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Abstract

Background: Container virtualization technologies such as Docker are popular in the bioinformatics domain because they
improve the portability and reproducibility of software deployment. Along with software packaged in containers, the
standardized workflow descriptors Common Workflow Language (CWL) enable data to be easily analyzed on multiple
computing environments. These technologies accelerate the use of on-demand cloud computing platforms, which can be
scaled according to the quantity of data. However, to optimize the time and budgetary restraints of cloud usage, users must
select a suitable instance type that corresponds to the resource requirements of their workflows. Results: We developed
CWL-metrics, a utility tool for cwltool (the reference implementation of CWL), to collect runtime metrics of Docker
containers and workflow metadata to analyze workflow resource requirements. To demonstrate the use of this tool, we
analyzed 7 transcriptome quantification workflows on 6 instance types. The results revealed that choice of instance type
can deliver lower financial costs and faster execution times using the required amount of computational resources.
Conclusions: CWL-metrics can generate a summary of resource requirements for workflow executions, which can help
users to optimize their use of cloud computing by selecting appropriate instances. The runtime metrics data generated by
CWL-metrics can also help users to share workflows between different workflow management frameworks.
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Background

Improvements in the accuracy and quantity capacity of DNA se-
quencing technology mean that various sequencing methods
are now available to measure different genomic features. Each
method produces a massive amount of nucleotide sequence
data, which require different data processing approaches [1].
Bioinformatics researchers develop data analysis tools for each
sequencing technique, and they frequently publish implemen-
tations as open source software [2]. To begin data analysis, re-

searchers must select the tools appropriate for their experimen-
tal design and install them to their computing environment.

Installing open source tools in one’s computational environ-
ment is, however, not always straightforward. Tools created by
different developers and using different programming frame-
works require different prerequisites, which forces researchers
to follow the instructions provided by the developer of each tool.
Installing various items of software in one environment can also
cause software dependency conflicts that are hard to resolve.
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Even if all of the tools required for the analysis can be success-
fully installed, it is a burden to maintain the environment and
keep all of the tools working as expected. Events such as changes
or updates to the hardware, operating system, or software li-
braries can also break the environment. Therefore, management
of the data analysis environment becomes increasingly more
complex when a project requires many tools to perform genomic
data analysis. In addition, the high cost of setting up an environ-
ment can prevent the scaling of computational resources. This
difficulty means that researchers depend on using their existing
computing platform, and data processing jobs are limited to that
resource.

Container virtualization technology, represented by Docker,
enables users to create a software runtime environment that is
isolated from the host machine [3]. This technology, which is be-
coming increasingly popular in the biomedical research domain,
is a promising way to solve the problem of installing software
tools [4]. Along with the containers, using workflow descrip-
tion and execution frameworks, such as those from the Galaxy
project [5] or the Common Workflow Language (CWL) project
[6], lowers the barrier to deploy a data analysis environment
to a new computing environment. Moreover, workflows that
are described in a standardized format can help researchers to
easily share the environment with collaborators. Consequently,
the improved portability of the data analysis environment has
made on-demand cloud infrastructure an appealing option for
researchers.

On-demand cloud infrastructure is beneficial in many as-
pects of genome science research because users can increase or
decrease the number of computing instances required without
having to maintain hardware as the amount of data from labo-
ratory experiments changes [7]. For example, some sequencing
applications require data analysis software that uses a consider-
able amount of memory, but individual research projects often
cannot afford to buy a large-scale computing platform. Users can
save money by using a pay-per-use on-demand cloud platform.

To use an on-demand cloud computing environment effi-
ciently in terms of time and economic cost, it is essential to
select a suitable computing unit—a so-called “instance type”—
from the many options offered by cloud service providers. For
example, Amazon Web Services (AWS), one of the most popular
cloud service providers, offers instance types of different scales
for 5 categories (general purpose, compute optimized, memory
optimized, accelerated computing, and storage optimized) [8].
Each data analysis tool has a different minimum requirement
of computational resources, such as memory or storage, and
this requirement can change according to input parameters. Ex-
ecuting data analysis workflows on an instance without enough
computational resources can result in a runtime failure or un-
expected outputs. For example, tools that assemble short reads
to construct a genome by way of a de Bruijn graph usually have
a long processing time and require a large amount of memory. If
the required amount of memory were to be wrongly estimated,
the process might fail after a few days of execution, wasting
time and money. Thus, to select a suitable instance type, users
must know the minimum amount of computational resources
required to execute their workflows.

