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Abstract: The synthesis of photoswitchable azo-dibenzo[b,f ]oxepine derivatives and microtubule in-
hibitors were described. Subsequently, we examined the reaction of methoxy derivative 3-nitrodibenzo
[b,f ]oxepine with different aldehydes and in the presence of BF3·OEt2 as a catalyst. Our study pro-
vided a very concise method for the construction of the azo-dibenzo[b,f ]oxepine skeleton. The
analysis of products was run using experimental and theoretical methods. Next, we evaluated the
E/Z isomerization of azo-dibenzo[b,f ]oxepine derivatives, which could be photochemically controlled
using visible-wavelength light.
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1. Introduction

Microtubules, dynamic intracellular polymers of tubulin, form part of the cytoskeleton
and perform key functions in important processes such as mitosis, intracellular transport,
and migration. Microtubule-directed small molecules, which inhibit the dynamics of a
microtubule, are often used clinically as valuable tools in cell biology and chemotherapeu-
tics, due to their ability to perturb mitosis [1–3]. Tumor cells have a greater capacity for
cell proliferation and are also more susceptible to damage from microtubule inhibitors.
However, due to the wealth of tubulin and the importance of microtubules, not only during
mitosis but also in the interphase, the treatment with microtubule-directed drugs often
leads to systemic side effects such as disease affecting the peripheral nerves (peripheral neu-
ropathies) [4]. Therefore, the introduction of the spatially and temporally controlled activity
of such drugs which could provide a significant advancement in tolerability, increasing
their overall clinical value, is considered.

The use of light is one means to target therapy at the tumor site. The following,
most well-known therapies are used: photodynamic therapy (PDT) [5–7] where the light-
induced production of a singlet of oxygen is employed for tissue ablation, or optogenetics,
where light is used to modulate the activity of genetically engineered ion channels, which
are usually derived from photoresponsive rhodopsins [8,9]. These methods for targeting
drug delivery are promising but, in some cases, the drug activation is irreversible upon
illumination and, in the case of optogenetics, the clinical relevance is limited by the need
for challenging genetic manipulation. One major problem for the clinical application of
each of these light-activated drug systems is that the activated drug can diffuse away from
the illuminated site of the tumor. This effect can cause unwanted damage to the tissues it
encounters. It is important to search for the light-activated drugs which would automati-
cally revert to less potent form over time to limit this off-target toxicity. A new area that is
now intensively developing is photopharmacology [10–12]. Photopharmacological agents
are bioactive molecules modified with photoswitches. Photoswitchable drugs are a group
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of compounds currently being intensively studied. Many research groups recently de-
signed and synthesized molecular photoswitches based on the azobenzene scaffold [13,14],
which could be operated in or near the therapeutic window of −650 nm–900 nm [15,16],
(the light reaches deepest into the tissue, without being limited by the absorption by
hemoglobin: λ < 650 nm and water λ > 900 nm).

Extrinsic factors such as microtubule-targeting agents (MTAs) can affect microtubules
dynamics. The surface of the globular part of tubulins contains several pockets that can be
intercalation sites for MTAs. The tubulin heterodimer contains at least six distinct drug
binding sites: taxane, laulimalide/peloruside, vinca, maytansine, pironetin, and colchicine
sites. Colchicine itself binds to tubulin very tightly, but its severe toxicity to normal tissues
hampers its use in the clinic [17]. Combretastatins (CA-1 and CA-4, are a class of naturally
occurring stilbene derivatives) [18–20] is a colchicine-domain microtubule inhibitor that
binds to tubulins and thus inhibits their polymerization to form microtubules [21–23].
The scaffold of the CA-1 and CA-4 structure contain Z-stilbene, and it is known that the
E-isomer is significantly about 60-fold less potent [24].

