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Abstract 

Background:  Convolutional neural network (CNN) has achieved state-of-art performance in many electroencephalo‑
gram (EEG) related studies. However, the application of CNN in prediction of risk factors for sudden unexpected death 
in epilepsy (SUDEP) remains as an underexplored area. It is unclear how the trade-off between computation cost and 
prediction power varies with changes in the complexity and depth of neural nets.

Methods:  The purpose of this study was to explore the feasibility of using a lightweight CNN to predict SUDEP. A 
total of 170 patients were included in the analyses. The CNN model was trained using clips with 10-s signals sampled 
from the original EEG. We implemented Hann function to smooth the raw EEG signal and evaluated its effect by 
choosing different strength of denoising filter. In addition, we experimented two variations of the proposed model: (1) 
converting EEG input into an “RGB” format to address EEG channels underlying spatial correlation and (2) incorporat‑
ing residual network (ResNet) into the bottle neck position of the proposed structure of baseline CNN.

Results:  The proposed baseline CNN model with lightweight architecture achieved the best AUC of 0.72. A moder‑
ate noise removal step facilitated the training of CNN model by ensuring stability of performance. We did not observe 
further improvement in model’s accuracy by increasing the strength of denoising filter.

Conclusion:  Post-seizure slow activity in EEG is a potential marker for SUDEP, our proposed lightweight architecture 
of CNN achieved satisfying trade-off between efficiently identifying such biomarker and computational cost. It also 
has a flexible interface to be integrated with different variations in structure leaving room for further improvement of 
the model’s performance in automating EEG signal annotation.
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Background
Sudden unexpected death in epilepsy (SUDEP) is one 
of the leading causes (2.2–10 incidences per 1000 epi-
lepsy patients) of death related to epilepsy [1–3]. 

Significant efforts have been dedicated to exploring effi-
cient approaches to understand SUDEP risk factors in 
many recent studies. It was found that postictal gener-
alized EEG suppression (PGES), which occurs 16–90% 
of generalized convulsive seizures (GCS) [4–8], is a 
marker of risk for sudden and unexpected death in epi-
lepsy (SUDEP) [9]. However, the current manual review 
method in the clinical setting requires extensive labor 
from experienced domain experts and sometimes 
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produce inconsistent results. In addition, motion and 
muscles effects inevitably adds noises to EEG signal mak-
ing the identification of PGES even more challenging. 
Therefore it is important to develop an automatic method 
to assist the PGES annotation process.

Convolutional neural network (CNN) has been widely 
deployed in the image classification, segmentation and 
object detection tasks. It has gained popularity and 
achieved state-of-art performance in tasks related to the 
epileptic seizure detection in recent years [10–14]. How-
ever the application of CNN for identification of slow 
activity following generalized tonic-clonic (GTC) seizure 
remains as an underexplored area. In addition, limited 
effort has been spent on studying how noises in EEG 
signals impact a model’s prediction power in the CNN 
setting.

The purpose of this study is to develop an efficient 
CNN architecture to detect the onset of slow activ-
ity after a GTC seizure. At the same time we explored 
some variation in processing the input format of EEG 
and architecture of the proposed CNN model to under-
stand their effect in model’s performance. In addition, we 
investigated the effect of noise from EEG’s signal on pre-
diction accuracy by applying signal denoising functions.

Methods and materials
Data source
This work wasis based on a cohort of 170 patients with 
EEG recording from the 10 pairwise signal output from 
13 electrodes (Fp1, F7, T7, P7, O1, Fp2, F8, T8, P8, O2, 
Fz, Cz, Pz). The EEG signals were resampled at a fre-
quency of 200 Hz. A total of 134 patients were split out 
for the training of the model. This cohort was further 
randomly divided into 80 (60%) patients for internal 
training of the model and 54 (40%) patients for internal 
validation. The length of the signal in the training set 
varied from 2884 time points to 35,978 time points and 
each of these patients contains 10  s (10*200  Hz time 
points) length of slow activity signal. Clips with length 
of 10  s were cropped from the original EEG signal of 
these patients. Details of the method is discussed in the 
subsequent section. Thirty-six patients were held out as 
external testing set for the final evaluation of model’s per-
formance. 12,345 snippets were generated from the origi-
nal EEG signal of these 36 patients using a length of 10 s 
sliding window at every 0.1 s. The sampling yielded 26% 
of positive clips.