To optimize the selection of instance type in terms of pro-
cessing time or running cost, users must compare runtime met-
rics for workflow executions across environments with different
computational specifications. Here, we present CWL-metrics, a
system that accumulates runtime metrics for workflow execu-
tions, with information about the workflow and the machine en-
vironment. CWL-metrics works with cwltool, the reference im-

plementation of CWL, using the workflow’s input files and pa-
rameters to provide a summary of runtime metrics, including
usage of central processing units (CPUs), memory, and storage
input/output (I/O). This information will help users to select the
proper cloud instance for their workflows.

Results
Implementation of CWL-metrics

We designed CWL-metrics to capture workflow-related runtime
metrics data, described in CWL [6], a standardized language for
workflow description developed by an open source community.
The system has been designed in such a way that users do not
need to perform any configurations to capture runtime met-
rics. Fig. 1 shows how runtime metrics are collected by CWL-
metrics. To start collecting metrics data, users need only to in-
stall the system, and then run their workflows with cwltool [9],
with options to increase log level and log file redirection to a
file. Only a few prerequisites are required to install CWL-metrics,
and these are easy to install with package managers including
git, curl, perl, docker, and docker-compose. Once installed, the
system automatically fetches the modules and starts monitor-
ing the processes running on the host machine. Once the sys-
tem detects a cwltool process, it automatically starts to collect
runtime metrics via Docker application programming interface
(API), and environmental information from the host machine.
CWL-metrics also captures the log file generated by the cwltool
command line to extract workflow metadata, such as input files
and input parameters.

To capture and store information from multiple data sources,
CWL-metrics launches multiple components as Docker con-
tainers (Fig. 2). These components are automatically fetched
by the system and keep running on the host machine after
initialization to support the data collection. The Telegraf con-
tainer collects runtime metrics data from the Docker API ev-
ery 60 seconds and sends the data to the Elasticsearch con-
tainer. The Elasticsearch container provides data storage and
the data access API. CWL-metrics automatically launches and
stops these components on the single host machine. To col-
lect metrics data for workflows running on multiple instances,
users must install CWL-metrics on each instance and manu-
ally assemble the summary data after the metrics data have
been captured. Users can specify an Elasticsearch server on
a different host to be a central data store by setting the en-
vironment variables ES HOST and ES PORT before initializing
CWL-metrics.

To access and analyze the data collected by CWL-metrics,
the command ”cwl-metrics” returns the data in JavaScript Ob-
ject Notation (JSON; Fig. 3) or tab-separated values (TSV) for-
mats. The JSON format contains workflow metadata such as the
name of the workflow and the start and end times of work-
flow execution. It also contains information about the envi-
ronment, including the total amount of memory and the size
of storage available on the machine. The ”steps” field of the
JSON format file contains information about the runtime met-
rics, the executed container, and the input files and param-
eters. Users can parse the data to analyze the performance
of the execution of a tool or of the whole workflow. The TSV
format provides basic information for each container execu-
tion so that the metrics data of different steps can be easily
compared.
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Figure 1: The container runtime metrics collection procedure using CWL-metrics. CWL-metrics was designed to automatically capture runtime metrics of workflow
steps. After initializing the system, users need only to run a workflow by cwltool to start capturing metrics data. The system collects the runtime metrics of containers,
and then workflow metadata are captured when the workflow process has finished. To retrieve runtime metrics, the cwl-metrics command can produce output
summary data in JavaScript Object Notation (JSON) or tab-separated values (TSV) format.
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Figure 2: Components of CWL-metrics and working processes. CWL-metrics comprises a daemon process and several Docker containers on the host machine. The
process and containers keep running until the system is terminated. Once a cwltool process starts running on the same machine, the CWL-metrics system monitors
the process to obtain the list of workflow step containers and log files. Every 60 seconds, the Telegraf container attempts to access the Docker daemon to obtain runtime

metrics data from running containers. The Fluentd container sends the runtime metrics data collected by Telegraf to the Elasticsearch container. The CWL-metrics
daemon process captures the cwltool log file and sends workflow metadata to Elasticsearch.
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Figure 3: An example of runtime metrics data summarized by CWL-metrics. CWL-metrics can produce a JSON-formatted data output file, which includes workflow
metadata, tool container metadata, and tool container runtime metrics. The workflow metadata appears once for 1 workflow run with data of multiple steps in the

“steps” key; for brevity, this example shows only 1 step in the workflow. Each step has a name, exit status, input files with file size, and details of the Docker container.
Runtime metric values may be null for short steps because CWL-metrics collects these metrics with a 60-second interval.

