 and S3) (35). In contrast to the strat-
igraphic tsunami data, the spectral, REDFIT, and wavelet analyses of
the historical data present no statistically significant cycles. One further
possibility when assessing these data is that climate cooling favored the
generation of meteotsunamis (oceanic waves with tsunami-like charac-
teristics but are meteorological in origin), which are known to occur
in theMediterranean [for example, see previous studies (54–57)]. Al-
though this is challenging to test based on the available chronostrati-
graphic data, it is important to note that meteotsunamis are much
less energetic than their seismic counterparts. Meteotsunamis are
therefore always local, whereas seismic tsunamis can have basin-wide
effects. A large meteotsunami, or one that would have the potential
to leave a sedimentary record, is the result of a combination of several
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resonant factors. The low probability of this combination occurring
is the main reason why large meteotsunamis are infrequent and are
observed only in some specific embayments (58). As such, although
climate cooling may (or may not) favor the generation of meteo-
tsunamis, their geological preservation woud be not only be rare but
also localized to specific embaymentswith distinct resonance qualities.

We further probed the relationships between the geological tsunami
record and proxies for North Atlantic and Mediterranean cooling/
climate deterioration using statistical tools (Fig. 7). In effect, the
number of events is high enough and the relative noise is low enough
Marriner et al., Sci. Adv. 2017;3 : e1700485 11 October 2017
to give us confidence that the record captures a meaningful centennial-
to millennial-scale history of coastal hazards. Here, we focused on the
entire 4500 years of the time series. We used cross-correlations (P <
0.05) based on proxies fitted to a 1500-year sinusoidal filter (with r >
0.5 and P < 0.001) using sinusoidal regressions to model periodicities
and assess their time alignment (Fig. 7). The correlation coefficient is
plotted as a function of the alignment position. We found that our
tsunami time series is tightly correlated with periodicities of storm
conditions in the NW Mediterranean [cross-correlation (CC) lag0 =
0.92] (19) and the North Atlantic (CC lag0 = 0.96) (51).
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A more detailed analysis was carried out on data from the last
2000 years because of the high number of events (n = 96) during this
period. The initial paleoclimate time serieswere chronologically standard-
ized using a regular 25-year sampling step. Linear and cross-correlations
were used to test the strength of relationships. In addition to strong
correlations with stormier conditions in the Mediterranean and the
NorthAtlantic, we found that ourMediterranean tsunami record is also
significantly correlated at P < 0.05 (n = 81) with various indicators of
climate deterioration in the Mediterranean including Central Mediter-
raneanpollendata (r=0.62) (21) andEasternMediterranean speleothem
Marriner et al., Sci. Adv. 2017;3 : e1700485 11 October 2017
data (r = 0.66; Fig. 8) (59). These correlations are based on completely
independent age models.

Our data underscore strong mid- to late Holocene phasing between
high-energy events in the Mediterranean and North Atlantic/NW
European storm activity. By contrast, the data do not fit with Holocene
records of North Atlantic Oscillation (NAO) activity, which is in dis-
agreement with the storm track seesaw that has been evoked between
southern and northern Europe based on recent instrumental records
(19, 20). This apparent coupling of Mediterranean and eastern North
Atlantic storm activity suggests that the NAO activity was not a major
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driver of Holocene storminess in these areas at longer centennial to
millennial time scales.
CONCLUSIONS
This new meta-analysis of sedimentary tsunami data from the
Mediterranean shows strong evidence for a 1500-year periodicity
that presents robust statistical correlations with markers of climate
cooling anddeterioration in both theMediterranean andNorthAtlantic
(60). By analogy with the correlations and prolonged temporal overlaps
with Mediterranean and North Atlantic Holocene storm phases, we
suggest that up to 90% of tsunami attributions of high-energy events
in the Mediterranean’s coastal record should be reconsidered. This
relationship has significant implications for appropriately tailored
hazard strategies in densely populated seaboard areas, in addition to
more general-scale geomorphological coastal processes and dynam-
ics. Specifically, our findings invite closer and more robust scrutiny of
tsunami events, including greater proxy analysis, in future studies of
coastal archives.
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MATERIALS AND METHODS
Proxy data
We used ISI (Institute for Scientific Information) Web of Science,
Scopus, and Google Scholar to systematically search the scientific liter-
ature for papers reporting on the chronostratigraphic signature of
tsunamis in theMediterranean region.Weonly considered sedimentary
records of tsunamis; written historical records of tsunamis and archives
of storms were not included in the database. We retrieved records (n =
54) fulfilling the following criteria:

