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ABSTRACT
Objective To examine COVID- 19 vaccine effectiveness 
over six 7- day intervals after the first dose and assess 
underlying bias in observational data.
Design and setting Retrospective cohort study using 
Columbia University Irving Medical Center data linked to 
state and city immunisation registries.
Outcomes and measures We used large- scale 
propensity score matching with up to 54 987 covariates, 
fitted Cox proportional hazards models and constructed 
Kaplan- Meier plots for two main outcomes (COVID- 19 
infection and COVID- 19- associated hospitalisation). We 
conducted manual chart review of cases in week 1 in both 
groups along with a set of secondary analyses for other 
index date, outcome and population choices.
Results The study included 179 666 patients. We 
observed increasing effectiveness after the first dose of 
mRNA vaccines with week 6 effectiveness approximating 
84% (95% CI 72% to 91%) for COVID- 19 infection and 
86% (95% CI 69% to 95%) for COVID- 19- associated 
hospitalisation. When analysing unexpectedly high 
effectiveness in week 1, chart review revealed that 
vaccinated patients are less likely to seek care after 
vaccination and are more likely to be diagnosed with 
COVID- 19 during the encounters for other conditions. 
Secondary analyses highlighted potential outcome 
misclassification for International Classification of 
Diseases, Tenth Revision, Clinical Modification diagnosis, 
the influence of excluding patients with prior COVID- 19 
infection and anchoring in the unexposed group. Long- 
term vaccine effectiveness in fully vaccinated patients 
matched the results of the randomised trials.
Conclusions For vaccine effectiveness studies, 
observational data need to be scrutinised to ensure 
compared groups exhibit similar health- seeking behaviour 
and are equally likely to be captured in the data. While 
we found that studies may be capable of accurately 
estimating long- term effectiveness despite bias in early 
weeks, the early week results should be reported in every 
study so that we may gain a better understanding of the 
biases. Given the difference in temporal trends of vaccine 
exposure and patients’ baseline characteristics, indirect 
comparison of vaccines may produce biased results.

BACKGROUND
Randomised clinical phase III trials have 
demonstrated high efficacy for the four most 
commonly used COVID- 19 vaccines against 

symptomatic COVID- 19 infection, ranging 
from 66.9% and 70.4% for Ad26.COV2.S 
(Johnson & Johnson- Janssen) and ChAdOx1 
(AstraZeneca) to 94.1% and 94.6% for 
BNT162b2 (Pfizer- BioNTech) and mRNA- 
1273 (Moderna) vaccines.1–4 Their rapid 
approval and widespread use require robust 
postmarketing studies that leverage large 
sample size, heterogeneous populations and 
longer follow- up available in observational 
data.

There have been recent observational 
studies which have shown effectiveness 
similar to the randomised clinical trials 
(RCTs) across the globe, both test negative 
and cohort,5–12 followed by studies across 
different patient populations, variants and 
number of doses.13–17

Nevertheless, the challenges associated 
with the use of observational data such as 
incomplete data capture, outcome misclassifi-
cation and appropriate comparator sampling 
can undermine the results of the studies 
if such biases are not accounted for.18 For 
COVID- 19 vaccines, questions associated with 
vaccine status misclassification,19 matching 
vaccinated and unvaccinated populations,6 
addressing disease risk factor confounding 
and ascertainment bias20 21 and others were 
raised.

One of such questions is COVID- 19 vaccine 
effectiveness during the first 2 weeks following 

STRENGTHS AND LIMITATIONS OF THIS STUDY
 ⇒ This study thoroughly investigates weekly COVID- 19 
vaccine effectiveness using methods to reduce po-
tential confounding (large- scale propensity score 
matching, negative control calibration) accompa-
nied by manual chart review of the cases in week 1.

 ⇒ The study includes a range of secondary analyses 
for different patient populations, anchoring strate-
gies and outcome definitions.