Using CWL-metrics to capture runtime metrics of
RNA-sequencing workflows

To demonstrate the capture and analysis of workflow runtime
metrics, we used 7 example RNA-sequencing (RNA-Seq) quan-
tification workflows to analyze the optimal instance type for
each one. Each of the 7 workflows (see Table 1) was run for 9
public human RNA-Seq datasets with different read lengths and
numbers of reads (Table 2), on 6 types of AWS Elastic Compute
Cloud (EC2) services (Table 3). CWL-metrics was used to capture
runtime metrics data for each combination. Each workflow de-
scription has 2 options for read layout: single-end and paired-
end. To select workflows, we chose 2 read-mapping tools, STAR

[10] and Hisat2 [11], with 2 transcriptome assembly and read
count programs, Cufflinks [12] and StringTie [13]. We also used 2
popular tools with different alignment approaches, Kallisto [14]
and Salmon [15]. For comparison, we also used TopHat2 [12],
a program that was previously one of the most popular tran-
script expression analysis tools but which has now been su-
perceded by HISAT2 (according to an announcement in February
2016 that TopHat2 “is now largely superseded by HISAT2, which
provides the same core functionality (i.e., spliced alignment of
RNA-Seq reads), in a more accurate and much more efficient
way”) [16]. Metrics data were collected 5 times for each com-
bination of workflow, input data, and instance type. Our anal-
ysis does not include runs for the workflows STAR-cufflinks and
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Table 1: Components of the RNA-Seq quantification workflows

Workflow name Steps CWL definition files

TopHat2-
Cufflinks

download-sra, pfastq-dump, tophat2-mapping, cufflinks [17]

HISAT2-Cufflinks download-sra, pfastq-dump, hisat2-mapping,
samtools sam2bam, samtools sort, cufflinks

[18]

HISAT2-StringTie download-sra, pfastq-dump, hisat2-mapping,
samtools sam2bam, samtools sort, stringtie

[19]

Star-Cufflinks download-sra, pfastq-dump, star-mapping,
samtools sam2bam, samtools sort, cufflinks

[20]

Star-StringTie download-sra, pfastq-dump, star-mapping,
samtools sam2bam, samtools sort, stringtie

[21]

Kallisto download-sra, pfastq-dump, kallisto-quant [22]
Salmon download-sra, pfastq-dump, salmon-quant [23]

We described 7 different RNA-Seq quantification workflows in CWL. Each workflow description has 2 different options for read layout: single-end and paired-end. We
selected 2 major read-mapping tools, STAR and Hisat2, with 2 transcriptome assembly and read count programs, Cufflinks and StringTie. We also used 2 popular tools
with different quantification approaches, Kallisto and Salmon. For comparison, we added TopHat2, one of the most popular programs.

Table 2: Read characteristics of processed RNA-Seq data

SRA Run ID Read length
No. of reads
per strand BioSample ID Sample description Sequencing instrument

SRR4250750 50 1,000,425 SAMN05779985 Cultured embryonic stem cells Illumina HiSeq 2500
SRR5185518 50 5,008,398 SAMN06239034 Cultured embryonic stem cells Illumina HiSeq 2500
SRR2932901 50 10,017,495 SAMN04211783 Fetal lung fibroblasts Illumina HiSeq 2500
SRR4428678 75 1,043,870 SAMN05913930 Embryonic stem cell−derived

macrophage
Illumina HiSeq 4000

SRR4241930 75 5,004,985 SAMN05770731 Primordial germ cell−like cells Illumina HiSeq 2000
ERR204893 75 10,234,883 SAMEA1573291 Lymphoblastoid cell line Illumina HiSeq 2000
SRR5168756 100 1,006,868 SAMN06218220 Subcutaneous metastasis Illumina HiSeq 2500
SRR5023408 100 5,004,554 SAMN06017954 Primary breast cancer Illumina HiSeq 2500
SRR2567462 100 10,007,044 SAMN04147557 Prostate cancer cells LNCaP Illumina HiSeq 2500

We chose 9 different RNA-Seq datasets from the Sequence Read Archive (SRA), a public high-throughput sequencing repository. To compare their performance, each

sequence was selected to be different in terms of read length and total number of reads. All data are from human samples sequenced by the Illumina HiSeq platform.

