
MINI-REVIEW

Cortactin function in invadopodia
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ABSTRACT
Actin remodeling plays an essential role in diverse cellular processes such as cell motility, vesicle
trafficking or cytokinesis. The scaffold protein and actin nucleation promoting factor Cortactin is
present in virtually all actin-based structures, participating in the formation of branched actin
networks. It has been involved in the control of endocytosis, and vesicle trafficking, axon guidance
and organization, as well as adhesion, migration and invasion. To migrate and invade through
three-dimensional environments, cells have developed specialized actin-based structures called
invadosomes, a generic term to designate invadopodia and podosomes. Cortactin has emerged as a
critical regulator of invadosome formation, function and disassembly. Underscoring this role,
Cortactin is frequently overexpressed in several types of invasive cancers. Herein we will review the
roles played by Cortactin in these specific invasive structures.
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Introduction

The actin cytoskeleton is involved in multiple cellular
processes such as cell division, migration, or exocytosis.
Monomeric globular actin (G-actin) is a 42kDa protein
that polymerizes into filaments to form actin stress
fibers or branched actin networks, which are required
for the formation of various cellular structures includ-
ing lamellipodia and invadopodia. G-actin polymeriza-
tion in filaments is initiated by the association of three
actin monomers forming a nucleus. This process, called
actin nucleation, is highly unfavorable and requires
actin nucleators such as formins or the ARP2/3 com-
plex to allow the formation of unbranched or branched
actin filaments, respectively.1 Conversely, actin nucle-
ation is inhibited by proteins like Profilin or Thymosin-
b4. The intrinsic nucleation activity of ARP2/3 is very
low and the complex requires binding to other proteins,
the Nucleation Promoting Factors (NPF), for activa-
tion.2,3 NPFs have been subdivided in two classes1: class
I NPFs include WASP (Wiskott-Aldrich Syndrome
Protein) and SCAR/WAVE, they bind to both mono-
meric actin and to the Arp2/3 complex. On the other
hand, class II NPFs such as Cortactin bind to actin fila-
ments and are thought to recruit ARP2/3 to these
filaments allowing branched network assembly.1,4

Cortactin only weakly promotes the nucleation activity

of ARP2/3 but stabilizes newly generated actin branch-
ing points, preventing disassembly of the network.1,4

Cortactin (p80/p85) was identified in 1991 as a new
Src substrate colocalizing with F-actin in cellular protru-
sions and podosomes.5 p80 and p85 are encoded by a
single mRNA5 and the presence of two bands is caused
by post-translational modifications, likely multiple phos-
phorylations, with phosphorylated S418 only found in
p80 and S405 phosphorylation only found in p856,7. The
conversion of p80 to p85 is associated with the relocali-
zation of Cortactin from the cytoplasm to the cell cortex
and sites of cell/matrix contacts.6,7 The associated gene
(originally called EMS1, now CTTN) was cloned in 1992
and is located on chromosome 11q13. This region is fre-
quently amplified in human breast cancer and in head
and neck squamous cell carcinomas (HNSCC) and is
associated with unfavorable clinical outcome.8 The inter-
action between Cortactin and F-actin was confirmed in
1993, with the identification of F-actin-binding repeats
in the amino-terminal half of the protein and of an SH3
domain in the carboxyl-terminal part of Cortactin.9

Given its enrichment in cortical structures such as mem-
brane ruffles and lamellipodia, and its binding to F-actin,
the name of Cortactin was coined. The same year came
the realization that EMS1, amplified in several cancers,
and Cortactin are in fact the same protein that may
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promote the invasive potential of tumors, owing to Cor-
tactin localization in cellular structures dedicated to
invasion and migration.10 Since this work, Cortactin
function in cell motility and invasion, as well as in other
cellular processes, has been intensely investigated and
Cortactin is widely used as a marker of invadosomes.
Given the domain structure of Cortactin (Fig. 1) and the
many interactors and regulators identified, Cortactin is
considered as a scaffold protein.

Regulation of Cortactin expression and stability

Human Cortactin is encoded by the CTTN gene, located
on the long arm of chromosome 11 and is expressed
ubiquitously, except in hematopoietic cells, which
instead express the Cortactin paralog HS1.11 Only few
studies have investigated the regulation of Cortactin
expression. As far as we know, Cortactin mRNA level is

increased after activation of CD44 hyaluronan receptor
activation via NFkB signaling12 and after binding of
phospho-STAT3 to the Cortactin promoter.13 Con-
versely, Cortactin expression is decreased by miR-542-
3p14 and miR-32615. Thus, Cortactin might be mostly
regulated by post-translational modifications and inter-
actions with others proteins.

