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Colon adenocarcinoma (COAD) is one of the deadliest cancers in the world and

survival rates vary significantly between early and advanced stage patients.

Therefore, the identification of the pathogenesis in the development of COAD

and prognostic markers is urgently demanded. Herein, we collected RNA-seq

and somatic mutation data of COAD for statistical analysis. Clinical stage-

specific differentially expressed genes (DEGs) and tumor development-

dependent DEGs were identified. By characterizing the metabolic and

immune features of COAD between stages, we found that the energy supply

and inflammatory response of advanced tumors were suppressed. Next, the

ETS1, AR, GATA1, GATA2, SREBF1, FOXP3, STAT4, and NFKB1 were identified to

drive the metabolic and immune-related pathways in the development of

COAD. The three potential prognostic markers (HOXC8, IRF7, and CXCL13)

were identified based on Cox regression analysis. Additionally, immune

infiltration analysis revealed that the resting CD4+ T cell was significantly

related to the overall survival (OS) of COAD patients. Collectively, the

specific metabolic and immune characteristics of advanced patients and the

identified prognostic biomarkers will contribute to the development of

precision medicine.
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Introduction

Colorectal cancer is one of the deadliest cancers in the world, killing nearly a million

people every year (Labianca et al., 2010; Dekker et al., 2019). Although advances in

diagnosis and treatment methods improve the prognosis of early-stage patients, it is still

an important cause of cancer-related deaths (Lech et al., 2016). The locations where

tumors often occur are divided into proximal colon, distal colon, and rectum, and the ratio

of patients reaches 4:2:3 (Cheng et al., 2011). With the development of diagnostic

technology, the number of young patients diagnosed with colon cancer increase.
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Recent study data suggest that the overall five-year relative

survival rate for COAD patients exceeds 60%, it varies

depending on the clinical stages. Therefore, the dynamic

changes in the physiological mechanisms involved in the

development of COAD need to be urgently determined.

In the process of tumor development, it is accompanied by

metabolic reprogramming to support tumor cells’ demand for

proliferation and metastasis (DeBerardinis and Chandel, 2016).

Genetics and environmental are important driving factors of cell

metabolism (Boroughs and DeBerardinis, 2015; Pavlova and

Thompson, 2016). Among them, different tumor stages have

specific physiological environments (La Vecchia and Sebastian,

2020). To explore metabolic reprogramming during tumor

development, it is necessary to use gene expression to

measure metabolic pathway activity (Puram et al., 2017).

So far, the diagnosis of colorectal cancer still relies on

colonoscopy, but the treatment methods have developed

significantly. In recent years, immune checkpoint therapy have

become hot spots in cancer treatment. For example, a novel

treatment for colorectal cancer was proposed based on the

immune checkpoint PD-1/PD-L1 (Yaghoubi et al., 2019).

However, not all COAD patients show complete response to

PD-1, and there are some adverse reactions (Wu et al., 2019).

Hence, in this work, we explored the immune cell landscape and

the activity of immune-related pathways in the development

of COAD.

In this study, we collected RNA-seq and mutation data of

colorectal tumors and normal samples from The Cancer Genome

Atlas (TCGA) database to identify metabolic and immune

characteristics in the development of COAD. Transcriptional

regulatory networks were constructed to identify drive factors

that play important roles in immune and metabolic pathways.

Potential prognostic markers identified by Cox regression

analysis were used to construct survival risk models for

COAD. Moreover, immune infiltration analysis revealed the

immune landscape of COAD.

Materials and methods

Data collection

First, we downloaded the gene expression data (including

tumor samples and normal samples), somatic mutation data and

clinical information of COAD patients from the TCGA database

(Tomczak et al., 2015). The hallmark, KEGG, GO Biological

Process andmetabolic pathway gene sets were collected from The

Molecular Signatures Database (MSigDB (Liberzon et al., 2015),

http://www.gsea-msigdb.org/gsea/msigdb/) database. Further,

the transcription factors (TF)-TG data for human were

downloaded from the TRRUST (Han et al., 2018) (https://

www.grnpedia.org/trrust/) and ORTI (Vafaee et al., 2016)

databases (http://orti.sydney.edu.au/about.html). The signature

profiles of leukocyte were collected from the CIBERSORTx

(Newman et al., 2015) (https://cibersortx.stanford.edu/)

database.