Table 3: Machine specifications of the AWS EC2 instance types used for metrics collection

Instance type Category
Virtual

CPU ECU Memory (GB) Linux/UNIX Usage ($/hour)

m5.2xlarge General purpose 8 31 32 0.384
m5.4xlarge General purpose 16 60 64 0.768
c5.2xlarge Compute optimized 8 34 16 0.340
c5.4xlarge Compute optimized 16 68 32 0.680
r5.2xlarge Memory optimized 8 31 64 0.504
r5.4xlarge Memory optimized 16 60 128 1.008

To compare the performance of workflow runs on different computing platforms, we selected 3 AWS EC2 categories: general purpose, compute optimized, and memory
optimized. We further selected 2 different instance types from those 3 categories, according to the number of virtual CPUs, 2xlarge and 4xlarge, with 8 and 16 CPU cores,
respectively. EC2 Compute Unit (ECU) indicates the number of cores and the number of units per core. Instance usage prices are as of 14 August 2018 for on-demand

use in the northern Virginia region of the USA. Prices do not include charges for storage, network usage, or other AWS features.

STAR-stringtie on instance types with <30 GB memory because
these runs failed.

Table 4 shows the summary of runtime metrics, process-
ing duration, and the calculated cost of instance usage per run
for 2 workflows, HISAT2-Cufflinks and TopHat2-Cufflinks. The
fastest processing time was achieved by the HISAT2-Cufflinks
workflow run on the c5.4xlarge instance, but the cheapest exe-
cution was achieved with the HISAT2-Cufflinks workflow on the
c5.2xlarge instance. This indicates that there is a trade-off be-
tween processing time and financial cost when running work-
flows on cloud instances. Each research project prioritizes time

and cost differently, and this determines how the project will op-
timize instance selection. Table 4 also shows the potential loss
of time or money when an inappropriate instance type is se-
lected. For example, if the r5.4xlarge instance was used to run
the HISAT2-cufflinks workflow, it would be 7% slower than if
c5.4xlarge was used, and ∼1.6 times more expensive per sam-
ple. The longer the execution time, the greater the impact of a
failure to optimize instance type.

Fig. 4 shows the processing duration results of the HISAT2-
StringTie workflow. There are clear differences in processing
time between the samples: samples with fewer reads have fewer

https://github.com/pitagora-galaxy/cwl/tree/master/workflows/tophat2-cufflinks
https://github.com/pitagora-galaxy/cwl/tree/master/workflows/hisat2-cufflinks
https://github.com/pitagora-galaxy/cwl/tree/master/workflows/hisat2-stringtie
https://github.com/pitagora-galaxy/cwl/tree/master/workflows/kallisto
https://github.com/pitagora-galaxy/cwl/tree/master/workflows/salmon


6 Computational resource usage of genomic data analysis workflow

Table 4: Comparison of the runtime metrics generated from TopHat2 and HISAT2

Workflow name Instance type

Workflow
duration
(seconds)

Maximum CPU
usage (%)

Total amount
of memory (bytes)

Total amount
of memory cache
(bytes)

Total amount
of block IO (bytes)

Cost per run
($)

HISAT2-Cufflinks c5.2xlarge 1,014.5 796.83 10,033,995,776 5,183,479,808 4,748,816,384 0.0958
HISAT2-Cufflinks c5.4xlarge 778 1,595.03 9,163,902,976 4,314,202,112 1,204,879,360 0.1470
HISAT2-Cufflinks m5.2xlarge 1,013 799.09 11,254,398,976 6,396,575,744 1,204,858,880 0.1081
HISAT2-Cufflinks m5.4xlarge 846 1,538.40 11,802,640,384 6,938,824,704 331,776 0.1805
HISAT2-Cufflinks r5.2xlarge 1,015 798.21 10,912,165,888 6,065,545,216 3,608,539,136 0.1421
HISAT2-Cufflinks r5.4xlarge 834 1,588.40 9,973,350,400 5,116,166,144 0 0.2335
TopHat2-Cufflinks c5.2xlarge 5,139 797.85 12,310,124,544 8,869,050,368 12,343,222,272 0.4854
TopHat2-Cufflinks c5.4xlarge 3,695 1,587.47 15,879,102,464 7,833,452,544 1,204,891,648 0.6979
TopHat2-Cufflinks m5.2xlarge 5,579 799.55 15,149,662,208 9,395,200,000 51,970,048 0.5951
TopHat2-Cufflinks m5.4xlarge 3,981 1,595.22 15,875,092,480 7,913,992,192 49,848,320 0.8493
TopHat2-Cufflinks r5.2xlarge 5,487 798.60 15,152,807,936 9,492,783,104 49,848,320 0.7682
TopHat2-Cufflinks r5.4xlarge 4,001 1,291.35 15,877,746,688 7,930,822,656 49,848,320 1.1203

