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Abstract  42 
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) transmission is 43 
uncontrolled in many parts of the world, compounded in some areas by higher 44 
transmission potential of the B1.1.7 variant now seen in 50 countries. It is unclear 45 
whether responses to SARS-CoV-2 vaccines based on the prototypic strain will be 46 
impacted by mutations found in B.1.1.7. Here we assessed immune responses following 47 
vaccination with mRNA-based vaccine BNT162b2. We measured neutralising antibody 48 
responses following a single immunization using pseudoviruses expressing the wild-type 49 
Spike protein or the 8 amino acid mutations found in the B.1.1.7 spike protein. The 50 
vaccine sera exhibited a broad range of neutralising titres against the wild-type 51 
pseudoviruses that were modestly reduced against B.1.1.7 variant. This reduction was 52 
also evident in sera from some convalescent patients.  Decreased B.1.1.7 neutralisation 53 
was also observed with monoclonal antibodies targeting the N-terminal domain (9 out of 54 
10), the Receptor Binding Motif (RBM) (5 out of 31), but not in neutralising mAbs 55 
binding outside the RBM.  Introduction of the E484K mutation in a B.1.1.7 background 56 
to reflect newly emerging viruses in the UK led to a more substantial loss of neutralising 57 
activity by vaccine-elicited antibodies and mAbs (19 out of 31) over that conferred by 58 
the B.1.1.7 mutations alone. E484K emergence on a B.1.1.7 background represents a 59 
threat to the vaccine BNT162b.  60 
 61 

Introduction 62 

The outbreak of a pneumonia of unknown cause in Wuhan, China in December 2019, 63 

culminated in a global pandemic due to a novel viral pathogen, now known to be SARS-CoV-64 

21. The unprecedented scientific response to this global challenge has led to the rapid 65 

development of vaccines aimed at preventing SARS-COV-2 infection and transmission. 66 

Continued viral evolution led to the emergence and selection of SARS-CoV-2 variants with 67 

enhanced infectivity/transmissibility2,3 4,5 and ability to circumvent drug6 and immune 68 

control7,8. 69 

SARS-CoV-2 vaccines have recently been licensed that target the spike (S) protein, 70 

either using mRNA or adenovirus vector technology with protection rates ranging from 62 to 71 

95%9-11. The BNT162b2 vaccine encodes the full-length trimerised S protein of SARS CoV-2 72 

and is formulated in lipid nanoparticles for delivery to cells12. Other vaccines include the 73 

Moderna mRNA-1273 vaccine, which is also a lipid nanoparticle formulated S glycoprotein13 74 

and the Oxford-AstraZeneca ChAdOx1 nCoV-19 vaccine (AZD1222) which is a replication-75 

deficient chimpanzee adenoviral vector ChAdOx1, containing the S glycoprotein14. The 76 

duration of immunity conferred by these vaccines is as yet unknown. These vaccines were 77 

designed against the Wuhan-1 isolate discovered in 2019.  Concerns have been raised as to 78 

whether these vaccines will be effective against newly emergent SARS-CoV-2 variants, such 79 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 15, 2021. ; https://doi.org/10.1101/2021.01.19.21249840doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.19.21249840
http://creativecommons.org/licenses/by-nc-nd/4.0/


as B.1.1.7 (N501Y.V1), B.1.351 (N501Y.V2) and P1 (N501Y.V3) that originated in the UK, 80 

South Africa, and Brazil and are now being detected all over the world15-17.  81 

In clinical studies of the Pfizer-BioNTech BNT162b2 vaccine, high levels of 82 

protection against infection and severe disease were observed after the second dose10. 83 

Neutralisating geometric mean titre (GMT) was below cut-off in most cases after prime dose, 84 

but as anticipated, titres substantially increased after boost immunization18. In older adults 85 

mean GMT was only 12 in a preliminary analysis of 12 participants19 and increased to 109 86 

after the second dose. 87 

In this study, we assess antibody responses against the the B.1.1.7 variant after 88 

vaccination with the first and second doses of BNT162b2, showing modest reduction in 89 

neutralisation against pseudoviruses bearing B.1.1.7 Spike mutations (�H69/V70, �144, 90 