Cortactin has three isoforms generated by alternative
splicing.16,17 The SV-1 and SV-2 splice variants are
deleted for exon 11 or exon 10 and 11, respectively, cor-
responding to the 6th or 5th and 6th actin binding
repeats (Fig. 1). The SV-1 variant is co-expressed with
full-length Cortactin in all tissues whereas the SV-2 vari-
ant is absent from several tissues and has a decreased
ability to bind F-actin and to induce actin filament poly-
merization.16,17 Alternative splicing of Cortactin mRNA
is regulated by the RNA binding protein Rbfox2, which
induces exon 11 exclusion after induction of epithelial-

Figure 1. Domain structure of Cortactin and interacting partners. Cortactin is composed of an N-terminal acidic domain that allows the
interaction with Arp2/3, followed by six and a half F-actin binding repeats of 32 amino acids that mediate binding to F-actin and can be
acetylated on lysines or phosphorylated on serines. On its C-terminal part, Cortactin has a helical domain, a proline-rich domain that is
extensively regulated by phosphorylation and whose tyrosines are targeted, among others, by Src-family kinases. Finally, Cortactin has
an SH3 domain at its C-terminal end, which binds many different proteins mostly involved in the regulation of actin cytoskeleton
dynamics, including N-WASP. The known binding partners of Cortactin are indicated close to the domain to which they bind to or target,
when known, or in the lower part of the figure when unknown. Lysines targeted for acetylation are indicated by @ (amino acids 87, 124,
144, 161, 181, 198, 235, 272, 295, 304, 309, 346). The amino acid numbering refers to the mouse protein (NP_031829.2).
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mesenchymal transition (EMT) by TGF-b.18 PTBP1,
another RNA-binding protein, is also involved in Cortac-
tin mRNA splicing. Indeed, PTBP1 induces the inclusion
of exon 11, favoring the expression of full-length Cortac-
tin and in this way tumor cell migration and invasion.19

However, the specific contribution of each Cortactin iso-
form to the different functions of Cortactin remains to
be elucidated.

Cortactin degradation was reported to be induced by
its phosphorylation by ERK on Ser405 and Ser418, which
induces the interaction between Cortactin and b-TrCP,
an E3 ubiquitin-ligase, and its degradation by the
proteasome.20 The E3 ubiquitin-ligase Hakai binds tyro-
sine-phosphorylated Cortactin via a novel phosphotyro-
sine-binding domain.21 It remains unclear however
whether Hakai targets Cortactin for destruction by the
proteasome. The sites phosphorylated by ERK and Src
have been shown to promote Cortactin activity towards
actin polymerization and cell migration/invasion22,23

and targeting Cortactin phosphorylated on these sites for
degradation could constitute a means to downregulate
its activity. Another means to repress Cortactin activity
is via cleavage by Calpain.24

Functions and post-translational modifications
of Cortactin

As far as we know, Cortactin is mainly regulated by
post-translational modifications. Cortactin is a sub-
strate of Src family tyrosine kinases, which phosphory-
late Cortactin on tyrosines located in its proline-rich
region (Fig. 1),25-27 notably after homophilic interac-
tions between E-cadherin or N-cadherin.28,29 Tyrosines
in the proline-rich domain are also targeted by Arg
and Abl, two Abl-family tyrosine kinases, after
PDGF30,31 or EGFR22 stimulation or b1 integrin acti-
vation.32 Cortactin can also be phosphorylated on ser-
ines and threonines mainly located in the F-actin
binding repeats and proline-rich region, regulating
Cortactin function, including actin polymerization.33

Acetyltransferases and deacetylases control acetylation
on several lysines within the F-actin binding repeats,
also regulating Cortactin localization and activity.34-41

The main function of Cortactin is to promote the for-
mation of branched actin networks. Several studies have
shown that the Arp2/3 complex binds Cortactin on its
N-terminal acidic (NTA) domain and this interaction
promotes actin nucleation, supporting a NPF function
for Cortactin.4,42 The interaction between Cortactin,
Arp2/3 and F-actin takes place at the cell periphery and
induces branched actin generation, thereby promoting
migration and invasion.42,43 On the other hand, the pro-
tein MIM (Missing-in-Metastasis, MTSS1), which binds

to the SH3 domain of Cortactin, inhibits actin polymeri-
zation and cell migration, possibly by opposing
N-WASP activity.44 This antagonistic relation was found
to play a critical role during ciliogenesis, where MIM
inhibited Src-mediated Cortactin phosphorylation,
thereby promoting cilia formation.45