We summarized runtime metrics values to compare 2 different workflows, HISAT2-Cufflinks and TopHat2-Cufflinks. All runs used input data SRR2567462. The read

length was 100 base pairs, the number of reads was 10,007,044 and the read layout was single-end. Data are workflow duration in seconds, the CPU usage in percentage,
the total amount of memory in bytes, the total amount of cache in bytes, the total amount of block input/output (I/O) in bytes, and the cost per run in US dollars.
We calculated the median metrics values for 5 iterations of the workflow. Values can be zero for short steps because CWL-metrics collects these metrics at 60-second

intervals.

Figure 4: Box plot showing the distribution of per sample processing duration using the HISAT2-StringTie workflow. We plotted the processing durations of workflow
runs, excluding data download time. The x-axis shows the Sequence Read Archive (SRA) Run ID of samples used as input data, with read lengths and numbers of
reads. The y-axis shows the workflow processing duration in seconds. Values are separated and colored by the type of instance used. Some runs on specific instance

types were excluded from the plots because they failed to execute. Each combination of sample and instance type was iterated 5 times to show the distribution of
metrics data. The plot shows that read length and number of reads both affect the processing duration, and the differences between instance types are relatively
small for smaller numbers of reads (1G reads), while instances with a greater number of CPU cores (∗.4xlarge) have a shorter processing duration for 10 gigabase pair
reads. The Permalink for the workflow in CWL viewer is: https://w3id.org/cwl/view/git/fb189fef3ddcb0d6619f9a22b4f57b880db654c0/workflows/hisat2-stringtie/sing

le end/hisat2-stringtie wf se.cwl.

differences between the instance types, while the runs on in-
stance types with greater CPU usage (4xlarge) have a markedly
shorter processing time for samples with larger numbers of
reads. Each workflow run used as many CPU cores as were avail-
able in the environment; thus, the difference in duration can
be explained by the difference in the number of threads. Read
length and processing duration also have a strongly linear rela-
tionship. This correlation should be useful to estimate resource
usage from the size of input data. Additional File 1 shows plots of

the processing time of the different workflows for which similar
results were found.

Conversely, comparison of the total amount of memory per
input data in Additional File 2 invites a different interpretation.
Unlike HISAT2 and TopHat2, Kallisto and Salmon did not show a
strong correlation with memory usage for different sizes of input
data. This indicates that users must know how the tool behaves
before using it because resource usage depends on specific algo-
rithms and their implementations.

https://w3id.org/cwl/view/git/fb189fef3ddcb0d6619f9a22b4f57b880db654c0/workflows/hisat2-stringtie/single_end/hisat2-stringtie_wf_se.cwl


Ohta et al. 7

The runtime metrics data provided by CWL-metrics also
helps to compare tools. Fig. 5 shows the differences in process-
ing times between the workflows tested. Although users must
consider the design concept and the individual strengths of the
tools in order to select the most appropriate one for their re-
search objectives, this result helps us to understand differences
in the resource requirements of workflows used for similar pur-
poses. For example, HISAT2 and STAR had almost the same pro-
cessing time, but STAR uses far more memory. The plot of pro-
cessing time also shows that TopHat2 is remarkably slower than
the other tools.

Discussion

CWL-metrics enables users to choose an appropriate cloud in-
stance on which to run workflows, based on runtime metrics
data. Metrics data summarized by workflow inputs, such as the
number of threads to use or total file size of input data, inform
more efficient cloud use for research projects. Each user can per-
form different analyses and visualizations depending on the in-
put parameters of their choice. JSON and TSV data files—the out-
puts of CWL-metrics—can be parsed and used for visualization
in any language.

CWL-metrics is applicable for most bioinformatics data anal-
yses. However, there are cases for which the system does not
work as effectively as expected. For example, the current imple-
mentation of CWL-metrics cannot capture precise runtime met-
rics data of a tool that scatters its processes to multiple compu-
tation nodes. Also, it cannot estimate the performance of soft-
ware that uses hardware acceleration systems such as Graphics
Processing Unit (GPU) because information for these specific ar-
chitectures is not available via Docker API. Another limitation of
the current implementation of CWL-metrics is that it does not
record network usage because the Docker API does not provide
network usage information per container [24]. Nevertheless, in
our example using RNA-Seq workflows, we showed that CWL-
metrics can provide beneficial information to help users decide
on the best cloud infrastructure to use.