N501Y, A570D, P681H, T716I, S982A and D1118H). In addition, by using a panel of human 91 

neutralising monoclonal antibodies (mAbs) we show that the B.1.1.7 variant can escape 92 

neutralisation mediated by most NTD-specific antibodies tested and by a fraction of RBM-93 

specific antibodies. Finally, we show that the recent emergence and transmission of B.1.1.7 94 

viruses bearing the Spike E484K mutation results in significant additional loss of 95 

neutralisation by BNT162b2 mRNA-elicited antibodies, convalescent sera and mAbs.  96 

 97 

Results 98 

Thirty seven participants had received the first dose of BNT162b2 mRNA vaccine 99 

three weeks prior to blood draw for serum and peripheral blood monocnulear cells (PBMC) 100 

collection. Median age was 63.5 years (IQR 47-84) and 33% were female. Serum IgG titres to 101 

Nucleocapsid (N) protein, S and the S receptor binding domain (RBD) were assayed by 102 

particle based flow cytometry on a Luminex analyser (Extended Data Fig. 1a). These data 103 

showed S and RBD antibody titres much higher than in healthy controls, but lower than in 104 

individuals recovered from COVID-19 and titres observed in therapeutic convalescent 105 

plasma. The raised N titres relative to control could be the result of non-specific cross 106 

reactivity that is increased following vaccination. However, the antibody response was 107 

heterogeneous with almost 100-fold variation in IgG titres to S and RBD across the 108 

vaccinated participants.  109 

Using lentiviral pseudotyping we studied WT (wild type bearing D614G) and mutant 110 

B.1.1.7 S proteins (Fig. 1a) on the surface of enveloped virions in order to measure 111 

neutralisation activity of vaccine-elicited sera. This system has been shown to give results 112 
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correlating with replication competent authentic virus20,21. Eight out of 37 participants 113 

exhibited no appreciable neutralisation against the WT pseudotyped virus following the first 114 

dose of vaccines. The vaccine sera exhibited a range of inhibitory dilutions giving 50% 115 

neutralisation (ID50) (Fig. 1c-d). The GMT against wild type (WT) following the second 116 

dose of vaccine was an order of magnitude higher than after the first dose (318 vs 77) (Fig 1c-117 

f).There was correlation between full length S IgG titres and serum neutralisation titres 118 

(Extended Data Fig. 1b). A broad range of T cell responses was measured by IFN gamma 119 

FluoroSpot against SARS-CoV-2 peptides in vaccinees. These cellular responses did not 120 

correlate with IgG S antibody titres (Extended Data Fig. 1c-d).  121 

We then generated mutated pseudoviruses carrying S protein with mutations N501Y, 122 

A570D and the H69/V70 deletion. We observed no reduction in the ability of sera from 123 

vaccinees to inhibit either WT or mutant virus (Extended Data Fig. 2a, b). A panel of sera 124 

from ten recovered individuals also neutralised both wild type and the mutated viruses 125 

similarly (Extended Data Fig. 2c). We next completed the full set of eight mutations in the S 126 

protein present in B.1.1.7  variant (Fig. 1a), �H69/V70, �144, N501Y and A570D in the S1 127 

subunit and  P681H, T716I, S982A and D1118H in the S2 subunit. All constructs also 128 

contained D614G. We found that among 29 individuals with neutralisation activity against the 129 

WT three weeks after receiving a single dose of the the BNT162b2 mRNA vaccine, 20 130 

showed evidence of reduction in efficacy of antibodies against the B.1.1.7 mutant (Fig. 1b-c, 131 