Continuing our study [25–31] of microtubule inhibitors, we analyzed the structure of
active colchicine, active combretastatin A-4, and derivative dibenzo[b,f ]oxepine (Figure 1).
It can be observed that the substituents and backbone arrangements were similar. Addition-
ally, the dibenzo[b,f ]oxepine showed the strongest cytotoxic effect against HeLa and U87
cancerous cells [27] and had (Z)-stilbene motif in their skeleton. Additionally, their aromatic
rings were connected by oxygen. Moreover, dibenzo[b,f ]oxepine was an important scaf-
fold in medicinal chemistry and its derivatives occurred in several medicinally important
plants [32–36]. The molecules with this skeleton exhibited anti-depressive [37], antipsy-
chotic [38,39], anti-estrogenic [40], antitumor [41] and anti-inflammatory [42] properties.
Their activity as photoswitchable compounds was not investigated.
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Figure 1. Structure of colchicine, combretastatin A-4, dibenzo[b,f ]oxepine and 1,2-bis(dibenzo[b,f ]oxepin-3-yl)diazene.

2. Results and Discussion

To study the activity of the photoswitchable compounds of dibenzo[b,f ]oxepine we
introduced an azo bond to the skeleton that could occur in configuration with E or Z. Before
the synthesis of azo-dibenzo[b,f ]oxepine derivatives, we performed a computational study
(see Supporting Information) because 1,2-bis(dibenzo[b,f ]oxepin-3-yl)diazene (Figure 1)
also had a similar spatial structure to colchicine or combretastatins.

Computational aspects. We analyzed the geometry of the E/Z isomers in the azo-
molecules (Scheme 1) using the density functional theory (DFT) calculations (2f). The
optimum ground-state geometry for (1a, 1c, 1e, 1f, 1h, E, and Z 2f) compounds was calcu-
lated using the density functional theory (DFT). In the calculations, the B3LYP functional
and 6-311++g(2d,p) (E and Z 2f basis set was employed and the continuum model (PCM;
Gaussian 03W, see Supporting Information) was used to simulate the effects of the sol-
vent, DMSO. The SCF energy for the E-2f isomer was 69.5 kJ/mol greater than for the
Z-2f isomer.
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Molecular docking. In the next step, we modeled the interaction between the isomers,
E-2f and Z-2f, and the colchicine binding site of α and β-tubulin (Table 1 and Figure 2).
The molecular docking of the compounds of the 2a–2c and 2e–2f isomers, E and Z, into the
3D X-ray structure of tubulin (PDB code: 1SA0) [43] was carried out using the Auto-Dock
Vina software (the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method) [44].

Table 1. Estimated binding free energy (kJ/mol) of 2a–2c and 2e–2f, isomers E and Z.

Compound The Affinity of
Isomer E (kJ/mol)

The Affinity of
Isomer Z (kJ/mol) ∆ Affinity (kJ/mol)

2a –13.9 –12.3 1.6

2b –13.5 –14.2 –0.7

2c –14.2 –13.5 0.7

2e –12.8 –12.4 0.4

2f –13.4 –12.4 1

The configurations of the protein/dimethoxydibenzo[b,f ]oxepine complex were cre-
ated using UCSF Chimera software [45]. The graphical user interface, ADT, was employed
to set up the enzyme and all the hydrogens were added. For macromolecules, the generated
pdbqt files were saved. The 3D structures of ligand molecules were built, optimized (a
B3LYP functional and 6–31* basis set level for the 2f E, Z isomers; for 2a–2c and 2e, the
methoxy groups were added to the calculated scaffold for the 2f E, Z isomers), and saved
in Mol2 format. The graphical user interface, ADT, was also employed to set up the ligand
and the pdbqt file was saved. The Auto-Dock Vina software was employed for all docking
calculations. The AutoDockTools program was used to generate the docking input files.
During docking, a grid box of size 34 × 34 × 34 points in the x, y, and z directions was built
and the maps were center located (44.91, 54.25, −11.18) in the catalytic site of the protein.
A grid spacing of 0.375 Å (approximately one–fourth of the length of a carbon–carbon
covalent bond) was used for the calculation of the energetic map.
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binding site of α and β tubulin (crystal structure from PDB code: 1SA0).

