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Clonal population expansion of T cells during an immune response is dependent on the affinity of the T cell re-
ceptor (TCR) for its antigen [1]. However, there is little understanding of how this process is controlled transcrip-
tionally.We found that the transcription factor IRF4was induced in amanner dependent on TCR-affinity andwas
critical for the clonal expansion and maintenance of effector function of antigen-specific CD8+ T cells. We
performed a genome-wide expression profiling experiment using RNA sequencing technology (RNA-seq) to
interrogate global expression changes when IRF4 was deleted in CD8+ T cells activated with either a low or
high affinity peptide ligand. This allowed us not only to determine IRF4-dependent transcriptional changes
but also to identify transcripts dependent on TCR-affinity [2]. Here we describe in detail the analyses of the
RNA-seq data, including quality control, readmapping, quantification, normalization and assessment of differen-
tial gene expression. The RNA-seq data can be accessed from Gene Expression Omnibus database (accession
number GSE49929).

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).
and lymph node

equencer

CD8+ OT-1 T cells, activated
igh affinity peptide ligand

and used in accordance
the Walter and Eliza Hall
s Committee.
Direct link to deposited data

Deposited data can be accessed via: http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE49929.
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Experimental design, materials and methods

Sample preparation

Irf4−/− mice have been described in [3] and were maintained on a
C57BL/6 (Ly5.2+) background. They were crossed to OT-I mice, which
carry a MHCI-restricted TCR-transgene resulting in the expression of
an ovalbumin (OVA) peptide specific TCR [4]. Naive CD8+ T cells were
isolated from the spleens and lymph nodes of OT-I mice on either
a wild-type or Irf4−/− background and were activated for 72 h in vitro
with OVA peptide N4 (SIINFEKL, high affinity) or V4 (SIIVFEKL, low
affinity) [1] (1 ug/ml) in the presence of recombinant human IL-2
(100 U/ml; R&D Systems).
RNA sequencing

RNA was purified with an RNAeasy Plus Mini Kit according to the
manufacturer's protocol (Qiagen). The DNA fragments were ligated to
Illumina adaptors with blunt ends and were amplified, then were
sequenced with an Illumina HiSeq 2000 sequencer. Each sample had
two or three biological replicates. Paired-end 90 bp reads were generat-
ed from sequencing.
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Fig. 2. Mean–variance relationship estimated from the sequence data by voom. The hori-
zontal axis gives themean log2-CPM values of genes and the vertical axis gives the square
root of standard deviation of log2-CPM expression values of genes that is estimated from
the biological replicates of samples.
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Sequencing quality

Fig. 1 shows the distribution of base-calling Phred scores at each
base location in all the reads included in one of the libraries. Although
nucleotides located at the ends of reads were found to have a lower
sequencing quality than those in the middle of reads, the overall se-
quencing quality is high since the majority of read bases have a Phred
score greater than 30 (ie. probability of incorrect base calling is less
than 0.001). Other libraries included in this study were found to have
a sequencing quality similar to that shown in Fig. 1.

Read mapping and summarization

Sequence reads were mapped to mouse reference genome mm9
using the Subread aligner [5], which is capable of mapping both exonic
and exon-spanning reads. Mapped reads were summarized to NCBI
RefSeq genes using the featureCounts program [6]. Raw read counts
were generated for each gene in each library after summarization.

Gene filtering and normalization

Genes were removed from the analysis if they failed to achieve a
FPKM (fragments per kilobases per million mapped reads) value of 0.5
or greater in at least one library. Counts were converted to log2 counts
per million (CPM), quantile normalized and precision weighted using
voom [7]. Fig. 2 shows the relationship betweenmean expression values
of genes and their expression variations. Expression variations of genes
were estimated from the biological replicates. Fig. 3 shows the cluster-
ing of samples after normalization. Distinct cell types were clearly
separated and sample replicates were clustered together.

Differential expression analysis

Linearmodelswere fitted to genes using the Bioconductor R package
limma [8]. Precision weights for genes that were estimated by voom
were used in the linear modeling process. Empirical Bayes moderated
Fig. 1.Distribution of base-calling Phred scores at eachbase location in all the reads includ-
ed in one of the libraries. The horizontal axis gives the position of each nucleotide in the
read and the vertical axis shows a box plot of Phred scores of called nucleotides at each
read position. For each base position, the box shows the 25%, 50% and 75% quantiles of
the Phred scores. Scores more than 1.5 interquartile ranges from the median for that
position are plotted as individual points. Phred scores of read bases were retrieved from
the FASTQ input file using the qualityScores function in Bioconductor R package Rsubread.
t-statisticswere used to assess differential expression [9]. A false discov-
ery rate of 5% and a fold change cutoff of 2 fold were applied for calling
differentially expressed (DE) genes. Also, DE genes must have a FPKM
value of 8 or greater in one or both of two samples being compared.
DE genes found in comparing Irf4−/− with wild type in high-affinity
CD8+ T cells are highlighted in Fig. 4, inwhich genome-wide expression
changes between the two samples are shown.
Discussion

Here we provided a detailed description to the analyses we carried
out for the RNA-seq data generated in the original study of TCR-
affinity and IRF4-mediated transcriptional changes in CD8 T cells [2].
Raw sequence read data have been made publicly available and
Fig. 3.Unsupervised clustering of the samples bymulti-dimensional scaling. ‘WT’ and ‘KO’
denote wild-type and Irf4−/− OT-1 T cells, respectively. ‘N4’ and ‘V4’ denote stimulation
with high affinity peptide and stimulation with low affinity peptide, respectively.
Distances on the plot represent average absolute log2 fold change for the leading 500
genes that distinguish each pair of samples. This figure was generated using the plotMDS
function in Bioconductor R package limma.
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Fig. 4. Genome-wide expression changes between Irf4−/− and wild type in high-affinity
CD8+ OT-1 T cells. Significantly up-regulated and down-regulated genes are highlighted.
This figure was generated using the plotMA function in limma.
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software programs used in this analysis can also be freely downloaded
from Bioconductor [10] or SourceForge (http://subread.sourceforge.
net). These should enable the RNA-seq analysis results presented in
the original study to be readily reproduced. We also want to note that
the pipeline used in this data analysis has been found to be one of the
best-performing pipelines for RNA-seq analysis by the SEQC/MAQC III
Consortium in their recent efforts to benchmark RNA-seq technologies
[11].
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