Differential expression analysis

Here, in addition to considering the difference in gene

expression between all the tumor sample and the normal

sample collected from TCGA, the difference in gene

expression between the tumor sample and the corresponding

normal sample in each clinical stage was also considered.

Differentially expressed genes were identified using the R

package Limma (Ritchie et al., 2015). We considered the

genes with |log2FC| > 1.5 and p-value < 0.01 as the

differentially expressed RNAs (DEGs).

Statistical analysis of mutation data

The somatic mutation data of COAD collected from TCGA

was used to describe the mutation of signature genes. Then, the R

package maftools (Mayakonda et al., 2018) was used for the

statistical and visualization of mutation location, mutation form,

mutation frequency and other information for these signature

genes.

Gene set level analysis

For the metabolic gene sets collected from the MSigDB

database, gene set variation analysis (Hanzelmann et al., 2013)

(GSVA) was used to calculated the enrichment score of each

stage of COAD in metabolic pathway by R package GSVA

(v1.36.3). GSVA is a non-parametric, unsupervised algorithm.

Further, the ten pathways and biological pathways related to

immune checkpoints, antigen presentation, and immune

activation or suppression were extracted from hallmark,

KEGG and GO Biological Process gene sets. Using the

appealed GSVA algorithm, the activity score of each stage of

COAD in these immune-related pathways was calculated.

Construction of transcriptional regulatory
network

First, we used the analysis of variance (ANOVA) algorithm to

calculate the metabolic genes and immune-related genes

specifically expressed between samples grouped in stages. We

defined the metabolic and immune-related DEGs specifically

expressed between samples grouped by stage as stage-MDEGs

and stage-IDEGs. Next, stage-MDEGs and stage-IDEGs were

extracted for the construction of transcriptional regulatory
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network based on the TF-target gene data collected from

TRRUST and ORTI databases. The TF-target gene

relationship pairs related to stage-MDEGs and stage-IDEGs

were extracted. Further, the Pearson correlation coefficient (R)

between the genes of each pair was calculated and the cutoff of

the p-value and R were set to 0.05 and 0.2. Moreover, the TFs-

target genes network was constructed using Cytoscape (Shannon

et al., 2003) (3.7.0) tool. The topological properties of the network

then were calculated and the top genes of degree were identified

as key drive factors.

Functional enrichment analysis

First, the genes whose expression was affected through the

transcriptional regulatory mechanism was collected. The R

package clusterprofiler (Yu et al., 2012) was used to perform

GO functional enrichment on these genes. We set

p-value<0.05 to screen for significantly enriched biological

pathway. The relationship between these biological pathways

and the corresponding genes was depicted using the R package

circlize (Gu et al., 2014) (v0.4.10).

Identification of prognosis markers

Based on the appealed transcriptional regulatory network

research, the TF and target genes were used as candidate

factors for the identification of prognostic markers of COAD.

First, the univariate COX regression was used to screen for the

prognostic related genes using patient’s survival data

including survival state and overall survival (OS) of COAD

(the cutoff of p-value was 0.05). The patients of COAD were

randomly sub-grouped into the training set and test set in

accordance with the ratio of 7:3. Further, the train set were

used to construct multivariate COX regression model (Fisher

and Lin, 1999). The reliability of the survival prediction model

was described by the receiver operating characteristic curve

(ROC), and the area under the curve (AUC) was calculated.

The PH hypothesis test was also used to calibrate the model.

The gene that p-value of the Schoenfeld Individual test greater

than 0.05 was reserved for the reconstruction of the

multivariate cox regression model. Moreover, we used the

nomogram algorithm to build a COAD survival risk

prediction model.