Denoising EEG signal
EEG signal demonstrates a random pattern with vary-
ing levels of noises. Ideally, a prediction model would 
expect a “clean” input data with sufficient variance to 
facilitate its learning. Therefore we investigated whether 

such random noise from the EEG signal could raise dif-
ficulty for training CNN models (e.g. impaired accuracy). 
In order to explore the answer for this potential issue, we 
trained the prediction model using signal smoothed by 
the Hann function (1).

The level of denoising effect is controlled by the window 
length of this function. The wider the window is, the 
more noise will be removed. We selected window length 
of 5, 11 and 15 empirically in order to generate processed 
signals that visually demonstrated sufficient differences 
in the level of smoothness. Both raw EEG signal and 
denoised ones were used for training models

Data augmentation of the training and validation set
Since a significant proportion of our EEG signals is nega-
tive (non-slow-activity), training the model based on 
the imbalanced data could increase model’s risk of mak-
ing false negative predictions. To mitigate this poten-
tial issue, we performed two augmentation approaches 
(Fig. 1) to boost the positive sample size during the train-
ing step.

The first method is cropping a 10 s clip from the origi-
nal EEG signal using a sliding window. Instead of gener-
ating complete “clean” samples, we improved variation in 
the pattern of EEG signal by artificially sampling some 
clips that were mixed with both positive and negative 
signals. A signal is considered as being positive once it 
contains more than 50% (5 s) of positive signal and vice 
versa for the negative clips. The detailed description is as 
follow: 

1	 To crop positive clips, the cropping window would 
sliding from a pre-set starting point to the onset of 
slow activity. If the time gap between the beginning 
of EEG recording and onset of slow activity is less 
than 1000 Hz, the cropping started the time 0 of the 
original EEG recording. If the time gap is more than 
1000 Hz, cropping starts at 950 Hz before the onset 
of slow activity.

2	 To crop negative clips, the time gap between the 
beginning of EEG recording and onset of slow activ-
ity has to be more than 1000 Hz. The cropping win-
dow slide from the starting point of EEG recording 
till 1100 Hz before the onset of slow activity.

The second data augmentation approach is resampling 
short clips of signals around the area where slow activ-
ity occurs. The short clip is half-length (5 s or 1000 Hz) 
as the regular cropped clips from method 1, and will 
be upsampled to normal size using nearest-neighbor 

(1)w0(x) =0.5

(

1− cos

(

2π
n

N

))

, 0 < n ≤ N



Page 3 of 8Zhu et al. BMC Med Inform Decis Mak 2020, 20(Suppl 12):329

interpolation approach [15]. Signals near the chang-
ing point tended to be ambiguous and challenging for 
manual annotation. Therefore resampling clips around 
this area might potentially reinforce model’s learning in 
signal’s transition between being positive and negative, 
thus potentially benefit model’s discriminative power. 
A detailed description of this Sampling method is as 
below: 

1	 To crop the positive clips, the clips must contain 
negative signals longer than 5 s to be eligible for sam-
pling. For the eligible clips, the cropping window 
would slide from a pre-set start point until 520  Hz 
before onset of slow activity. If the onset occurred 
1000  Hz after EEG recordings began, the cropping 
started at time 0 the original EEG recording. If the 
time gap was more than 1000 Hz, the cropping starts 
at 1000 Hz before the onset of slow activity.

2	 To crop negative clips, the cropping window slide 
between the onset of slow activity and 490 Hz before 
it occurred.

In a word, the both data augmentation procedures 
applied a slide window to ensure the sampling were per-
formed to all electrodes’ signal at the same time so as 
to ensure the original spatial correlation among them. 
The sampled clips were then split into 60% training set 
and 40% internal testing set using random sampling 
scheme. In addition, all the clips were transformed into 
10× 2000× 1 dimensional arrays before feeding into the 
model.