 ⇒ The study was carried out using routinely collected 
clinical practice data, which represents real- world 
patients, but also implies a risk of misclassification.
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the first dose. Studies have shown contradicting results for 
Pfizer- BioNTech vaccine with effectiveness ranging from 
moderate effectiveness of 52%3 to very high effectiveness 
of 92.6%.22 Similarly, a recent study showed an unex-
plained high effectiveness of Janssen vaccine during week 
1.23 Other studies simply excluded the first week(s) from 
the time at risk.9 13 24–26 While week 1 lack of effectiveness 
has been suggested as a metric for lack of confounding 
in the long- term vaccine effectiveness studies, the reasons 
for high effectiveness and its impact on the validity of the 
conclusions regarding the overall effectiveness remain 
unclear.9

The goal of this study was to examine COVID- 19 vaccine 
effectiveness over six 7- day intervals after the first dose to 
assess underlying bias associated with the use of obser-
vational data for short- term vaccine effectiveness and 
its impact on long- term vaccine effectiveness estimates. 
We employed large- scale propensity score matching and 
many negative controls to reduce bias and leveraged a 
range of secondary analyses as well as manual review of 
the COVID- 19 infection cases in week 1 to examine the 
health- seeking behaviour of vaccinated and unvaccinated 
patients.

METHODS
Main design
For this retrospective observational cohort study, we used 
electronic health records (EHR) from the Columbia 
University Irving Medical Center (CUIMC) database 
(online supplemental appendix 1), which has an ongoing 
automated connection to New York City and state public 
health department vaccine registries and includes all 
within- state vaccinations for our population. The data 
were translated to the OMOP Common Data Model 
version 5 as was used in multiple studies.27

For our main analysis, we studied two mRNA vaccines 
(Pfizer- BioNTech or Moderna). The exposed group 
included patients indexed on the first dose of one of the 
corresponding vaccines with no prior COVID- 19 infection 
and no previous exposure to other COVID- 19 vaccines. 
For the unexposed group, we selected unvaccinated 
patients and set their index date to a date (not neces-
sarily with any medical event) that matched the index 
date of one of the exposed group participants. Both the 
exposed and unexposed groups had at least 365 days of 
prior observation and primarily resided in New York City 
according to their zip code. Patients who did not reside in 
New York were excluded from the study to ensure reliable 
vaccination data capture.

Outcomes of interest included (a) COVID- 19 infection 
defined as a positive COVID- 19 test (reverse transcrip-
tase PCR assay) or a diagnostic code of COVID- 19 and 
(b) COVID- 19 hospitalisation defined as an inpatient 
visit associated with a COVID- 19 positive test or diag-
nosis within 30 days prior or during the visit. On further 
examination of the results, we added two other outcomes: 
(a) COVID- 19 positive test only and (b) COVID- 19 

hospitalisation associated with a positive COVID- 19 test. 
Design overview is provided in online supplemental 
appendix 2; code lists and links to phenotype definitions 
are provided in online supplemental appendix 3.

We calculated vaccine effectiveness during six consec-
utive 7- day intervals after the first dose. Within each 
interval, patients were followed up until an outcome, 
end of the period or death, whichever came earlier. Addi-
tionally, given the results for vaccine effectiveness during 
week 1 following the first dose, we conducted a chart 
review for patients with a COVID- 19- positive test recorded 
in the above- mentioned period. We reviewed all cases for 
the vaccinated population as well as a random sample of 
the cases in the unvaccinated population and extracted 
the main complaint, COVID- 19 history, including symp-
toms (fever, shortness of breath, sore throat, cough, etc.), 
severity, time from the first symptom to encounter and 
COVID- 19 exposure.

Secondary analyses
We also conducted a set of secondary analyses. First, given 
that the published studies focused on patients without 
prior COVID- 19 infection, we studied all eligible patients 
regardless of their previous COVID- 19 status.

As the strategy for unvaccinated group index date 
selection (anchoring) has been reported to influence 
incidence of outcomes and baseline characteristics,28 29 
we additionally tested unexposed patients indexed on a 
healthcare encounter matching the index date of one of 
the exposed group participants within 3 days corridor, 
with at least 365 days of prior observation located in New 
York.

Finally, we assessed vaccine effectiveness in patients with 
at least one dose of a COVID- 19 vaccine and in fully vacci-
nated patients over all available follow- up to compare the 
estimates to the results of the RCTs. The latter was defined 
as 14 days after the second dose of Pfizer- BioNTech or 
Moderna vaccines or first dose of Janssen vaccine. For 
each comparison we estimated hazard ratios (HRs) and 
constructed Kaplan- Meier plots as described below.