Other workflow operation frameworks exist that are able
to capture runtime metrics, including Galaxy [25], Toil [26],
Cromwell [27], and Nextflow [28]. These frameworks have fea-
tures to enable the efficient execution of jobs that cwltool does
not currently support, such as those run on a parallel computing
platform. As an example, such workflow jobs might be submit-
ted using a batch job queuing system such as the popular Univa
Grid Engine [29]. This allows parallel execution of a workflow or
workflow step, resulting in better performance in terms of pro-
cessing duration. It is common practice in bioinformatics data
analysis to parallelize a workflow or a workflow step.

We chose to use CWL as our workflow description frame-
work, and its reference implementation cwltool as the workflow
runner for the system, because CWL provides a way to share the
workflow across different workflow systems. Once users have
collected workflow runtime metrics with CWL-metrics, it is pos-
sible to execute the same workflow description using multiple
workflow runner implementations. Fifteen implementations are
listed as being able to support CWL [30]. While some implemen-
tations, including Galaxy, do not currently have the full ability
to import and export CWL workflows, others, including Arva-
dos, Toil, and Apache Airflow, are already available to users. If
one wanted to use a workflow system that does not yet support
CWL, the summary of runtime metrics collected through Docker

containers is still valuable information for different frameworks
that execute command line tools in a similar fashion.

We believe that CWL-metrics has the potential to support fur-
ther applications in bioinformatics and data science. Our first
target to improve the CWL-metrics tool is to add a feature to
collect metrics data from parallelized job executions. We also
expect to develop metrics collection for workflows that use dif-
ferent container technologies such as Singularity [31], which
CWL-metrics does not currently support. Future implementa-
tions of CWL-metrics will cover different runtime environments
for greater usability. We also aim to improve the implementa-
tion so that it can provide metrics—other than instance running
time—related to the cost of cloud usage, e.g., total data transfer
size or total disk usage of the workflow run, which users need to
be able to estimate the cost of cloud infrastructure.

CWLProv, a subproject of the CWL project, provides prove-
nance information for workflow executions to improve the re-
producibility of workflows by tracking intermediate files and
logs [32]. Provenance information helps users to track the in-
puts and outputs of workflow runs using file checksums but
does not record details of the resource usage. Bundling CWL-
metrics−generated runtime metrics data with provenance infor-
mation will provide data needed for deployment, which helps
users to reproduce runs in an appropriate computing environ-
ment.

It is essential for researchers to have a flexible computing en-
vironment that can be quickly scaled according to the amount
of data processed. Rapid deployment of a data analysis environ-
ment to an appropriate cloud instance—supported by Docker,
CWL, and CWL-metrics—is one way to achieve such computa-
tional scale-up, which brings a huge benefit for bioinformatics
researchers.

Potential Implications

The CWL project aims to support workflow description specifi-
cation for all domains that work with data analysis pipelines.
CWL-metrics is therefore able to contribute to other domains
through the application of CWL. Sharing CWL workflows, with
the metrics data captured by CWL-metrics, can help users to de-
ploy them in appropriate cloud-based environments.

Methods
CWL-metrics software components

The CWL-metrics runtime metrics-capturing system comprises
5 software components: Telegraf [33], Fluentd [34], Elasticsearch
[35], Kibana [36], and a Perl daemon script. Telegraf is an agent
to collect runtime metrics of running containers via Docker API
using the Telegraf Docker plugin. Fluentd works as a log data
collector to send metrics data produced by Telegraf to the Elas-
ticsearch server. Elasticsearch acts as a data store to accumulate
runtime metrics data and workflow metadata, accepting JSON
format data via an API end point. Kibana is a data-browsing
dashboard for Elasticsearch to view raw JSON data, and to sum-
marize and visualize data [37]. Telegraf, Fluentd, and Elastic-
search/Kibana launch as a set of containers during CWL-metrics
initialization. CWL-metrics runs a Perl script, which monitors
processes on the host machine to track cwltool processes. To
send execution logs to the system, users must run cwltool with
the specified option to output the cwltool log to a file. Once the
script has found a cwltool process, it runs a function to collect
workflow information via a debug output of the cwltool process,
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Figure 5: Box plot of processing duration and maximum memory usage of sample SRR2567462 per workflow. Values of processing duration exclude data download
time. Both plots used values of workflow executions as a single-end input of SRR2567462. The x-axis shows workflow names, and the y-axis shows the processing
duration in seconds and total memory usage in bytes. Each combination of workflow and instance type was iterated 5 times. The plot of processing duration shows
that there is a difference in execution time between the TopHat2 workflow and others. While the differences in processing durations are relatively small, workflows

using STAR aligner require 4 or 5 times more memory than HISAT2 workflows. These data suggest that users should know about the runtime metrics of their workflows
before selecting an appropriate cloud instance type.