Extended Data Fig. 3). The mean fold change reduction in sensitivity to first dose vaccine 132 

sera of B.1.1.7 compared to WT was approximately 3.2 (SD 5.7). The variation is likely due 133 

to the low neutralisation titres following first dose. Following the second dose, GMT was 134 

markedly increased compared with first dose titres, and the mean fold change had reduced to 135 

1.9 (SD 0.9) (Fig. 1d-e). Amongst sera from 27 recovered individuals, the GMT at 50% 136 

neutralisation was 1334 for WT, significantly higher than post second dose vaccination (Fig. 137 

1f-g). The fold change in ID50 for neutralisation of B.1.1.7 versus wild type (D614G) was 4.5 138 

(Fig. 1f-g and Extended Data Fig. 4). 139 

B.1.1.7 with spike E484K mutation and neutralization by vaccine and convalescent sera 140 

The E484K substitution (Fig. 2a) is antigenically important, and has been reported as an 141 

escape mutation for several monoclonal antibodies including C121, C144, REGN10933  and 142 

Ly-CoV555 22. E484K is also known to be present in the B.1.351 (501Y.V2) and P.1 143 

(501Y.V3) lineages in combination with amino acid replacements at N501 and K417. As of 144 
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10th Feb 2021, twenty three English and two Welsh B.1.1.7 sequences from viral isolates 145 

contained the E484K substitution (Fig. 2b). The number of B.1.1.7 sequences has been 146 

increasing since the start of December 2020 (Fig. 2c). Phylogenetic analysis suggests that 147 

there have been multiple independent acquisitions, with one lineage appearing to expand over 148 

time, indicating active transmission (Fig. 2b). This has resulted in Public Health England 149 

naming this as a variant of concern (VOC 202102/02)23, triggering enhanced public health 150 

measures.  There are as yet no phenotypic data on the sensitivity to neutralisation for this 151 

virus or its spike protein. 152 

We therefore generated pseudoviruses bearing B.1.1.7 spike mutations with or without 153 

additional E484K and tested these against sera obtained after first and second dose mRNA 154 

vaccine as well as against convalescent sera. Following second dose, we observed a 155 

significant loss of neutralising activity for the pseudovirus with B.1.1.7 spike mutations and 156 

E484K (Fig 3d-e). The mean fold change for the E484K B.1.1.7 Spike was  6.7 compared to  157 

1.9 for B.1.1.7, relative to WT (Fig. 3a-c). Similarly when we tested a panel of convalescent 158 

sera with a range of neutralisation titres (Fig. 1f-g), we observed additional loss of activity 159 

against the mutant B.1.1.7 spike with E484K, with fold change of 11.4 relative to WT (Fig. 160 

3f-g).  161 

B.1.1.7 variant escape from NTD- and RBM-specific mAb-mediated neutralization. 162 

To investigate the role of the full set of mutations in NTD, RBD and S2 present in the B.1.1.7 163 

variant, we tested 60 mAbs isolated from 15 individuals that recovered from SARS-CoV-2 164 

infection in early 2020 with an in-vitro pseudotyped neutralization assay using VeroE6 target 165 

cells expressing Transmembrane protease serine 2 (TMPRSS2, Extended Data Table 1). We 166 

found that 20 out of 60 (33.3%) mAbs showed a greater than 2-fold loss of neutralising 167 

activity of B.1.1.7 variant compared to WT SARS-CoV-2 (Fig. 4a,b and Extended Data Fig. 168 

5). Remarkably, the B.1.1.7 mutant virus was found to fully escape neutralization by 8 out of 169 

10 NTD-targeting mAbs (80%), and partial escape from an additional mAb (10%) (Fig. 4c). 170 

We previously showed that the deletion of residue 144 abrogates binding by 4 out of 6 NTD-171 

specific mAbs tested, possibly accounting for viral neutralization escape by most NTD-172 

specific antibodies24. Of the 31 RBM-targeting mAbs, 5 (16.1%) showed more than 100-fold 173 

decrease in B.1.1.7 neutralization, and additional 6 mAbs (19.4%) had a partial 2-to-10-fold 174 

reduction (Fig. 4d). Finally, all RBD-specific non-RBM-targeting mAbs tested fully retained 175 