Statistical methods
For each analysis, we fitted a lasso regression model to 
calculate propensity scores and match patients in each 
exposed and unexposed group with a 1:1 ratio. For 
large- scale propensity score model we used all demo-
graphic information, index year and month, as well as the 
number of visits, condition and drug groups, procedures, 
device exposures, laboratory and instrumental tests and 
other observations over long- term period (prior year) 
and short- term period (prior month).30 31

For each outcome, we fitted a Cox proportional hazards 
model to estimate HRs and constructed Kaplan- Meier 
plots. Empirical calibration based on the negative control 
outcomes was used to identify and minimise any potential 
residual confounding by calibrating HRs and 95% confi-
dence intervals (CIs).32 33 Vaccine effectiveness was calcu-
lated as 100%×(1−HR).

https://dx.doi.org/10.1136/bmjopen-2022-061126
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All analyses were supported by the OHDSI Infrastruc-
ture (CohortMethod package available at https://ohdsi. 
github.io/CohortMethod/, FeatureExtraction available 
at https://ohdsi.github.io/FeatureExtraction/ and the 
Cyclops package for large- scale regularised regression34 
available at https://ohdsi.github.io/Cyclops).

Diagnostics
We used multiple sources of diagnostics to estimate 
potential bias and confounding following best practices 
for evidence generation.35 First, we examined covariate 
and propensity score balance prior to proceeding with 
outcome modelling and effect estimation to ensure that 
we have enough sample size and to control for potential 
observed confounding.35 We plotted propensity scores to 
investigate the overlap in patient populations at the base-
line and examined the balance of all baseline character-
istics to determine if the exposed and unexposed cohorts 
were imbalanced at the baseline and after propensity 
score matching. Exposed and unexposed cohorts were 
said to be balanced if the standardised difference of 
means of all covariates after propensity score matching 
was less than 0.1.36

For negative control calibration, we used 93 negative 
controls (online supplemental appendix 4) with no known 
causal relationship with the COVID- 19 vaccines. Negative 
controls were selected based on a review of existing liter-
ature, product labels and spontaneous reports and were 
reviewed by clinicians.37 We assessed residual bias from 
the negative control estimates.

Patient and public involvement
No patient was involved.

RESULTS
Patient characteristics
In total, we identified 179 666 patients with at least 
one dose of COVID- 19 vaccine in January to May 2021: 
121 771 patients for Pfizer- BioNTech, 52 728 for Moderna 
and 5167 for Janssen (table 1). The sample included 
patients from all age groups, with or without comorbidi-
ties captured in inpatient and outpatient settings.

We observed that unexposed patients (table 1) were 
on average younger and had fewer comorbidities and 
less exposure to various drugs prior to matching. We 
were able to achieve balance on all covariates (up to 
54 987 covariates, standardised difference of means less 
than 0.1) with propensity score matching. Figure 1 pres-
ents the covariate balance and propensity score balance 
plots showing that anchoring unvaccinated patients on a 
date allowed us to achieve better balance compared with 
anchoring patients on a visit.

Patients vaccinated with Pfizer- BioNTech had a similar 
distribution of baseline characteristics compared with the 
patients vaccinated with Moderna but differed from the 
patients vaccinated with Janssen. On average, the latter 
group was younger, had more patients with race recorded 

as Black and had more comorbidities such as diabetes 
mellitus or hypertensive disorder (table 1).

When investigating the vaccination pathways, we discov-
ered that 112 963 patients (93% of patients with at least 
one dose of Pfizer- BioNTech) had two doses of Pfizer- 
BioNTech and 42 384 (80%) patients had two doses of 
Moderna. We found 344 and 291 patients with three doses 
of the corresponding vaccines and 440 patients having 
mixed Pfizer- BioNTech, Moderna and Janssen vaccines in 
different combinations.

Within our database, Moderna was administered early 
on with a peak in January 2021 (figure 2), while Pfizer- 
BioNTech and Janssen vaccinations peaked in April. It 
was reflected in the follow- up time with Moderna patients 
having on average longer follow- up with some individuals 
having up to 5.8 months of postobservation.

Main week-by-week effectiveness analysis
Figure 3 shows vaccine effectiveness over six 7- day inter-
vals for patients vaccinated with at least one dose of Pfizer- 
BioNTech or Moderna (160 114 patients) compared with 
unvaccinated patients (115 689). Due to the small sample 
size, we were not able to obtain stable week- by- week esti-
mates for Janssen.