Development of the model
Architecture of the CNN
We designed a CNN with light architecture inspired by 
several successful examples from prior works [12–14]. 
We hypothesized that a lightweight structured CNN 
could achieve a similar level of accuracy in EEG related 
annotation task as the deep neural nets. The shallow 
architecture is more computational efficient and ideal for 
scenarios that require real-time monitoring and annota-
tion of EEG signals.

Fig. 1  Crop clips of signals from raw EEG data. Bottom: clips with window length of 10 s; Right top: short clips that were cropped with window 
length of 5 s and were then up-sampled into 10 s
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As shown by the Fig. 2 (baseline model), the first layer 
of the CNN model was implemented with 5 convolu-
tional filters using size of 2*60. Specifically, it means 
that each individual filter will process 2 input channels 
with 60 time points of signal at one time. Convolutional 
filters would slide through all the signals at stride size 
of 1*60; the filters would perform computation on the 
signals inside the slide window and stride by every 
60  Hz horizontally. Such process allows the CNN to 
analyze the underlying spatial or neurological correla-
tions across all signal channels.

The convolutional layer was followed by an average 
pooling layer with filter sized at 5 by 5 dimension and 
strides size of 5 by 5 to reduce the output features from 
the convolutional layer. The purpose of the layer was 
to condense and generalize the processed information 
from the previous layers and reduce the learning effort 
for the CNN model.

The outputs of the average pooling layer were then 
flattened into 1 by n dimension in order to be fully con-
nected to the subsequent dense layer with 20 neurons. 
Finally, a sigmoid activation function was implemented 
at the end of the CNN model for classification. Recti-
fied linear unit (Relu) activation function was imple-
mented across all the layers to speed up the training 

process. We also applied batch normalization to facili-
tate the optimization progress.

We also explored two variations in architectures of 
the model (Fig. 2). The first one was to convert the input 
structure of EEG signal array of shape 4*2000*3. Four 
pair-wise electrodes signals (fp1-f7, f7-t7, t7-p7, p7-o1; 
fz-cz, cz-pz, fz-cz, cz-pz; fp2-f8, f8-t8, t8-p8, p8-o2) were 
stored in 3 separated channels similar to the format of 
RGB image. CNN model could potentially benefit from 
such an approach regarding addressing the spatial corre-
lations among the electrodes.

The second one is to incorporate residual network 
(ResNet) structure into bottle-neck position of the pro-
posed baseline CNN [15]. ResNet consisted with a 
skipping architecture which allows for passing raw infor-
mation at the beginning to deeper layers. It helps to solve 
the gradient vanish or explosion problems which cause 
trouble for convergence when neural nets attempt to go 
deeper in order to learn higher level features from the 
data.

Optimization of the hyperparamters of the CNN model
We fine-tuned all the hyper-parameters of the model 
empirically until the trend of loss function of both train-
ing set and testing set shows similar declining pattern 

Fig. 2  Architecture of the proposed CNN model
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without significant gap throughout the training epochs. 
To reduce potential overfitting issue, we applied drop-out 
[16] with rate at 0.5 to the fully connected layers after the 
flattened layer and dense layers right before the sigmoid 
activation function. We also applied additional regular-
izing methods including adding Gaussian noise to the 
flattened layer with standard deviation of 0.01, and l2 
kernel regularizer with lambda of 0.01 to the dense layer. 
We chose stochastic gradient descent (SGD) optimizer 
with learning rate =  0.05, decay rate =  5e−6, momen-
tum =  0.9 [17]. We also implemented Adam optimizer 
to examine its effect on the model performance [18]. The 
model was trained using a batch size of 64. To accelerate 
the training process, layers input was normalized using 
batch normalization technique [19].