B.1.1.7 neutralising activity (Fig. 4e).  176 
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To address the role of B.1.1.7 N501Y mutation in the neutralization escape from 177 

RBM-specific antibodies, we tested the binding of 50 RBD-specific mAbs to WT and N501Y 178 

mutant RBD by biolayer interferometry (Fig. 4f and Extended Data Fig. 6). The 5 RBM-179 

specific mAbs that failed to neutralize B.1.1.7 variant (Fig. 4d) showed a complete loss of 180 

binding to N501Y RBD mutant (Fig. 4g-h), demonstrating a role for this mutation as an 181 

escape mechanism for certain RBM-targeting mAbs.  182 

 The decreased neutralising activity of the immune sera from vaccinees and 183 

convalescent patients against B.1.1.7, but not against �69/70-501Y-570D mutant (Fig. 1 and 184 

Extended Data Fig. 2), could be the result of a loss of neutralising activity of both RBD- and 185 

NTD-targeting antibodies, and suggests that the key mutation is �144. RBD antibodies 186 

against N501Y could play a role in decreased neutralisation by sera, with the overall impact 187 

possibly modulated by other mutations present in B.1.1.7, as well as the relative dominance 188 

of NTD versus RBM antibodies in polyclonal sera. 189 

To assess the effect of E484K on this panel of mAbs we generated a SARS-CoV-2 190 

pseudotype carrying the K417N, E484K and N501Y mutations (TM). The inclusion of the 191 

K417N substitution was prompted by the observation that substitutions at this position have 192 

been found  in 5 sequences from recent viral isolates within the B.1.1.7 lineage (K417 to N, E 193 

or R). This is in keeping with convergent evolution of the virus towards an RBD with 194 

N501Y, E484K and K417N/T as evidenced by B.1.351 and P.1 lineages (K417N or K417T, 195 

respectively) causing great concern globally. It is therefore important to assess this 196 

combination going forward. 197 

Importantly, mutations at K417 are reported to escape neutralization from mAbs, 198 

including the recently approved mAb LY-CoV016 22,25. Out of the 60 mAbs tested, 20 199 

(33.3%) showed >10 fold loss of neutralising activity of TM mutant compared to WT SARS-200 

CoV-2 (Fig. 4 a-b and Extended Data Fig. 5), and of these 19 are RBM-specific mAbs. As 201 

above, we addressed the role of E484K mutation in escape from RBM-specific antibodies, by 202 

testing the binding of 50 RBD-specific mAbs to WT and E484K mutant RBD by biolayer 203 

interferometry (Fig. 4f and Extended Data Fig. 7). Out of the 19 RBM-specific mAbs that 204 

showed reduced or loss of  neutralization of  TM mutant (Fig. 4d), 16 showed a complete or 205 

partial loss of binding to E484K RBD mutant (Fig. 4g-h), consistent with findings that 206 

E484K is an important viral escape mutation26, 39, 27. Three of these 16 mAbs also lost binding 207 

to an RBD carrying N501Y, indicating that a fraction of RBM antibodies are sensitive to both 208 

N501Y and E484K mutations. Similarly, 3 of the 19 mAbs that lost neutralization of TM 209 
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mutant (S2D8, S2H7 and S2X128) were previously shown to lose binding and neutralization 210 

to the K417V mutant, and here shown to be sensitive to either N501Y or E484K mutations.   211 

 212 

SARS-CoV-2 B.1.1.7 binds human ACE2 with higher affinity than WT  213 

SARS-CoV-2 and SARS-CoV enter host cells through binding of the S glycoprotein to 214 

angiotensin converting enzyme 2 (ACE2)1,28. Previous studies showed that the binding 215 

affinity of SARS-CoV for human ACE2 correlated with the rate of viral replication in distinct 216 

species, transmissibility and disease severity 29-31. However, the picure is unclear for SARS-217 