While week 1 was characterised by unexpectedly high 
effectiveness (58%; 95% CI 45% to 69% against COVID- 19 
infection and 72%; 95% CI 57% to 83% against COVID- 
19- associated hospitalisation), we observed plausible 
increasing effectiveness beginning week 2 with the effec-
tiveness on week 6 approximating 84% (95% CI 72% to 
91%) for COVID- 19 infection and 86% (95% CI 69% to 
95%) for COVID- 19- associated hospitalisation.

We then looked at the week 1 COVID- 19 infection cases 
to explain high effectiveness (figure 4). A chart review of 
week 1 positive COVID- 19 tests revealed a high proportion 
of unvaccinated patients seeking care related to COVID- 19 
symptoms or COVID- 19 exposure (85% in total) compared 
with only 61% of vaccinated patients. Initial healthcare 
encounters in vaccinated population were oftentimes 
related to other medical reasons such as comorbid condi-
tions or surgeries (39% compared with 14% in unvaccinated 
population, online supplemental appendix 5). Moreover, an 
observed gap between symptom onset and an initial health-
care encounter was more pronounced in the vaccinated 
cohort as the patients attributed their symptoms to temporal 
vaccine side effects as opposed to COVID- 19 infection.

When looking at the severity of COVID- 19 symptoms at 
the initial encounter during week 1 after the index date, 
we observed that the unvaccinated cohort had a higher 
proportion of asymptomatic cases (39% compared with 
18% in the vaccinated cohort) while the vaccinated popu-
lation had more severe or mild cases (34% and 48%, 
respectively).

Secondary analysis
As cohort analysis allows us to construct Kaplan- Meier 
curves to assess effectiveness over time, we also looked 
at the effectiveness during the year after the first dose 
(online supplemental Appendices 6- 8). We observed 

https://ohdsi.github.io/CohortMethod/
https://ohdsi.github.io/CohortMethod/
https://ohdsi.github.io/FeatureExtraction/
https://ohdsi.github.io/Cyclops
https://dx.doi.org/10.1136/bmjopen-2022-061126
https://dx.doi.org/10.1136/bmjopen-2022-061126
https://dx.doi.org/10.1136/bmjopen-2022-061126
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similar trends with all three vaccines being less effective 
during the first month after the first dose. After that, Pfizer- 
BioNTech and Moderna were highly effective against both 
COVID- 19 infection and COVID- 19- associated hospital-
isation, while Janssen vaccine exhibited a wide range of 
effectiveness (online supplemental appendix 9).

The results for fully vaccinated patients with time at risk 
starting at the full vaccination matched the results of the 
clinical trials for corresponding vaccines (detailed esti-
mates are provided in online supplemental Appendices 10 
and 11).

Our initial design included a positive COVID- 19 test or 
a diagnostic code as an outcome. On further case exam-
ination, we discovered that COVID- 19 diagnostic codes in 
the CUIMC data were partially assigned to the patients with 
negative COVID- 19 tests on or immediately following the 
date of diagnosis. In that case, International Classification 
of Diseases, Tenth Revision, Clinical Modification (ICD- 
10- CM) code U07.1 ‘Disease caused by Severe acute respira-
tory syndrome coronavirus 2’ was entered in the system for 
billing purposes (COVID- 19 molecular or antibody tests) 
or for COVID- 19 sequelae. We, therefore, focused on posi-
tive COVID- 19 test only for our primary outcome, which 
led to higher effectiveness for all vaccines compared with 
using both positive test and diagnosis (online supplemental 
appendix 9).

Finally, exclusion of patients with prior COVID- 19 infec-
tion in our main analysis resulted in higher effectiveness. 
Inclusion of patients regardless of their prior COVID- 19 
status led to a small decrease in observed effectiveness 
(online supplemental appendix 12) for both COVID- 19 
infection and hospitalisation in patients vaccinated with 
Moderna or Janssen.

DISCUSSION
In this retrospective cohort study, we examined the effec-
tiveness of COVID- 19 mRNA vaccines over six 7- day inter-
vals after the first dose. We scrutinised the effectiveness of 
the mRNA vaccines following the first dose and confirmed 
the findings of moderate vaccine effectiveness during the 
first 2 weeks. For week 1 following the first dose we discov-
ered previously uncaptured differential biases in vaccinated 
and unvaccinated populations resulting in high vaccine 
effectiveness. Other researchers suggested that the differ-
ence between vaccinated and unvaccinated groups can 
be mitigated by adjusting for previous healthcare utilisa-
tion such as number of visits before baseline, comorbidi-
ties or prior vaccination behaviour.6 13 24 Nevertheless, the 
confounding we observed remains even on controlling for 
a large number of covariates including those above.