which is recorded in a file, “docker info” command output, a
Docker container log via the “docker ps” command, and output
of system commands to collect environment information. CWL-
metrics collects data about the running time of workflow steps
via the Docker container log. Thus, the duration equals the time
of the life of the containers, which does not include the time
of invocation by the workflow runner. CWL-metrics provides a
command, ”cwl-metrics,” which allows users to start and stop
the metrics collection system, and fetch summarized runtime
metrics data in a specified format: JSON or TSV. The script used
to launch the whole system, CWL-metrics installation instruc-
tions, and the documentation are available on GitHub [38].

Packaging RNA-Seq tools and workflows

We created 7 different RNA-Seq quantification workflows to cap-
ture runtime metrics data and analyze cloud infrastructure per-
formance. Each workflow begins with a tool to download se-
quence data from the Sequence Read Archive (SRA) [39] and then
converts the SRA-formatted file to FASTQ format. Consequently,
each pipeline performs sequence alignment to the reference
genome sequence (HISAT2 [HISAT2, RRID:SCR 015530] [11], STAR
[STAR, RRID:SCR 015899] [10], and TopHat2 [TopHat, RRID:SCR 0
13035] [12]), quasi-mapping (Salmon [Salmon, RRID:SCR 017036]
[15]), or pseudo-alignment (Kallisto [Kallisto, RRID:SCR 016582]
[14]) to the set of reference transcript sequences, then performs
transcript quantification. Most of the tool containers used in
the workflows are from the BioContainers [40] registry. We con-
tainerized those tools that were not available in the registry and
uploaded them to the container registry service Quay [41]. We
described tool definitions such as input and output of tool ex-
ecution and the workflow procedures in CWL tool files, which
are available on GitHub [42]. Each workflow has 2 options for se-
quence read layout: single-end and paired-end; thus, we created
14 workflow variants in total. Additional Table 1 shows the tool

versions, the online location of the CWL tool files, and the orig-
inal tool website locations.

Selection of RNA-Seq workflow input sequence data
from the public data repository

To analyze the effect of sequence data quality on workflow run-
time performance, we chose 9 samples of different read lengths
and numbers of reads from the public raw sequencing data
repository, SRA (Table 2). We used the Quanto database [43] to
select the data by filtering for read length (50, 75, or 100 base
pairs) and approximate number of sequence reads (1,000,000,
5,000,000, or 10,000,000). We filtered the data using the string-
match queries “organism: Homo sapiens,” “study type: RNA-
Seq,” “read layout: PAIRED,” and “instrument model: Illumina
HiSeq,” then manually picked data with sufficient descriptions
from the returned results. Both single-end and paired-end work-
flows used the same dataset, although single-end workflows
treated paired-end read file reads as 2 single-end read files.
The version of the reference genome used was GRCh38 [44].
We downloaded the reference genome file from the University
of California, Santa Cruz Genomics Institute’s UCSC genome
browser [45], and the Gencode gene annotation file version 28
from the Gencode website [46].

Running workflows on AWS EC2

To evaluate the performance of running different RNA-Seq
workflows, we selected instance types of 2 different sizes,
2xlarge and 4xlarge, from 3 categories: general purpose, com-
pute optimized, and memory optimized, to run all workflows for
all samples (Table 3). Each combination of instance type, work-
flow, and sample data was executed 5 times, while CWL-metrics
was run on the same machine to capture the runtime metrics in-
formation. All workflow runs used Elastic Block Storage of Gen-
eral Purpose solid-state drive volumes as file storage. We down-

https://scicrunch.org/resolver/RRID:SCR_015530
https://scicrunch.org/resolver/RRID:SCR_015899
https://scicrunch.org/resolver/RRID:SCR_013035
https://scicrunch.org/resolver/RRID:SCR_017036
https://scicrunch.org/resolver/RRID:SCR_016582
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loaded all of the reference data used for workflows in advance.
The source of the reference data used, and details of the scripts
used to run workflows, are available online [42].