Cortactin binds to N-WASP and WIP (WASP-inter-
acting protein) via its SH3 domain and since Cortactin is
an Arp2/3 complex activator, it was first believed that
Cortactin activated Arp2/3 via its interaction with N-
WASP,46,47 but it appears that the mechanism is more
complex than initially thought.1,4,48,49 Indeed, Cortactin
can promote the interaction of Arp2/3 with F-actin,4,42

which activates Arp2/3. In addition, Cortactin directly
stabilizes branched actin networks by remaining at newly
formed branch points with Arp2/3, unlike N-WASP that
is released, preventing the dissociation of branched
actin.4 Cortactin also binds WAVE2, another WASP-
family protein member, and this interaction induces
actin polymerization.50 The Cortactin/WAVE2 interac-
tion is inhibited by SKAP2 (Src Kinase-Associated Phos-
phoprotein 2), a Src substrate, and promoted by
Cortactin phosphorylation on Ser405 and Ser418 by
PKCd.51,52 Phosphorylation of these serines by ERK also
promotes N-WASP activation and actin polymeriza-
tion.53 Due to its role in branched actin polymerization,
Cortactin has a major function in invadopodia regulation
which is described below.

Numerous studies have shown that Cortactin promotes
cell migration in different cell types and by different
mechanisms,16,42,54,55 often following phosphorylation by
various kinases. Cortactin phosphorylation on Tyr421
and Tyr466 by Src, Fyn and Fer kinases,25-27,56 as well as
on Thr401/Ser405 and Ser417/Ser418 by Akt or ERK53,57

is pro-migratory. Although Cortactin is used as a lamelli-
podia marker and regulates actin nucleation in lamellipo-
dia, it is not required for lamellipodia formation.54,55,58,59

As a matter of fact, Cortactin, whose localization in lamel-
lipodia is regulated by several proteins (p120 catenin,60

BPGAP1,61 NEDD9,36 Rac1,62 Arp2/343 and GIT-163), is
required for lamellipodia persistence54,58,60 and for the
regulation of actin dynamics in lamellipodia downstream
of Rho GTPases and Dynamin.54,59,64-66 This regulation
could be mediated by the interaction of Cortactin with
different Guanine-nucleotide Exchange Factors (GEFs)
and GTPase-Activating Proteins (GAPs) such as Fgd1
and BPGAP1.61,67

Recent work supports an important role for lysine
acetylation of Cortactin in the regulation of cell migra-
tion. The histone deacetylases HDAC6 (class II) and
Sirtuin1 (class III) modulate the acetylation levels of
Cortactin within its actin-binding repeats and conse-
quently promote the interaction between Cortactin and
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F-actin and cell motility.34,35 Furthermore, the scaffold
protein NEDD9 recruits HDAC6 on Cortactin, promot-
ing its deacetylation and localization at lamellipodia.36

This effect could be explained by a recent study provid-
ing evidence that deacetylated Cortactin binds KEAP1
(Kelch-Like ECH-Associated Protein 1) to be exported
from the nucleus, allowing its transport to lamellipo-
dia.37 In endothelial cells, HDAC6-mediated Cortactin
deacetylation increases cell migration and is required
for angiogenesis.38 Cortactin can also be deacetylated by
KDAC8 (HDAC8) in vascular smooth muscle cells but
the specific effects of this deacetylation remain to be
investigated.39 Cortactin acetylation is mediated by sev-
eral acetyltransferases, including p300,35 CBP when
Cortactin is nuclear,37 ATAT1,40 as well as Tip60, which
is recruited on Cortactin by Fe65.41 Most studies sup-
port an inhibition of cell migration by Cortactin
acetylation.