Vaccination directly influenced the attitude of patients 
towards their symptoms, causing a delay in seeking care 
and a higher symptom severity threshold needed to seek 
care or get tested. On contrary, vaccinated patients in other 
studies had higher rates of testing compared with unvac-
cinated.20 38 This indicates that patients’ attitude towards 
risk of infection and testing may vary geographically and 
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over time. Similarly, frequency of testing may depend on 
local policies and practices.

In unvaccinated patients, mild COVID- 19- related symp-
toms were the reason to seek care; in vaccinated patients 
such cases were mainly captured on seeking outpatient 
and inpatient care for other conditions.

For example, vaccinated patients could be hospitalised 
for elective surgery or delivery and be tested positive for 
COVID- 19 on the day of admission or later on. Differen-
tial symptom severity was previously reported for other 
vaccines39 and may affect any observational study that 
uses hospitalisation as a surrogate for COVID- 19 severity 
as it can be hard to accurately identify the main reason for 
hospitalisation in structured data.

Previous research suggested that vaccinated patients 
do not have an increase in the number of cases imme-
diately following vaccination as they are unlikely to get 
vaccinated if sick.9 40 Our review of the cases in week 1 
adds to ‘healthy vaccinee’ effect by showing that vacci-
nated patients are more likely to attribute their symptoms 
to common vaccine side effects and, therefore, are less 
likely to seek care.

Nevertheless, even when this differential bias is present, 
the estimates of the COVID- 19 vaccine effectiveness in 
subsequent weeks still match the results of the RCTs. This 
indicates that high effectiveness during week 1 following 
vaccination does not necessarily undermine the estimates 
of subsequent vaccine effectiveness. On the other hand, 
we argue against using estimates of vaccine effectiveness 

within a short period after the vaccination as a negative 
control as the differences between the groups observed in 
this study are likely to be time variant and may diminish 
over time.41

Our secondary analyses discovered several challenges 
and potential biases that must be accounted for when 
conducting vaccine effectiveness studies on observa-
tional data. First, we observed that outcome definitions 
are prone to measurement error, which has not been 
studied thoroughly. Some of the published studies 
used ICD- 10 or ICD- 10- CM codes to identify COVID- 19 
outcomes.42–44 We found that the specifics of data capture 
and billing processes were associated with some patients 
having assigned COVID- 19 diagnosis codes for billing 
for tests rather than as an indicator of active disease. 
Another reason for assigning the code was COVID- 19 
sequela, where the actual date of COVID- 19 infection 
could have been anywhere from 6 months to a couple 
of weeks in the past. Some researchers have previously 
reported high positive predictive value of ICD- 10 diag-
nostic codes for COVID- 19, which points out that index 
date misclassification should be scrutinised in each insti-
tution participating in the analysis to make valid infer-
ences.45 46

Second, inclusion or exclusion of patients with prior 
COVID- 19 infection influenced estimated effective-
ness. We observed that inclusion of patients with prior 
COVID- 19 leads to lower effectiveness for all vaccines 
regardless of the outcome definition.

Figure 1 Diagnostics for the effectiveness study comparing the cohort vaccinated with at least one dose of Pfizer, Moderna or 
Janssen COVID- 19 vaccines and unvaccinated cohort anchored on a date or on a visit: (A) covariate balance before and after 
propensity score matching, (B) preference score balance, and (C) effect of negative control calibration displaying effect estimate 
and SE. In (A), each dot represents the standardised difference of the means for a single covariate before and after stratification 
on the propensity score. In (C), each blue dot is a negative control. The area below the dashed line indicates estimates with 
p<0.05 and the orange area indicates estimates with calibrated p<0.05.
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Third, an appropriate index event (anchor) for the 
unvaccinated cohort must be chosen to represent a 
counterfactual for vaccination.29 47 In our study, we 
confirmed that an arbitrary date represents a better 
counterfactual than a medical visit for COVID- 19 vacci-
nation, which is reflected in propensity score balance and 
covariate balance. Nevertheless, other institutions may 
have different vaccination pathways such as vaccination 
on discharge, which can make a visit a better counter-
factual for vaccination. More generally, completeness of 
vaccination data capture is a crucial feature that influ-
ences the robustness of the study. While CUIMC data 
ensure complete exposure capture by linking EHR to the 
city and state registries, the researchers should exhibit 
caution with conducting studies on the data sources with 
unknown vaccination capture.