Calculation of risk score

First, we calculate the risk score of each patient for COAD

based on the linear combination of the expression values

weighted by the coefficients of the multivariate Cox regression

analysis:

Risk score (i) � ∑
n

k�1βkpeki (1)

Where n represents the number of prognostic-related genes, i

represents the order of genes, and k represents the order of

patients. The regression coefficient and gene expression value are

represented by β and e respectively. Then, we calculated the risk

scores of the samples and divided the samples into high-risk and low-

risk categories based on the median risk score. The Kaplan-Meier

survival curve (Ranstam and Cook, 2017) was used to describe the

patient’s survival probability of high- and low-risk group, and

calculated the statistical difference with the bilateral log-rank test

(Guyot et al., 2012). Besides, the above survival analysis process was

also carried out in an independent data set (GSE38832 (Tripathi et al.,

2014)) to confirm the robustness and stability of prognostic markers.

Results

Stage-specific transcriptional and
mutational landscape in Colon
adenocarcinoma development

The key to the treatment of colorectal cancer is early detection

and timely diagnosis (The, 2018). Therefore, exploring the

dynamic changes of molecules in the development of COAD

was beneficial to reveal the driving mechanism of the

physiological state of patients in different stages. We developed

a pipeline to explore the dynamic molecular mechanisms in

COAD development (Supplementary Figure S1). First,

differential expression analysis revealed that 9,859 DEGs

(3,047 up-regulation and 6,812 down-regulation) were identified

between tumor samples and para-cancerous samples of COAD

(Figure 1A). The top 10 up-regulated genes were marked. Among

them, WNT2 is an important component in the WNT signaling

pathway and promotes tumor angiogenesis in colon cancer

(Unterleuthner et al., 2020). With the development of tumors,

the prognosis of advanced patients will be severely disrupted

(Huang et al., 2020), which was also effective for COAD. We

found that the prognosis of COAD patients is consistent with its

clinical stage and that advanced patients were associated with the

worst OS (Figure 1B). Further, to explore the specific expression of

biomolecules in patients of four clinical stages, we have statistically

tested the DEGs of each clinical stage. The 2326 DEGs (868 up-

regulation and 1,461 down-regulation) in stage I, the 7,857 DEGs

(1,959 up-regulation and 5,898 down-regulation) in stage II, the

3,976 DEGs (1,147 up-regulation and 2,820 down-regulation) in

stage III, and the 4,200 DEGs (1,320 up-regulation and

2,880 down-regulation) in stage IV were identified. By

integrating the DEGs identified in the overall tumor sample

and the DEGs identified in each clinical stage, 33 up-regulated

genes and 117 down-regulated genes were identified in different

stages (Figure 1C), which indicated that molecular and functions

have been reprogrammed during the development of COAD. For
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the 33 up-regulated genes, we used COAD mutation data to

describe their mutation landscape (Figure 1D). Among them,

according to the current mutation data, there are no somatic

mutations in the genomic positions of 10 genes. We found that

ENC1 has the top mutation frequency (Figure 1D), and it was

significant co-occurence with GRHL3, RHPN1 and E2F7 at the

mutation level (Supplementary Figure S2). Moreover, previous

studies have shown that ENC1 promotes the progression of

FIGURE 1
Stage-specific transcriptional andmutational landscape in COAD development. (A) The results of the DEGs between thewhole tumor sample of
COAD and the normal sample are displayed by volcano plot. The x-axis represents log2 (Fold Change). The y-axis displays -log10 (p value). (B)
Kaplan-Meier (KM) curves depict the survival of patients in four stages for COAD. Log-rank test is used to calculate statistical significance. (C) Venn
diagram shows the intersection of up-regulated genes between clinical stages and overall tumor samples. (D) The waterfall chart shows the
mutation information of genes that are continuously up-regulated in the development of COAD, and themutation type of each gene in each sample
is displayed.
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FIGURE 2
Stage-specific metabolic and immune activity. (A) The enrichment scores of the 85 metabolic pathways calculated by GSVA in the five
categories (stage I, stage II, stage III, stage IV, normal samples) are displayed by the heat map. (B–C) Boxplot shows the glycolysis and OXPHOS
pathway scores of each sample in the five categories. ANOVA is used to assess statistical differences between groups. (D) The distribution of
enrichment scores for 85 metabolic pathways in the five categories is shown by violin chart. (E) The heat map shows the enrichment scores of
each immune-related pathway in the five categories.
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colorectal cancer through JAK2/STAT5/AKT axis-mediated

epithelial-mesenchymal transition and stemness (Cui et al., 2021).