The many functions of Cortactin

Aside from its role in migration and invasion, Cortac-
tin is involved in the regulation of a wide variety of
cellular processes that will be briefly described here.
Another function of Cortactin is its involvement in
vesicle trafficking. First, Cortactin regulates clathrin-
dependent endocytosis and Golgi transport in associa-
tion with Dynamin2.68,69 Cortactin/Dynamin2 interac-
tion is promoted by Cortactin phosphorylation on
Ser261 by aPKC⍳ and allows MT1-MMP trafficking.70

Cortactin function in clathrin-dependent endocytosis
involves branched actin polymerization, which was
negatively regulated by Hip1R (Huntingtin Interacting
Protein 1 Related)71 and PIP272 and positively by
Ack1 (Tyrosine Kinase Non Receptor 2, TNK2) and
CD2AP during EGFR endocytosis.73,74 Cortactin also
regulates clathrin-independent endocytosis and has
been involved in IL-2 receptor endocytosis via a
Rac1/PAK1-2/P-Ser405-Ser418-Cortactin pathway,
which increased Cortactin/N-WASP binding and actin
polymerization required for endocytosis.75,76 A recent
study has shown that Cortactin promotes exosome
secretion by controlling both trafficking and plasma
membrane docking of multivesicular late endosomes
with the Arp2/3 complex.77 This role of Cortactin in
promoting vesicle trafficking is important in the con-
text of invadosome function, which, when mature,
secrete proteases in the intercellular space to digest
matrix. By controlling vesicle trafficking, Cortactin
also regulates autophagy under control of HDAC6
and INPP5E by inducing actin remodeling and stabi-
lization, allowing autophagosome-lysosome fusion
and substrate degradation.78,79

Cortactin is also involved in cell-cell contact forma-
tion. Cortactin is recruited and phosphorylated by Src-
family kinases after homophilic interaction between E-
cadherins. Cortactin directly binds to the cytoplasmic
tail of E-cadherin, allowing the recruitment of Arp2/3
and WAVE2 and actin reorganization at junctions.29,50,80

Similarly, Cortactin is recruited by Rac1 to cell junctions
involving N-cadherins, where it is phosphorylated by Fer
kinase, strengthening intercellular adhesion.28 Cortactin
is also involved in endothelial barrier remodeling via
recruitment to the cell periphery by IQGAP1.81 Cortac-
tin also plays a role in the formation of new focal adhe-
sions.54 Cortactin binds to and is phosphorylated by
FAK, and this interaction promotes focal adhesion turn-
over and cell motility.82

Cortactin is involved in the response against different
stresses that induce cytoskeletal remodeling to protect
cells. For example, shear stress in vascular endothelial
cells activates AMPK, which phosphorylates Cortactin
on Thr401, priming Cortactin for deacetylation by Sir-
tuin1 and allowing actin remodeling.83 During hyperos-
motic stress inducing cell shrinkage, Cortactin is
phosphorylated by Fyn and Fer kinases to mediate cyto-
skeletal rearrangements needed for osmoprotection.84,85

The phosphatase PTP1B also controls Cortactin tyrosine
phosphorylation to prevent apoptosis induced by hyper-
osmotic stress.86

Finally, Cortactin also regulates membrane excitabil-
ity by linking the actin cytoskeleton and several ion
channels, such as calcium-activated (BK) channels,87

potassium channels Kv1.5,88 Kv10.189 and sodium chan-
nels ENaC90 or by regulating channel endocytosis, as
reported for potassium channel Kv1.2.91

During neurogenesis Cortactin appears to plays sev-
eral roles: it regulates the balance between stable neurite
shaft and the formation of new growth cone,24 the collat-
eral branching of axons via the control of filopodia for-
mation,92 dendritic spine formation93,94 and traction
force generation in axonal growth cones via an interac-
tion with Shootin1.95

Cortactin in cancer

Overexpression of Cortactin is frequently observed in
many types of cancers, including head and neck squamous
cell carcinoma (HNSCC),96 hepatocellular carcinoma,97

breast cancer,98 bladder cancer,99 renal cell carcinoma,100

esophageal squamous cell carcinoma,101 colorectal adeno-
carcinoma,102 melanoma,103 osteosarcoma,104 prostate
cancer,105 non-small cell lung cancer,106 glioma,107 epithe-
lial ovarian cancer,108 thyroid cancer109 and B-cell chronic
lymphocytic leukemia.110 This overexpression is partially
caused by the amplification of chromosome 11q13 where
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the CTTN gene is located. For instance, CTTN amplifica-
tion is found in 60–68% of esophageal cancer,101,111 20–
37% of HNSCC112,113 and almost 60% in oral squamous
cell carcinoma, a HNSCC subtype,114 18% of hepatocellu-
lar carcinoma,115 15–26% of breast cancer116,117 and 11%
of bladder cancer.99 Nevertheless, several studies showed
that CTTN or 11q13 amplification does not always explain
Cortactin overexpression, suggesting that it may be caused
by other mechanisms. For example, in esophageal cancer,
Cortactin expression is induced by VEGF-C, which
decreases Dicer-mediated maturation of miR-326, thereby
relieving the suppressive effect of miR-326 on Cortactin
expression.15 Furthermore, in a wide variety of human
tumors, the frequent constitutive activation of STAT3,
which targets the CTTN promoter,13 may underlie Cortac-
tin overexpression.118