The structures of 1,2-bis(dibenzo[b,f ]oxepin-3-yl)diazene 2a–2c, and the 2e isomers, E
and Z, had an estimated binding free energy presented in Table 1 (the binding free energy
of the control compounds, colchicine and CA-4, are −8.6 kcal/mol and −7.62 kcal/mol,
respectively [46,47]). The model was similar to the models between colchicine, CA-4, and
the colchicine binding site [48,49]. In the isomers, E and Z, of the 2f binding models; more
details revealed that they played some key roles in the interaction between compounds and
tubulin (Figure 2). The compound 2f was embedded in the hydrophobic pocket occupied
by the A ring of the colchicine binding site (hydrophobic interactions with Leu248, Lys254,
Leu255, Lys352 for the Z isomer and hydrophobic interactions with Gly11, Thr145, Leu248,
Lys254, Leu255, Asn258, Ala316, Lys352, and the hydrogen bond with Asn101 for the E
isomer) of α and β tubulin (crystal structure from PDB code: 1SA0).

Based on the data from the calculations, we would expect that azo-dibenzo[b,f ]oxepine
derivatives would be a potent tubulin inhibitor; therefore, we synthesized and investigated
a set of the azo compounds (Table 2 and Scheme 1). These compounds may find applications
in photopharmacology. [12,50] Firstly, we explored the various synthetic methods to obtain
the azo compounds (2a–2h). We focused on one-step methods because of the short reaction
time, although different varieties of azo-product reduction (two-step from the amino
group) are also currently under investigation [51–55]. The results are summarized in
Table 2. The methods with the tert-Butyl nitrite [56]; NBS, NCS, NIS with DBU, DBN;
KOtBu in −78 ◦C [57]; or various variants of KMnO4 [57] with oxone synthesis [58], or
KOH in DMF at 150 ◦C [59], were examined, respectively. The compound (2a) was obtained
in eight cases. The limited yields in the preparation of azo-dibenzo[b,f ]oxepines may result
from the spatial structure of the molecules. We made additional calculations which showed
that the dibenzo[b,f ]oxepin-3-amine scaffold was not planar and that it adopted a basket
conformation. The dihedral angles between the aromatic rings connected with oxygen and
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a double bond (for example, the two dihedral angles: C=C-O-C (one ring) and C=C-O-C
(second ring), for dibenzo[b,f ]oxepine 1f were 64.9◦/65.9◦ (the geometry and dihedral
angles for 1a, 1c, 1e, 1f and 1h are found in the Supporting Information). Although the
geometry shows that the amino group is in a plane with the aromatic ring, the lack of
planarity of the further part of the molecule may weaken the diazotization reaction during
the process of creating an N–N bond [57]. Based on these results, we concluded that the
first method was optimal for obtaining the azo-product. We synthesized a series of the azo
compounds(2a–2h) in one synthetic step (Scheme 1).

Table 2. Screening of reaction methods.

Method Conditions Yield

1 [57] NBS, DBU, CH2Cl2, Ar, −78 ◦C 45%
2 [56] t-BuONO (1.2 eq.), EtOH, rt, 48 h 0%
3 [57] KMnO4, CuSO4·5H2O, CH2Cl2,24 h, rt 20%
4 [57] KMnO4, CuSO4·5H2O, CH2Cl2, grinding 10%
5 [58] (1) oxone, H2O, CH2Cl2(2) AcOH, TFA, toluene 5%
6 [57] NCS, DBU, CH2Cl2, Ar, −78 ◦C 45%
7 [57] NIS, DBU, CH2Cl2, Ar, −78 ◦C 37%
8 [57] NCS, DBN, CH2Cl2, Ar, −78 ◦C 10%
9 [57] NCS, KOtBu, CH2Cl2, Ar, −78 ◦C 20%