Stage-specific metabolic and immune
activity

In the process of tumor development, tumor cells undergo

metabolic reprogramming to adapt to changes of the environment

(Sun et al., 2018). To characterize the dynamic changes of

metabolism in the development of COAD, GSVA was used to

calculate the activity of 85 metabolic pathways collected from the

MsigDB database in four clinical stages. We found that tumor

tissue have activated energy supply compared with normal tissues

(Figure 2A), which was consistent with previous studies showing

that the activated metabolic microenvironment could supply

tumor proliferation and metastasis (Wang et al., 2021). In

different stages of tumor development, there are obvious

differences in the activity of metabolic pathways. The activities

of glycolysis and oxidative phosphorylation (OXPHOS) have been

FIGURE 3
Key factors drive the reprogramming of metabolism and immunity. (A) Transcriptional regulatory network of metabolism-related genes that
continue to be specifically expressed in the development of COAD. The triangle represents TF, the circle represents the target gene. Genes that
continue to be specifically expressed in the development of COAD are marked in yellow. (B) The top 10 GO items enriched by genes in the (A)
network. The interaction between genes and the GO items is shown. (C) Same as in (A) but for immune-related genes that continue to be
specifically expressed in the development of COAD. (D) Same as in (B) but for genes in the (C) network.
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significantly enhanced in stage III (Figures 2B,C), which may be

related to the proliferation of tumor cells at this stage.

Furthermore, we analyzed the activity distribution of metabolic

pathways between normal tissues and tumors of various stages.

The global metabolic activity of normal tissues was higher than

that of tumor tissues of each stage (Figure 2D), which indicates that

tumor cells could selectively activate specificmetabolic pathways to

adapt to the development of this stage. For example, tumors in

stage IV have high purity and metastasis to distant organs (Koo

et al., 2020), and the reduction of glycolysis and the enhancement

of OXPHOS were important metabolic characteristics of this stage

for COAD (Figures 2B,C), which may be related to the increase in

oxygen supply caused by the formation of blood vessels in local

tissues. With the development of tumors, the immune

microenvironment of tumors has also changed. We found that

there were significant differences in the activity of the immune

signaling pathways between the early and late stages of COAD

(Figure 2E). In stage I and II of COAD, IL6/STAT3 signaling

pathway, TGF-β signaling and FC receptor response have strong

activity, which revealed the inflammatory activation of the

immune response in the early stage of the tumor. Taken

together, these results suggested that the development of COAD

was accompanied by metabolic reprogramming and variation of

the immune microenvironment.

FIGURE 4
Identification of prognostic related genes in COAD. (A) Forest plots for multivariate Cox risk regression models. (B) PH hypothesis test of
HOXC8, IRF7, andCXCL13. x-axis represents survival time, and y-axis represents Schoenfeld residuals. (C) The nomogram shows the prediction of 1-
year and 3-years survival risk for patients of COAD. (D) Calibration curve of nomogram.
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Key factors drive the reprogramming of
metabolism and immunity

TFs play an important role in gene expression by regulating

the initiation and intensity of gene transcription (Lambert et al.,

2018). To identify the driving factors that regulate metabolism

and immune activity in the development of COAD, the

transcriptional regulatory networks were constructed. Based

on metabolism-related genes, 23 TFs and 30 target genes were

identified and 46 TF-target gene units were formed (Figure 3A).

By analyzing the topological properties of the network, we have

identified the top 5 TFs (ETS1, AR, GATA1, GATA2, and

SREBF1) of degree. The ETS1 has been shown to be a

driving factor for the progression of majority cancers

(Dittmer, 2015; Chen et al., 2019) and its down-regulation

inhibits the progression of colorectal cancer (Gu et al., 2019).

These results indicated that ETS1, AR, GATA1, GATA2, and

SREBF1 could be used as biomarkers in the development of

COAD. In addition to metabolic pathways, the results of

functional enrichment analysis showed that genes involved

in the transcriptional regulatory network were significantly

enriched in the transcription of non-coding RNA and cell

differentiation (Figure 3B). In the immune-related

transcriptional regulatory network, 55 TFs and 48 target

genes constituted the 129 TF-target gene units (Figure 3C).