Evaluation of the model
The evaluation of the testing set was based on the 
receiver operating characteristics (ROC) curve only. The 
reason is the distribution of positive and negative sam-
ples are artificially balanced across training and internal 
validation set, a significant proportion of EEG signal is 

slow-activity negative in the real world scenario; ROC 
curve, which assesses model’s diagnostic ability at varied 
discrimination threshold, is less sensitive to the imbal-
anced distribution in label and provides a more objective 
assessment of model’s performance across data with var-
ied distribution. The specific evaluation was based on the 
area under the ROC curve (AUC).

Results
Figure  3 compared the effect of smoothing function 
with varied window length (5, 11, and 15) in denoising 
the EEG signals. As shown by the figure, the Hann func-
tion significantly remove high frequency noise from the 
raw EEG signal. The filtered signals demonstrate a much 
“cleaner” pattern while retaining its original temporal 
shape. In addition, the denoising effect increased with 
expansion of window width without significantly distort 
signal’s characteristics.

Table 1 summarizes models’ best AUC using different 
structures and input signals after applying different levels 
of denoising filter. Interestingly, the proposed lightweight 
architecture achieved the best external testing-set AUC 

Fig. 3  EEG signals before (left) and after (right) applying Hann smoothing function. Top left: raw signal; top right: window length = 5; bottom left: 
window length = 11; bottom right: window length = 15
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at 0.72 using raw signal optimized by Adam. Among the 
same models that were trained using filtered EEG, the 
best AUC (0.71) was achieved with a smooth window 
of length 3. The model’s performance did not seem to 
improve by increasing the window length of the smooth-
ing function. In contrast to our expectation, the perfor-
mance worsened after increasing the window length to 11 
though recovered modestly to an AUC of 0.68. Of note, 
although the model that was trained with raw EEG signal 
achieved the best performance, the further stability test 
showed that raw EEG signal yielded more fluctuations 
in overall performance using either Adam or SGD opti-
mizer than denoised signals. In general, smoothed EEG 
appeared yielded more reliable trained models according 
to our observance.

As shown by the Table  2, the modification of part of 
the proposed baseline CNN architecture did not yield 
improvement in prediction power. The “RGB” chan-
nel format achieved slightly lower AUC at 0.7. Surpris-
ingly, the incorporation of ResNet structure significantly 
impaired model’s performance. In terms of computa-
tion cost, the proposed baseline CNN architecture and 
one with with “RGB” format observed the least training 
time per epoch. The ResNet architecture took the longest 
training time which is 43–55  s per epoch. It took simi-
lar time of predicting the testing set (12,345 snippets) for 
baseline and baseline + ResNet architectures which is 
4.4s and 4.8s respectively. The “RGB” structure observed 
the longest predicting time.

In the further investigation of EEG channel’s contribu-
tion to CNN model’s overall prediction power, we focused 
on the baseline CNN architecture since it observed the best 

performance so far. We trained the same model using half 
of the EEG channels only at one time and evaluated the 
AUC of each training. As shown by the Table 3, the model 
with 1st half EEG channels (fp1-f7, f7-t7, t7-p7, p7-o1, 
fz-cz, cz-pz) achieved AUC of 0.634, while the one with 
second half EEG channels (fp2-f8, f8-t8, t8-p8, p8-o2, fz-cz, 
cz-pz) achieved AUC of 0.649.

Discussion
In this study, we sought to explore the feasibility of using 
a light weight architecture of CNN model to identify the 
onset of slow activity from EEG signals. While deep struc-
ture could potentially advance neural network’s accuracy 
by letting it learn higher level features from the data, it 
remains questionable that whether a pay for more compu-
tationally complex solutions will yield an equal improve-
ment in the model’s prediction power [20]. In addition, 
EEG signals that were obtained from different patient 
cohorts or monitoring machines could demonstrate vary-
ing underlying characteristics which affect the consist-
ency in the model’s performance. Fine-tuning complex 
deep neural nets thus could be a tedious work. Therefore, 
it might be desirable to devise a lightweight architecture 
could make CNN more efficient in retraining and adapt to 
tasks that requires real-time action (e.g. EEG annotation, 
SUDEP prediction).