(i) Temporal coverage. All proxy records covered the last 4500 years.
(ii) Temporal resolution. All chronostratigraphic records of tsunami

events were chronologically constrained by either radiocarbon, OSL,
or archaeological dates.

(iii) Publication requirements.We only used proxy records that have
been published in the scientific literature (journal papers and book
chapters).

(iv) Geographical requirements. All the proxy records were located
in, or nearly in, the Mediterranean. Three well-dated records from the
Atlantic coast of western Spain were included in our analysis. All re-
cords were from coastal archives. Offshore records from deepmarine
locations (that is, turbidites) were not included in our analysis. The
location of sites is shown in Fig. 3 (61–114). The proxy data were
divided into eight countries: Algeria (n = 1), Cyprus (n = 1), Egypt
(n = 2), Greece (n = 26), Israel (n = 4), Italy (n = 15), Spain (n = 3),
and Turkey (n = 1). Full details of these records are shown in table S1.
It is challenging to comment on the reliability of tsunami interpretations
in previous studies (61–114) because of the significant stratigraphic
parallels between tsunami and storm deposits, particularly in onshore
records at or near (that is, within 100 m) the shoreline.

Geochronological screening
Because of the different age of publications used, all original radiocarbon
data were recalibrated using the latest IntCal13 andMarine13 curves in
Calib 7.1 (115). Where available, local DR values were used for marine
samples. For statistical robustness, all dates were quoted to 2s, which was
not always the case in the original papers. The 2-s calibrations were
subsequently fed into the database (see tables S1 to S3).

Data treatment
Before calculating variations in stratigraphic tsunami frequency,
all 54 proxy records were converted into time series with annually
spaced time steps for the period 0 (that is, 1950 CE) to 4500. Each
event was attributed a value of 1 for each of the calibrated years in
which it was recorded. In instances where the same event was
dated several times using different chronological materials, we
attributed an event value of 1 but for the complete chronological
range of all the calibrated dates. For rare instances where a spe-
cific annual date was provided, we added an error bar of ±100 years.
These time series were subsequently summed to create histograms of
tsunami frequency for the past 4500 years.

We used various statistical methods to compare and contrast the
compiled tsunami data with a number of other paleoclimate records
from the North Atlantic and the Mediterranean. Details of these sta-
tistics are provided in the figure legends. Most of the records were
obtained from public repositories (for example, www.ncdc.noaa.gov/
paleo/ and www.pangaea.de/). Records that were not publicly available
were acquired directly from the original authors. To facilitate compar-
isons and statistical analyses between archives, all proxy records were
converted into regularly spaced time series using linear interpolation.
Marriner et al., Sci. Adv. 2017;3 : e1700485 11 October 2017
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/3/10/e1700485/DC1
fig. S1. REDFIT spectral analysis and wavelet analyses of the tsunami data set.
fig. S2. Catalog of Mediterranean tsunami events based on historical records from
Maramai et al. (35).
fig. S3. Spectral analysis, REDFIT analysis, and wavelet analysis of the documentary database of
Mediterranean tsunamis.
table S1. Database of sites and stratigraphic tsunami events used in this study.
table S2. Matrix of stratigraphic tsunami events by year and site.
table S3. Annual frequency of tsunami events in the Mediterranean’s geological record based
on this study.
table S4. Data used to produce Fig. 1.
table S5. Frequency of tsunami events in the geological record at 25-year intervals.
table S6. Data used to produce Fig. 5.
table S7. Data used to produce Fig. 6.
table S8. Data used to produce Fig. 7.
table S9. Data used to produce Fig. 8.
table S10. Catalog of Mediterranean tsunamis in historical documents and number of events
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