The ETS1 also the top gene of degree in this network. The

remaining four high degree TFs were FOXP3, STAT4, AR, and

NFKB1. Among them, the FOXP3 was closely related to the

differentiation of T cells and was lineage-defining TF for

regulatory T cells (Ono, 2020). Moreover, we found that the

genes in the immune-related transcriptional regulatory

network were significantly enriched in the activation and

differentiation of immune cells (Figure 3D). Taken together,

these results suggested that the ETS1 and AR were the driving

factors of metabolic and immune reprogramming in the

development of COAD.

FIGURE 5
Construction of risk scoring model. (A) The figure shows the risk scores, survival status, and expression of prognostic markers for the train set
samples. (B) The Kaplan-Meier curves for the survival of high-risk and low-risk groups in the train set. (C) Same as in (A) but for the test set samples. (D)
Same as in (B) but for two groups in the test set.
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Potential prognostic signature for Colon
adenocarcinoma

The driving factors that play an important role in the

development of COAD by regulating cell metabolism and

immunity may determine the prognosis of patients. To identify

potential prognostic markers of COAD, we integrated the

statistical analysis pipeline from previous studies in this work

(Dang et al., 2021; Le et al., 2021). The univariate Cox regression

algorithm was used to fit the relationship between gene expression

and patient’s survival based on train set (including survival status and

survival time). In this step, 11 genes were identified and significantly

related to the patient’sOS. Further, these geneswere used to construct

the multivariate Cox regression model. We found that three genes

including HOXC8, IRF7, and CXCL13 could be used as a potential

prognostic signature for COAD (Figures 4A,B). To identify the best

predictive time point for the survival prediction model, we divided

the 1–3 years period into four periods and evaluated the prediction

results using receiver operating characteristic curve (ROC).We found

that the risk prediction result reached themaximumarea under curve

(AUC) value of 0.69 in the 912.5 days (Supplementary Figure S3).

Based on these three prognostic markers, 1-year and 3-years survival

risk prediction models of COAD were constructed and visualized

through the nomograph (Figure 4C). The results of the calibration

curve proved the stability of the risk prediction model (Figure 4D).

Moreover, the risk scoring model was constructed as follows: risk

score = -0.06 *HOXC8 + 0.37* IRF7 -0.13* CXCL13. The risk scores

of the training and test set samples were calculated and they were

divided into high risk and low risk groups based on the median risk

score. We found the obvious expression difference of the three

prognostic signature between the high/low-risk groups

(Figure 5A) and the patients of high-risk score had poor

prognosis (Figure 5B). The test set also showed the same

prediction results as the train set (Figures 5C,D). Moreover, in the

set of GSE38832 series, 122 samples were divided into two groups

according to the upper quartile of risk scores (Figure 6A). Similarly,

patients with high-risk scores had poorer OS (Figure 6B). All these

suggesting that the HOXC8, IRF7, and CXCL13 contributed to the

prediction of the patient’s prognosis for COAD and could be used for

clinical diagnosis.

Immune cell components relate to the
patient’s survival risk

Previous studies have shown that the immune

microenvironment plays an important role in the development

of tumors (Hinshaw and Shevde, 2019; Lei et al., 2020). To identify

the immune characteristics in the development of COAD, the

CIBERSORTx tool was used to calculate the immune cell

composition of samples for COAD and normal. For the

22 immune cell fraction matrices obtained, we found that

COAD patients had immune infiltration compared with normal

samples and there was no significant difference in immune

infiltration between the clinical stages of tumors (Figure 7A).

Further, the content of major histocompatibility complex

(MHC) was calculated. We found that the gene encoding

MHC-II molecule has a lower expression level in Stage IV, but

a higher expression level in stage I and II (Figure 7B), which may

explain the loss of immunogenicity in advanced patients of CAOD.

Moreover, we evaluate the correlation of the immune cell fraction

and risk score for patients of COAD.We found that the fraction of

resting CD4+ T cell, activated M CD4+ T cell, and Treg were

significantly related to the patient’s survival risk (Figures 7C–E).