We developed a light-weight CNN architecture that 
required less computation time than complex ones. It took 
less than 5 s for the compact CNN model to classify 12345 
snippets of EEG signals. This result demonstrated a poten-
tial of adopting well-trained CNN model to perform real-
time monitoring tasks. The future direction of this work 
will involve evaluating the model in the online-environ-
ment. The proposed baseline model is also compatible with 
different variations in the architecture in case the tasks 
require increased complexities for the model. In search-
ing the optimal CNN architecture, we failed to improve 
the proposed baseline model’s performance by bringing 
more complexities into the structure. By converting the 
input EEG data into an “RGB” format, we improved the 
training efficiency and potentially advanced model’s abil-
ity in addressing the underlying spatial correlations among 
the 13 electrodes. Yet such an approach did not yield an 
improved prediction power from the model. In contrary to 
our expectation, the integration of ResNet with the main 
architecture of the baseline model significantly worsened 

Table 1  Model performance using different level 
of denoised EEG signal

Window 
length 
(none)

Window 
length (5)

Window 
length (11)

Window 
length 
(15)

Best AUC 
(SD)

0.72 (0.03) 0.71 (0.01) 0.66 (0.02) 0.68 (0.02)

Table 2  The performance of  the  proposed model 
with variation in architecture

Baseline Baseline 
+ “RGB” 
channel

Baseline + ResNet

Best AUC​ 0.72 0.7 0.56

Training time/ epoch 16–18 s 14–23 s 43–55 s

Prediction time (testing 
set)

4.4 s 11.17 s 4.8 s

Table 3  The performance of  the  proposed model 
with different input EEG

Baseline Baseline: 1st half EEG Baseline: 2nd half EEG

Best AUC​ 0.72 0.63 0.65
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its performance despite of many successful examples from 
prior works. However, it should be noted that we didn’t re-
optimize the hyper-parameters (number of layers, drop-
out rate etc.) of the model after applying these variations. 
Therefore the results should be interpreted with caution 
and further efforts are needed to explore a better way to 
assimilate these variations with the proposed CNN model 
with light architecture.

We also investigated CNN model’s sensitivity to the 
noise in the signal. Surprisingly we found that the model 
used raw EEG signal achieved the best performance of 
AUC at 0.72. The same model that used lightly filtered 
signal observed comparable AUC at 0.71. However, by 
implementing a more aggressive denoising filter, the pro-
gress became counterproductive which might be resulted 
from the loss of information. A further investigation 
found that models that were trained with raw EEG signal 
yielded less stable results than those using filtered signals. 
This result indicated that a moderate amount of random 
noise from the signal might contain essential informa-
tion for training reliable prediction model. However the 
denoising progress should be implemented with caution 
as it might sacrifice some underlying key information 
for ensuring a reliable model. It requires trials and errors 
to identify a balance between noise removal and model 
efficiency.

There are several limitations in this study. The evalua-
tion of models’ performance regarding its computational 
cost and prediction power were implemented on the 
same cohort of patients although models were fine-tuned 
based on the training and validation sets and assessed 
using a separate testing set. In order to comprehensively 
exam the performance of proposed models, future work 
will require using independent external data. When 
exploring the effect of denoising EEG on model’s over-
all prediction power, we implemented a Hann’s function 
with arbitrarily selected window size (5, 11, 15) to created 
EEG signals. These values were selected empirically to 
ensure a straightforward study of the potential correla-
tion between signals’ visual smoothness and models’ pre-
diction power. Such as approach however more remove 
essential variations in the information inside the signal. 
Therefore future work demands a more robust denoising 
method such as autoencoders.

Conclusion
Post-seizure slow activity in EEG is a potential marker 
for SUDEP. Our proposed light weight architecture of 
CNN achieved satisfying performance in identifying such 
marker with less computational cost than deep neural 
nets. Our model has a flexible interface to be integrated 
with different variations in structure which leaves room 
for further enhancing model’s performance. We found 

the model’s accuracy was dependent on the quality of 
the EEG signal. However, the over-cleaned data did not 
guarantee an improvement in prediction power. In future 
work, we will incorporate more robust denoising tech-
nique and improve the integration of complex CNN 
structure with the proposed model.
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