10 [59] KOH, DMF, N2, 150 ◦C mixture

Complete 1H, 13C NMR, and UV spectroscopic data for all the products (2a–2h) are
shown in the Experimental section (see Supporting Information). The 1H and 13C NMR
resonances were assigned unequivocally based on the combined information from 1D to 2D
NMR (gs-COSY, gs-HSQC, and gs-HMBC) experiments. Coupling constants (1H–1H) were
measured directly from resolution-enhanced 1D spectra and confirmed, when necessary,
by homo-decoupling.

In search of new photo-switching connections, we next examined the reaction of
methoxy derivative 3-nitrodibenzo[b,f ]oxepines with paraformaldehyde and in the pres-
ence of a Lewis acid as the catalyst. The following Lewis acids were explored: ZnCl2,
AlCl3, TiCl4, scandium triflate, and BF3·OEt2 in room temperature, DCM, and under argon.
The best yield was for the BF3·OEt2 and so we chose it for further studies (Table S1, see
Supporting Information). The results are summarized in Scheme 2. In the case of (3a), (3d)
the products are dimmers. In the reaction with (3b) instead of a product (4b), a mixture of
difficult to separate compounds was formed. Five products were possible to obtain in this
reaction with (3c) (Figure S1, see Supporting Information). Based on the two-dimensional
NMR spectra we concluded that this was the structure of the product (4c4, see Supporting
Information): a compound formed from the substitution of two dibenzo[b,f ]oxepines with
the substrate (3c). The Products of Prins reaction was observed for the substrate (3e) and
the mixing of two products (4e) was visible in the NMR spectra (see the spectra in the
Supporting Information).

As well as the differences in the course of the reaction, methoxy 3-nitrodibenzo[b,f ]oxe-
pines with paraformaldehyde were also related to the differences in electron densities
(3a–3d) and steric hindrance (3e). To obtain a clearer picture of the changes induced by a
substituent, we used the SCS [60] parameter (substituent-induced chemical shifts, Table 3)
for the 13C NMR chemical shifts. The interpretation of the SCS in the 13C NMR spectra was
a well-established method for investigating the electronic interactions in various molecular
systems despite the absence of any simple and general relationship between the chemical
shifts and the electron density at a given nucleus [61–63]. The data in Table 3 were collected
in the form of substituent-induced chemical shifts. For the carbon-labeled i, SCS was
defined as the difference between the chemical shift in the parent compound HX: SCSi
(RX) = δi(RX) − δi(HX). By analysing these data, we observed that the substituent effect on
the 13C chemical shift was greatest in its position ortho relative to methoxy group: −17.8
for (3a), −14.34 and −13.93 (∆ = 0.41) for (3b), −14.87 and −15.84 (∆ = 0.97) for (3c), and
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−17.37 for (3d) which justified the reactivity (increased of electron density) in this position
to electrophile attack. On the other hand, for the substrate (3e), the Prins reaction and the
mixing of products (4e) were most likely due to the steric hindrance in the aromatic ring.
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2

34
4'

5
5'

6
7
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11'9'
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3(c); R3 = OCH3, 
R1, R2,R4 = H 