CoV-2. To understand the potential contribution of receptor interaction to infectivity, we set 218 

out to evaluate the influence of the B.1.1.7 RBD substitution N501Y on receptor engagement. 219 

We used biolayer interferometry to study binding kinetics and affinity of the purified human 220 

ACE2 ectodomain (residues 1-615) to immobilized biotinylated SARS-CoV-2 B.1.1.7 or WT 221 

RBDs. We found that ACE2 bound to the B.1.1.7 RBD with an affinity of 22 nM compared 222 

to 133 nM for the WT RBD (Extended Data Fig. 8), in agreement with our previous deep-223 

mutational scanning measurements using dimeric ACE232. Although ACE2 bound with 224 

comparable on-rates to both RBDs, the observed dissociation rate constant was slower for 225 

B.1.1.7 than for the WT RBD (Table 1).  226 

 227 

To understand the impact of TM mutations (K417N, E484K and N501Y), we evaluated 228 

binding of ACE2 to the immobilized TM RBD using biolayer interferometry. We determined 229 

an ACE2 binding affinity of 64 nM for the TM RBD which is driven by a faster off-rate than 230 

observed for the B.1.1.7 RBD but slower than for the WT RBD.  Based on our previous deep-231 

mutational scanning measurements using dimeric ACE2, we propose that the K417N 232 

mutation is slightly detrimental to ACE2 binding explaining the intermediate affinity 233 

determined for the TM RBD compared to  the B.1.17 and WT RBDs, likely as a result of 234 

disrupting the salt bridge  formed with ACE2 residue D30. Enhanced binding of the B.1.1.7 235 

RBD to human ACE2 resulting from the N501Y mutation might participate in the efficient 236 

ongoing transmission of this newly emergent SARS-CoV-2 lineage, and possibly reduced 237 

opportunity for antibody binding. Although the TM RBD mutations found in B.1.351 are 238 

known to participate in  immune evasion33,34, the possible contribution to transmissibility of 239 

enhanced ACE2 binding relative to WT remains to be determined for this lineage. 240 
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Discussion   241 

Serum neutralising activity is a correlate of protection for other respiratory viruses, including 242 

influenza35 and respiratory syncytial virus where prohylaxis with monoclonal antibodies has 243 

been used in at-risk groups36,37. Neutralising antibody titres appeared to be highly correlated 244 

with vaccine protection against SARS-CoV-2 rechallenge in non-human primates, and 245 

importantly, there was no correlation between T cell responses (as measured by ELISpot) and 246 

protection38. Moreover, passive transfer of purified polyclonal IgGs from convalescent 247 

macaques protected naïve macaques against subsequent SARS-CoV-2 challenge39. Coupled 248 

with multiple reports of re-infection, there has therefore been significant attention placed on 249 

virus neutralisation.  250 

This study reports on the neutralisation by sera collected after both the first and second 251 

doses of the BNT162b2 vaccine. The participants of this study were older adults, in line with 252 

the targeting of this age group in the initial rollout of the vaccination campaign in the UK. 253 

Participants showed similar neutralising activity against wild type pseudovirus as in the phase 254 

I/II study12. This is relevant for the UK and other countries planning to extend the gap 255 

between doses of mRNA and adenovirus based vaccines from 3 to 12 weeks, despite lack of 256 

data for this schedule for mRNA vaccines in particular. 257 

The three mutations in S1 (N501Y, A570D, �H69/V70) did not appear to impact 258 

neutralisation in a pseudovirus assay, consistent with data on N501Y having little effect on 259 

nuetralisation by convalescent and post vaccination sera40. However, we demonstrated that a 260 

pseudovirus bearing S protein with the full set of mutations present in the B.1.1.7 variant (i.e., 261 