Cortactin overexpression is consistently associated
with poor prognosis and decreased patient survival in
most cancers.98,100,102-105,108,110 Some studies suggest that
phospho-Y421-Cortactin levels are also elevated in can-
cer and associated with poor prognosis.119,120 Recently,
two studies focused on deciphering the involvement of
each Cortactin isoform in carcinogenesis and this work
suggest that full length Cortactin is overexpressed com-
pared to the SV-1 isoform and may be responsible for
the oncogenic role of Cortactin.19,110 This could be
explained by the overexpression of PTBP1, which regu-
lates alternative splicing of Cortactin.19 However, the
specific contribution of each Cortactin isoform to onco-
genesis is still unclear and needs to be investigated.

A major conclusion from clinical studies is that
Cortactin overexpression is associated with local
invasion, lymph node metastasis and/or distal metas-
tasis in almost every cancer in which it is overex-
pressed.19,96,97,99,101,103,106,109,113 Moreover, several
mouse models have provided evidence that Cortactin
promotes the metastatic process.97,101,121 Altogether,
these findings indicate that Cortactin plays an impor-
tant role in promoting tumor invasion and metastasis,
consistent with the major role of Cortactin in regulat-
ing lamellipodia and invadopodia formation.

Cortactin in invadosomes

During embryogenesis or wound healing, cells have to
move. They also move during tumor invasion. Cell
movement requires that they invade into their surround-
ings formed by a dense network of extracellular matrix
(ECM) proteins. For this, the cell first attaches to the
ECM, degrades it, and moves into the newly liberated
space. Invadosomes, which designates invadopodia made
by cancer cells and podosomes made by normal cells, are
specialized cellular structures that enable all these

steps.122 Invadosomes are very dynamic, with a half-life
of a few minutes. After a stimulus, they first assemble at
sites of ECM interaction with the cell, they then release
proteins that degrade the matrix, such as matrix metallo-
proteases (MMPs), and finally disassemble again, allow-
ing cell movement (Fig. 2A). Invadopodia often become
activated in cancer cells, which allows tumor cells to
invade either locally or throughout the body to form
metastases. Many proteins regulating invadopodia for-
mation have been identified, including receptors to
growth factors or ECM, scaffold proteins, kinases or
GTPases. Amongst them, Cortactin plays a major role in
all steps of the invadosome lifecycle.

Initiation

Invadosome formation is induced by different cellular
signals which can be divided into 5 types: (i) growth fac-
tors such as EGF, PDGF or TGF-b123 activating their
receptors; (ii) oncogenic transformation induced by
oncogenes like v-src or Ras124,125; (iii) EMT induction126;
(iv) cellular environment, including matrix composi-
tion,122 heterotypic cell interaction with macrophages127

or hypoxia128; and (v) metalloproteases activity.123 After
one of these stimuli, several signaling pathways are acti-
vated. Among them, Src seems to play a central function
by activating Cdc42 GEFs required for invadosome for-
mation (Vav-1, b-PIX and Fgd1,123 but also Tuba, which
regulates linear invadosomes129) and by phosphorylating
scaffold proteins like Tks5 and Cortactin. Cortactin plays
a central role by scaffolding several proteins required for
invadopodia assembly at the initiation site.