0.08 −0.13 0.01 –0.18 0.35 −6.34 0.75 −14.87 30.84 −15.84 0.69 −0.06 0.32 −0.03 

R C1 C2 C3 C4 C4′ C5′ C6 C7 C8 C9 C9′ C10 C11 C11′

R1–R4 = H, * 131.12 121.26 149.05 117.46 156.93 156.86 122.35 132.06 126.73 130.80 130.43 134.36 129.10 138.01

3(a); R1 = OCH3,
R2–R4 = H –0.05 0.02 −0.19 −0.27 −0.2 −12.4 29.91 −17.08 −4.98 −3.99 1.11 0.03 0.09 0.3

3(b); R2 = OCH3,
R1, R3,R4 = H –0.27 0.07 −0.29 0.23 −0.66 1.09 –14.34 30.97 −13.93 0.82 −7.34 −0.08 −2.49 0.54

3(c); R3 = OCH3,
R1, R2,R4 = H 0.08 −0.13 0.01 –0.18 0.35 −6.34 0.75 −14.87 30.84 −15.84 0.69 −0.06 0.32 −0.03

3(d); R4 = OCH3,
R1–R3 = H −0.25 0.12 −0.05 0.03 0.04 1.72 −7.89 0.51 −17.37 27.18 −11.26 −5.41 −0.73 0.58

3(e); R2,R3 = OCH3,
R1, R4 = H −0.37 −0.13 −0.25 0.04 −0.33 −6.38 −15.64 19.98 20.33 −18.02 −8.43 0.12 −1.99 0.55

3(f) *; R1, R3 = OCH3,
R2, R4 = H −0.01 −0.14 −0.21 −0.49 0.13 −18.31 30.42 −29.70 31.00 −25.95 1.12 0.15 0.36 0.26

* Data from: H. Krawczyk, M. Wrzesiński, D. Mielecki, P. Szczeciński E. Grzesiuk, Tetrahedron 2016, 72, 3877–3884.

To expand the scope of this reaction, we examined the reaction of 3a in the presence of
various aldehydes. The results are summarized in Table 4. The best yield and the shortest
reaction time were observed for 2,4-dinitrobenzaldehyde. The remaining aldehydes reacted
slowly at room temperature and the product obtained was less in yield. In the case of
2,6-dinitrobenzaldehyde, it was necessary to increase the temperature to 45 ◦C. In all cases
(5a–5e) without (5f), one product was created: dimmer dibenzo[b,f ]oxepine with an aro-
matic linker. In the case of (3f) aldehyde, created due to the high hindrance in the molecule,
the product electrophilic substitution of the olefin bond, one dibenzo[b,f ]oxepine, with
the aromatic ring second molecule of dibenzo[b,f ]oxepine was observed (5f). To analyze
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the structures of the molecules from the compounds (5a–5e), the optimum structure was
calculated using the DFT B3LYP/6-31g*) method (see Supporting Information).

Table 4. Synthesis of (5a–5f) from 3a.
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Photoisomerisation in DMSO, studied by UV-VIS and NMR. The light-induced
isomerization of the azo-dibenzo[b,f ]oxepines photoswitch from the trans (E) form to the
thermodynamically less stable cis (Z) form was associated with significant changes in
geometry and polarity. Therefore, for the obtained azo-compounds (2a, 2b, 2e–2g), we
measured the UV/VIS spectra (Figure 3 and Table S2, see Supporting Information). The
examination of the UV/VIS spectra of the trans -(2a, 2b, 2e–2g) spectra allowed for the
determination of the maximum for the transitions π−π*: 409 nm; 434 nm; 446 nm; 371 nm;
400 nm, respectively.

Next, we analyzed the photoswitching properties of 2f (Figure 4). The photoisomer-
ization was measured for 10 µM 2f solutions in DMSO upon 365 nm irradiation. After the
illumination, other spectra were obtained (Figure 4) and the compound’s absorption pat-
tern dramatically shifted toward an absorption profile that was characteristic of the form, Z.
In general, it was very difficult, if not impossible, to isolate the Z isomer of (2a, 2b, 2e–2g)
which thermally relaxed on a timescale faster than several hours. Thus it was difficult to
predict the optimal wavelengths without a spectrum of the pure Z isomer. The UV/VIS
spectra of (2a, 2b, 2e–2g) generated at various wavelengths were sufficient to determine the
optimal wavelengths for the photoconversion between the isomers’ conversions. However,
this information did not reveal the ratio of photoisomers. Because the absorbance spectra
of both isomers overlapped substantially, it was very difficult to predict the E/Z isomeric
content using the UV/VIS spectra, particularly at intermediate wavelengths. The use of 1H
NMR spectroscopy simplified matters considerably (Table 5, Figure 5). Thus, the maximal
extent of the photoconversion between the isomers that could be achieved was readily
determined. By providing a direct measurement of the photostationary states consisting of
different ratios of photoisomers, the estimations, as used in UV/VIS experiments, were
not required.
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Table 5. Percentages of (Z) (2a, 2b, 2e, 2g) isomers obtained from NMR spectra and at various PSSs (photostationary state)
measured under constant illumination at the indicated wavelengths.