Collecting and summarizing runtime metrics

After executing each workflow, we collected summarized met-
rics data from Elasticsearch using the ”cwl-metrics fetch” com-
mand. Exported JSON data were parsed using a Ruby script to
create data summarized per workflow run, loaded in a Jupyter
Notebook [47] for further analysis. We calculated median values
of metrics for replications using R language functions [48], and
we created box plots using the ggplot2 package [49]. The note-
book file is available on GitHub [50].

Availability of source code and requirements

For CWL-metrics, the runtime metrics-capturing system:
Project name: CWL-metrics
Project home page: https://inutano.github.io/cwl-metrics/
doi:10.5281/zenodo.2583319
Operating system(s): Platform independent
Programming language: Perl v5.18.2 or higher
Other requirements: Docker 18.06.0-ce or higher and Docker
Compose 1.22.0 or higher, cwltool 1.0.20180820141117 or higher
License: MIT
Any restrictions to use by non-academics: None
RRID:SCR 017076
For the scripts and notebook for visualization of this article:
Project name: cwl-metrics-manuscript
Project home page: https://github.com/inutano/cwl-metrics-m
anuscript
doi:10.5281/zenodo.2583314
Operating system(s): Platform independent
Programming language: Ruby 2.5.1 or higher
Other requirements: Docker 18.06.0-ce or higher
License: MIT
Any restrictions to use by non-academics: None
For the CWL definitions for tools and workflows used for bench-
marking:
Project name: Pitagora CWL
Project home page: https://github.com/pitagora-network/pitago
ra-cwl
doi:10.5281/zenodo.2583023
Operating system(s): Platform independent
Programming language: Common Workflow Language v1.0
Other requirements: None
License: Apache 2.0
Any restrictions to use by non-academics: None
For the SRA data download tool:
Project name: download-sra
Project home page: https://github.com/inutano/download-sra
doi:10.5281/zenodo.2590835
Operating system(s): Platform independent
Programming language: Shell
Other requirements: wget, curl
License: MIT
Any restrictions to use by non-academics: None
For the SRA-formatted data parallel decompress tool:
Project name: pfastq-dump
Project home page: https://github.com/inutano/pfastq-dump
doi:10.5281/zenodo.2590841
Operating system(s): Platform independent
Programming language: Shell

Other requirements: SRA toolkit
License: MIT
Any restrictions to use by non-academics: None

Availability of supporting data and materials

Source code and the documentation for the CWL-metrics system
is available on GitHub [51]. The workflows and scripts used for
the benchmarking experiment are published on GitHub [42]. The
reference data used for workflow execution are available on Zen-
odo [52]. The intermediate and output files are also provided on
Zenodo [53]. The dataset used for the visualizations of this arti-
cle is available in figshare [54, 55]. The full summary data and vi-
sualization of Jupyter Notebook is available on GitHub [50]. Snap-
shots and Research Object bundles are also collected together in
GigaDB [56]. A Jupyter Notebook file used to reproduce the visu-
alizations in the article is also available [57, 58].

Additional files

Additional File 1: Box plot of processing duration for all work-
flows. The x-axis shows SRA Run IDs of input data, with read
length and numbers of reads. The y-axis shows the process-
ing duration in seconds, excluding data download time. In most
of the workflows tested, read length and the number of reads
of input data affect the processing time. Workflows using STAR
aligner require a large amount of memory; thus, executions on
instance types with smaller amounts of memory have failed.
Additional File 2: Box plot of maximum memory usage for all
workflows. The x-axis shows SRA Run IDs of input data, with
read length and numbers of reads. The y-axis shows the maxi-
mum amount of memory used during the process in bytes. The
distributions of values are large, especially for runs that com-
plete quickly, probably because the 60-second interval of metrics
capture was not able to return consistent values.
Additional Table 1: Versions and containers of tools used in the
RNA-Seq workflows. We used 11 tools to construct 7 RNA-Seq
quantification workflows. We packaged the 2 tools we devel-
oped, ”download-sra” [41] and ”pfastq-dump” [41], into contain-
ers ourselves. The Salmon container is available on its devel-
oper’s build. The rest of the tools were obtained from the Bio-
Containers registry. We wrapped all the tools as CWL Comman-
dLineTool class files, and these are available on GitHub [42].
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