Several signaling pathways like Src, PAK or Erk130

converge to Cortactin to regulate its function in invado-
podia via phosphorylations. Nevertheless, Cortactin
phosphorylation by PAK1 may have antagonistic effects
depending on cell context. Indeed, Cortactin phosphory-
lation on Ser113 by PAK1 increases ECM degradation130

but also induces invadopodia disassembly.131,132 Stimula-
tion of c-Met by HGF induces invadopodia formation
and cell invasion mediated by an interaction of Cortactin
with Grb2 and Gab1.133,134 Furthermore, c-Met directly
binds Cortactin and induces its phosphorylation, but
whether c-Met directly phosphorylates Cortactin is still
unclear.133,134

Assembly

Invadopodia assembly is driven by branched F-actin gen-
eration and the formation of a cellular protrusion. The
first step is the assembly of the invadopodial core, with
the recruitment of Cortactin, which scaffolds Arp2/3,
Cofilin and N-WASP, to the membrane. Even if Tyr421
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and Tyr466 of Cortactin can be phosphorylated by Src, at
the invadopodia, it seems that they are mainly targeted
by the tyrosine kinase Arg.22 Arg is activated both by b1-
integrin and the EGFR/Src pathway.32,135 However, Arg
activation seems to have opposite roles according to the
cellular context. Indeed, in mammary tumor cells, Arg
promotes invadopodia formation, whereas it has an
inhibitory role in squamous cell carcinoma cells.32,135

Cortactin phosphorylation on Y421 and Y466 allows its
association with Nck1, which recruits N-WASP to
Cortactin, as well as Vav2,136 promoting the generation
of free actin barbed ends and branched actin
polymerization.23

Inside the invadopodial core, Cofilin plays a major
role. Cofilin, an actin filament-severing protein, gener-
ates new free actin barbed ends, promoting branched
actin formation by the Arp2/3 complex.137 Cortactin
inhibits Cofilin’s severing activity inside the

invadopodia.138 This inhibition is relieved when Cortac-
tin is phosphorylated on tyrosines (Y421, Y466 and
Y482), allowing the recruitment of NHE1, which induces
a local increase of pH.138,139 This increase promotes the
dissociation of Cortactin and Cofilin, allowing Cofilin to
sever actin filaments and to promote Arp2/3 activity.
Cortactin scaffolds ARP2/3, F-actin barbed ends and N-
WASP to promotes actin nucleation.4 After invadopodia
formation, Cortactin is dephosphorylated, inhibiting
again Cofilin to allow invadopodia growth and stabiliza-
tion.138,139 Cofilin activity is also spatially regulated by
RhoC, whose active form surrounds invadopodia and
activate the ROCK/LIMK pathway, maintaining Cofilin
in its Ser3-phosphorylated (a target of LIMK), inhibited
form, thus concentrating Cofilin activity within the inva-
dopodial core.140 The regulation of RhoC activation state
is mediated by p190RhoGEF and p190RhoGAP140 as
well as Podoplanin.141 Cofilin function in invadopodia is

Figure 2. Steps of invadopodia formation. A. The invadopodia lifecycle can be divided in four steps: Initiation, assembly, maturation and
disassembly. Cells begin to form invadopodia in response to activating signals transmitted by growth factor or matrix receptors, MMP
activity, heterotypic cell interaction, EMT or oncogenic transformation. These signals activate different signaling pathways that induce
branched actin polymerization and formation of a cellular protrusion. Once invadopodia are mature, different proteases are secreted,
allowing degradation of the surrounding matrix. The final step consists in the dissolution of the invadopodia, which includes branched
actin disassembly. B. Role of Cortactin in invadopodia disassembly. Invadopodia dissolution is triggered by the activation of Rac1 by its
GEF Trio; in turn Rac1 activates PAK1, which is recruited by p27 on Cortactin. Then, PAK1 phosphorylates Cortactin on S113, S150 and/
or S282, which probably induces the release of Cortactin from branched F-actin, destabilizing the branched actin network which disas-
sembles, allowing the return to a basal situation.
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also regulated after transient biomechanical forces via
b3-integrin signaling.142

Invadopodia maturation is promoted by the Mena
isoform MenaINV, an actin barbed-end capping protein
antagonist. MenaINV is recruited just after invadopodia
formation initiates and promotes Tyr421 phosphoryla-
tion of Cortactin, possibly by displacing PTP1B from the
invadopodial core and preventing Cortactin dephos-
phorylation on Tyr421.143 By displacing actin barbed
end capping proteins, Mena also promotes branched
actin polymerization in invadopodia. The phosphatase
SHIP2 is also involved in invadopodia assembly by con-
trolling Mena recruitment as well as PI(3,4)P2 accumula-
tion, which promotes Tks5 recruitment via its phox
homology (PX) domain.144,145