Compound
Percent of (Z) Isomer at PSS at

365 [nm] 395 [nm] 410 [nm] 465 [nm]

2a
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One serious restriction in the development of functional photoswitching systems is
the necessity to trigger switching in at least one direction by UV light, which is often
damaging, e.g., short-and longwave ultraviolet light damages DNA. For humans, sunburn
is the familiar effect of exposure of the skin to UV light, along with an increased risk of
skin cancer [64]. Scientists are searching for compounds that can be switched in visible
light. During the exposure to different wavelengths (from dark to 465 nm, Figure 5) of (2a,
2b, 2e, 2g) the isomers’ new signals can be observed. There is a photoisomerization of the
isomer E to the desirable isomer Z (skeleton (Z)- stilbene motif). Z isomers of investigated
compounds have a lifetime of approximately 1 day. We can conclude that the obtained
compounds convert from the E to the Z isomers over a safe wavelength range (410 nm and
465 nm) and can be potentially photochemically controlled using visible wavelength light.
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3. The Application in Photopharmacology

Considering medical applications, we anticipate that the Z isomers of azo- dibenzo[b,f ]ox-
epine derivatives will share many of the features that especially suit the colchicine binding
site of α and β tubulin for tumor chemotherapy (Figure 2). It is known for many molecules
that the scaffold structure containing the Z-compound is about 60-fold more potent than the
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E isomer[24]. Crucially, the azo- dibenzo[b,f ]oxepine isomers may avoid the therapeutically
limiting side effects of the current MT inhibitors, as the compounds applied globally may
be activated locally by the precise irradiation in vivo. This can be used in light delivery
methods, such as in photodynamic therapy [65], and also in optogenetics [12,66,67]. It
may be possible to use dual-wavelength irradiation to actively restrain the Z form inside
the organism at the destination. We also anticipate that the azo- dibenzo[b,f ]oxepine
derivatives’ spontaneous Z/E relaxation, on the scale of 1 day, can passively reduce the
systemic exposure to bioactive Z-isomers. Obtained by us, these compounds may be used
to deliver stronger on-target effects than those achieved with the current, globally active
MT inhibitors, while simultaneously reducing the accompanying side effects. Therefore,
we anticipate that azo- dibenzo[b,f ]oxepine derivatives will be useful tools for cell biology
and cancer chemotherapy, using the spatiotemporal precision of photopharmacology.

4. Conclusions

In summary, we synthesized azo-dibenzo[b,f ]oxepine derivatives, using the NBS
method and with DBU in dichloromethane. Next, we examined the dibenzo[b,f ]oxepine
scaffold in the reaction with aldehydes and BF3·OEt2. Later, we applied these reaction
conditions to create new azo-compounds. The reactions proceeded under very simple
reaction conditions. Our study provided a very concise method for the construction of
the azo-dibenzo[b,f ]oxepine skeleton. Furthermore, we explored the switchable proper-
ties of obtained compounds. To our knowledge, this is the first time a system utilizing
dibenzo[b,f ]oxepine with an azo moiety could be photocontrolled using only visible light
(410 nm, 465 nm). The further investigation of the reaction to the synthesis of various
azo-dibnzo[b,f ]oxepine, could mean that this compound is considered a potential molecular
substitute for use in photopharmacology, and studies are ongoing.
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