In general, our findings support the RCTs and previously 
published postmarketing studies for all three vaccines. 
Larger sample size for patients vaccinated with COVID- 19 
mRNA vaccines allowed us to have more power, which 
resulted in overlapping yet narrower CIs compared with the 
RCTs. On the other hand, our study had fewer patients with 
the Janssen vaccine, which resulted in wider yet overlap-
ping intervals compared with the Janssen’s vaccine RCT.1 2 7 
Nevertheless, an indirect comparison of these vaccines may 
not be accurate due to the differences in the populations 

we observed in our study. First, patients vaccinated with 
Janssen were substantially different from mRNA patients: 
on average, they were younger, had a higher proportion of 
patients with race recorded as Black and had more comor-
bidities. Therefore, comparative effectiveness studies of 
Janssen and mRNA vaccines require robust techniques 
such as large- scale propensity matching to ensure valid 
comparison. Second, while Moderna and Pfizer patients 
had similar baseline characteristics, the temporal distri-
bution of vaccinations in CUIMC data differed. Moderna 
vaccine was administered early on in 2021 with the peak 
in January, while Pfizer vaccination peaked in April. Given 
the varying baseline COVID- 19 prevalence, a comparison 
of mRNA vaccines requires matching patients on calendar 
month to account for this potential bias. These vaccines 
also had different administration pathways in our system. 
As opposed to Pfizer vaccine, which was administered at 
the CUIMC/New York- Presbyterian sites to all patients over 
a prolonged period, Moderna vaccination was performed 
elsewhere and recorded for actively observed patients. 
Such patients were more likely to get tested or receive care 
outside of our healthcare system.

Limitations
Due to observational nature of the study, the data sources 
may not have complete capture of patient conditions 

Figure 2 Distribution of vaccination month for COVID- 19 vaccines. Black dots represent the number of incident COVID- 19 
cases (defined as a positive test) in each month.
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as the patients could seek care outside of the hospital 
system. While our outcome phenotype algorithms may 
be subject to measurement error, we provided additional 
analyses with alternative outcome definitions. Exposure 
misclassification was mitigated by having free and avail-
able COVID- 19 testing and COVID- 19 vaccination at the 
CUIMC/New York- Presbyterian sites as well as by having 
data capture from New York City and state immunisation 
registries. Along with availability of testing, COVID- 19 base-
line infection rate difference was mitigated by matching 

the exposed and unexposed groups on the index date and 
using the index month as a covariate in propensity score 
model. We attempted to address potential differences 
between exposed and unexposed groups by selecting a 
large number of covariates in our propensity score model 
such as number of visits, procedure and drug utilisation, 
prior vaccine behaviour, race and others. Nevertheless, 
we did not have data for social interactions, adherence to 
preventive measures and policies, which could affect the 
likelihood of COVID- 19 infection and testing.

Figure 3 Effectiveness of Pfizer- BioNTech and Moderna vaccines over six 7- day intervals after first dose; % and 95% CI for 
COVID- 19 infection (A) and COVID- 19 hospitalisation (B).

Figure 4 Chart review of COVID- 19 cases (defined as a positive COVID- 19 test) during week 1, vaccinated and unvaccinated 
patients.
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The results of the study may not be generalisable to 
other countries or settings with different vaccine admin-
istration practices and policies. Finally, the study period 
did not allow us to stratify the results by COVID- 19 vari-
ants, which limits the generalisability of findings to other 
variants.

CONCLUSIONS
Observational data can be used to ascertain vaccine effec-
tiveness if potential biases such as exposure and outcome 
misclassification are accounted for, and appropriate 
anchoring event is selected. When analysing vaccine effec-
tiveness researchers need to scrutinise the data to ensure that 
compared groups exhibit similar health- seeking behaviour 
and are equally likely to be captured in the data and report 
their findings. Specifically for COVID- 19 vaccines, an 
arbitrary date for the index date in unvaccinated patients 
represents a better counterfactual for vaccination than a 
healthcare encounter. Effectiveness over the first week(s) 
after the vaccination should be reported even though low 
or high effectiveness immediately after the vaccination 
may not invalidate study findings. Given the difference in 
temporal trends of vaccine exposure and baseline charac-
teristics, there is a need for large- scale direct comparison of 
vaccines to examine comparative effectiveness.
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