Even if branched actin generation by Arp2/3, N-
WASP, Cortactin and Cofilin is required for invadopodia
formation, several studies found that unbranched actin is
also present in invadopodia. Indeed, different F-actin
bundling proteins such as a-Actinin, Fimbrin or Fascin
are present in invadopodia and Fascin knockdown
decreases invadopodia formation and ECM degrada-
tion.146,147 Moreover, formins from the DRF family are
also involved in these two processes, confirming that
unbranched F-actin is important for invadopodia forma-
tion and activity.148

Finally, Cortactin function in invadosome is also reg-
ulated by Caldesmon, which inhibits invadopodia forma-
tion by an unknown mechanism,149-151 but could involve
a competition with Arp2/3 complex binding to Cortac-
tin, since Caldesmon also binds to the NTA domain of
Cortactin,149 or a direct inhibition of Arp2/3 in
invadopodia.152

Maturation

During the maturation stage of the invadopodia lifecycle,
the structure is transiently stabilized and the surrounding
ECM is degraded by proteases. Several proteases degrade
ECM at invadopodia, including MMPs, ADAMs, Cathe-
psins and serine proteinases.153 MT1-MMP (also called
MMP-14) has a preponderant function at invadopodia
to degrade ECM.154 Proteases recruitment involves kine-
sin activity along the microtubule network to bring them
via vesicles from the Golgi apparatus, which often local-
izes close to invadopodia, and then vesicles merge with
the plasma membrane.153,155 ECM stiffness and rigidity
also promote degradation activity at invadopodia.156-158

Several studies investigating MT1-MMP delivery to
plasma membrane have shown that it is regulated by the
exocyst complex, an 8-protein complex involved in
vesicle trafficking regulated by IQGAP1 (under control
of Cdc42 and RhoA) and the WASH complex.159,160

MT1-MMP delivery is also regulated by the v-SNARE
VAMP-7 and negatively regulated by CIP4 and SNX9,
two Src-substrates.161-163 Tks5 promotes Rab40b-medi-
ated transport of MMP-2 and MMP-9 to invadopodia.164

Cortactin has a major function in matrix degradation
and MMP-2, MMP-9 and MT1-MMP secretion.154,165,166

Indeed, the cytoplasmic tail of MT1-MMP is phosphory-
lated by LIMK, allowing its interaction with Cortactin
which is required for its trafficking to invadopodia.167 A
recent study shows that Cortactin phosphorylation by
PKCi allows its association with Dynamin-2, promoting
trafficking of MT1-MMP containing endosomes.70 Cor-
tactin acetylation levels also appear to regulate its role in
MT1-MMP transport and ECM degradation.40 Recent
evidence has shown a key role for Cortactin in late endo-
somal vesicle trafficking and exosome secretion.77 The
function of Cortactin in trafficking of others proteases,
such as MMP-2 or MMP-9 that also have an important
function in invadosomes, still needs to be investigated.
Together, evidence suggests that Cortactin acts as a hub
for both invadopodia formation and function.

Disassembly

Invadopodia disassembly is clearly the least understood
step of the invadopodia lifecycle. Nevertheless, recent
studies seem to involve two different pathways in the
regulation of this critical step. The first pathway begins
with the activation of Rac1 by one of its GEFs, Trio,
whose upstream activators are not described yet. In turn,
active Rac1 activates its effector PAK1, which is recruited
by p27 on Cortactin and phosphorylates Cortactin on
Ser113, S150 and/or S282131,132 (Fig. 2B). Inhibiting this
pathway increases invadopodia lifetime, thereby increas-
ing invadopodia number and matrix degradation. Sur-
prisingly, cell invasion is negatively affected by
inhibition of this pathway, showing that invadopodia
turnover is required for an efficient invasion.131,132 The
mechanism involved in invadopodia dissolution after
PAK-mediated Cortactin phosphorylation is still unclear
but may be due to a decreased affinity of Cortactin phos-
phorylated within its actin-binding repeats for F-actin,
which may destabilize invadopodia.168

A second pathway inducing invadopodia disassembly
has been described recently. RhoG, a Rho GTPase of the
Rac subfamily, promotes the phosphorylation of Paxil-
lin.169 Then, phosphorylated Paxillin induces invado-
some dissolution by an ERK/Calpain pathway.170

Calpain is a cysteine protease that promotes podosome
disassembly by cleaving Talin, Pyk2 and WASP.171 How-
ever, since Talin and Pyk2 functions have mainly been
described in podosomes, it is unclear if these proteins are
also Calpain substrates in invadopodia. As Cortactin is a
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substrate of Calpain,172 it would be interesting to investi-
gate if Calpain function in invadopodia disassembly
could be mediated by Cortactin cleavage.