FIGURE 6
External data verify the robustness and stability of prognostic markers. (A) The figure shows the risk scores, survival status, and expression of
prognostic markers for the GSE38832 set. (B) The Kaplan-Meier curves for the survival of high-risk and low-risk groups in the GSE38832 set.
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Based on the median of each immune cell component, the patients

of COAD were divided into two groups (high/low-fraction). For

the resting CD4+ T cell, the patients with low-fraction of resting

CD4+ T cell were related to poor patient’s prognosis (Figure 7F),

suggesting that resting CD4+ T cell may be a protective factor for

COAD. Taken together, all these indicate that immune infiltration

and tumor immunogenicity were closely related to the

development and patient’s survival of COAD.

FIGURE 7
Immune cell components relate to the patient’s survival risk. (A) The immune cell composition of each sample is displayed by heat map. The
column label represents the clinical stage of the sample. (B) The expression levels of genes encoding MHC II molecules in each clinical stage are
shown by boxplot. ANOVA is used to calculate statistical significance. (C–E) The correlation between the risk score and the fraction of the resting
CD4+ T cell, activated M CD4+ T cell, and Treg. (F) Kaplan-Meier curves for survival in high/low-fraction groups of the resting CD4+ T cell. Log-
rank test was used to calculate statistical significance.
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Discussion

In this work, we have revealed the metabolic and immune

characteristics in the development of COAD by integrating

multi-omics data analysis. We found that COAD patients with

different clinical stages had significant prognostic differences and

advanced patients had the worst prognosis. For each clinical

stage, stage-specific genes are identified and integrated analysis

reveals 33 up-regulated genes and 117 down-regulated genes in

all clinical stages. Combined with the somatic mutation data of

the patients, the mutation landscape of these genes in COADwas

revealed. Furthermore, stage-specific metabolic and immune

activity were revealed through functional enrichment analysis.

We found that energy metabolism (including glycolysis and

OXPHOS) contributed to the development of COAD and is

the basis for the changes in the physiological mechanism of each

clinical stage. By constructing transcriptional regulatory

networks, we have identified the key factors driving the

development of COAD by disturbing metabolic and immune

pathways. Moreover, we have identified three prognostic markers

(HOXC8, IRF7, and CXCL13) of COAD based on the Cox

regression algorithm and constructed a risk score model for

the assessment of patient survival risk. By combining the

patient’s immune infiltration and survival data, we found that

the resting CD4+ T cell can be used as a protective factor for the

patient.

Colorectal cancer is the fourth most deadly cancer in the

world, causing nearly 900,000 deaths each year (Dekker et al.,

2019). Since the disease only has symptoms in the late stages, it is

necessary to identify its development mechanism and potential

biomarkers. In recent years, there were majority studies on

biomarkers and prognostic markers of COAD (Pellino et al.,

2018; Patel et al., 2019). For example, Razi et al. revealed

DCLK1 as a marker of stem cell regulates tumor progression

and invasion from the perspective of ceRNA mechanism (Razi

et al., 2021). Pankaj Ahluwalia et al. simply used KM analysis and

Cox regression algorithm to identify prognostic markers of

COAD (Ahluwalia et al., 2019). We focused on the

development of tumors and were committed to revealing its

dynamic physiological mechanisms. The clinical stage of COAD

patients was revealed to be significantly related to the prognosis,

indicating that the clinical stage could partly reflect the

development of the tumor.

In the transcriptional regulatory network, we have identified

hub TFs for metabolism and immune regulation of COAD. The

ETS1 and AR were the driving factors both of metabolic and

immune pathway, suggesting that ETS1 and AR could be used as

potential biomarkers for COAD. We found that patients with

COAD have global immune cell infiltration compared with

normal tissues and the wide heterogeneity of immune cells in

each clinical stage, which is consistent with previous studies (Ge

et al., 2019).

Conclusion

In summary, our research revealed the metabolic and immune

characteristics in the development of COAD, and identified potential

biomarkers through biological network analysis. Three potential

prognostic markers were identified. Through immune infiltration

analysis, the immune landscape of COAD was revealed and the

resting CD4+ T cell was identified as a protective factor.
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