The pathway involved in invadopodia disassembly
seems dependent on the upstream pathway activated or
on the cell type investigated. Indeed, in cells where RhoG
induces invadopodia disassembly, Rac1 is involved in
invadopodia initiation.169 Reciprocally, RhoG knock-
down in cells where Rac1/PAK1/Cortactin promotes
invadopodia disassembly does not affect invadopodia
turnover.131 Further investigations are needed to fully
understand the pathways that lead to invadopodia
disassembly.

Conclusion and perspectives

Since its identification, numerous studies have described
roles for Cortactin in a wide variety of cellular processes
including cell migration, vesicle trafficking or neurite
outgrowth. Most of these functions appear to relate to its
ability to regulate actin cytoskeleton dynamics, either
directly or via the scaffolding of proteins involved in sig-
naling pathways that impinge on the actin cytoskeleton.
An outstanding question to be addressed is the contribu-
tion of each splice variants of Cortactin in its different
functions. The best characterized function of Cortactin is
in the regulation of cell migration and invasion, which
probably underlies its frequent overexpression in several
metastatic cancers, as Cortactin is involved in every step
of the invadopodia lifecycle, allowing matrix degradation
and tumor invasion.

Similarly, Cortactin is present in podosomes in differ-
ent types of cells, such as v-Src transformed fibro-
blasts,173 vascular smooth muscle cells,174 osteoclasts175

and dendritic cells.176 Cortactin is recruited to podo-
somes via Tks5177 and acts as a scaffold to recruit several
proteins required for podosome formation, including N-
WASP,173 Fgd1,178 AFAP1L1179 or ZO-1.180 Unlike what
is described in invadopodia, Cortactin also regulates
microtubule dynamics181 and actomyosin contractility in
podosomes.174 It is interesting to notice that HS1, the
Cortactin homologue expressed in hematopoietic cells,
has a function in the regulation of podosome organiza-
tion in dendritic cells.182 Overall, Cortactin is involved in
the formation,183 maturation175 and matrix degrada-
tion176 at podosomes but a potential role of Cortactin in
podosome disassembly remains to be investigated.

Despite the numerous articles characterizing invado-
some function in vitro, there are much less reports study-
ing them in vivo, undoubtedly due to the technical
difficulty to observe such ephemeral structures within
tissues or organisms. A first line of evidence of invado-
somes’ existence in vivo is provided by the fact that in

different cancers, many proteins playing a major role in
invadopodia formation or maturation are associated
with poor prognosis or/and metastasis, including Cortac-
tin, Fascin, Fgd1, MT1-MMP or Tks5.184 In mouse mod-
els, the use of an shRNA against N-WASP dramatically
reduces the ability of cells to form cellular protrusions,
intravasate or metastasize.185 Similarly, mammary tumor
cells in which Tks5 is knocked-down lose their ability to
invade locally or to form distant metastases.126 More-
over, primary cells derived from patients with different
types of cancer form invadopodia enriched in Cortactin
in culture, which are structurally identical to those
observed in cell lines.185

Different studies have directly observed invadosomes
in in vivo models. When they intravasate, tumor cells
form protrusions which resemble invadopodia186 and
this phenomenon is also observed in zebrafish.187 In the
nematode C. elegans, anchor cells generate invasive pro-
trusions to break down the basement membrane in
response to inducing signals.188 In mice, Cortactin- and
Tks5-enriched cellular protrusions have been observed
in xenografted tumor cells by immunohistofluorescence,
suggesting invadopodia presence in vivo.126,185 Finally, in
recent work using the chorioallantoic membrane model
in chicken embryos, human tumor cells injected in
capillaries were observed extravasating by intravital
microscopy.189 This approach has shown that, during
extravasation, cells form membrane protrusions enriched
in Cortactin, Tks4 and Tks5 allowing them to breakdown
blood vessel walls.189 Knockdown of Cortactin with
shRNA inhibited tumor cells extravasation. This study
validates in vivo the presence of invadopodia in tumor
cells and their role in extravasation.189 Nevertheless, fur-
ther investigations are still required to fully understand
the function of invadopodia in tumor cell invasion and
the specific roles of Cortactin in this process.
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