�H69/V70, �144, N501Y, A570D, P681H, T716I, S982A, D1118H) did result in small 262 

reduction in neutralisation by sera from vaccinees that was more marked following the first 263 

dose than the second dose. This could be related to increased breadth/potency/concentration 264 

of antibodies following the boost dose. A reduction in neutralization titres from mRNA-265 

elicited antibodies in volunteers who received two doses (using both mRNA-1273 and 266 

BNT162b2 vaccines) was also observed by Wang et al.41 using pseudoviruses carrying the 267 

N501Y mutation. Other studies also reported small reduction of neutralization against the 268 

B.1.1.7 variant against sera from individuals vaccinated with two doses of BNT162b242  and 269 

mRNA-127343. Xie et al did not find an effect of N501Y alone in the context of BNT162b2 270 

vaccine sera44.  271 
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The reduced neutralising activity observed with polyclonal antibodies elicited by 272 

mRNA vaccines observed in this study is further supported by the loss of neutralising activity 273 

observed with human mAbs directed to both RBD and, to a major extent, to NTD. In the 274 

study by Wang et al., 6 out 17 RDB-specific mAbs isolated from mRNA-1273 vaccinated 275 

individuals showed more than 100-fold neutralisation loss against N501Y mutant, a finding 276 

that is consistent with the loss of neutralisation by 5 out 29 RBM-specific mAbs described in 277 

this study. However, the contribution of N501Y to loss of neutralisation activity of polyclonal 278 

vaccine and convalescent sera is less clear, and interactions with other mutations likely. 279 

Multiple variants, including the 501Y.V2 and B.1.1.7 lineages, harbor multiple 280 

mutations as well as deletions in NTD, most of which are located in a site of vulnerability that 281 

is targeted by all known NTD-specific neutralising antibodies24,45. The role of NTD-specific 282 

neutralising antibodies might be under-estimated, in part by the use of neutralization assays 283 

based on target cells over-expressing ACE2 receptor. NTD-specific mAbs were suggested to 284 

interfere with viral entry based on other accessory receptors, such as DC-SIGN and L-SIGN46, 285 

and their neutralization potency was found to be dependent on different in vitro culture 286 

conditions24. The observation that 9 out of 10 NTD-specific neutralising antibodies failed to 287 

show a complete or near-complete loss of neutralising activity against B.1.1.7 indicates that 288 

this new variant may have evolved also to escape from this class of antibodies, that may have 289 

a yet unrecognized role in protective immunity. Wibmer et al.34 have also recently reported 290 

the loss of neutralization of 501Y.V2 by the NTD-specific mAb 4A8, likely driven by the 291 

R246I mutation. This result is in line with the lack of neutralization of B.1.1.7 by the 4A8 292 

mAb observed in this study, likely caused by �144 due to loss of binding24. Finally, the role 293 

of NTD mutations (in particular, L18F, �242-244 and R246I) was further supported by the 294 

marked loss of neutralization observed by Wibmer et al.34 against 501Y.V2 compared to the 295 

chimeric pseudotyped viral particle carrying only the RBD mutations K417N, E484K and 296 

N501Y. Taken together, the presence of multiple escape mutations in NTD is supportive of 297 

the hypothesis that this region of the spike, in addition to RBM, is also under immune 298 

pressure.   299 

Worryingly, we have shown that there are multiple B.1.1.7 sequences in the UK 300 

bearing E484K with early evidence of transmission as well as independent aquisitions. We 301 

measured further reduction neutralisation titers by vaccine sera when E484K was present 302 

alongside the B.1.1.7 S mutations. Wu and co-authors43 have also shown that variants 303 
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carrying the E484K mutation resulted in 3-to-6 fold reduction in neutralization by sera from 304 

mRNA-1273 vaccinated individuals. Consistently, in this study we found that approximately 305 

50% of the RBM mAbs tested lost neutralising activity against SARS-CoV-2 carrying 306 

E484K. E484K has been shown to impact neutralisation by monoclonal antibodies or 307 

convalescent sera, especially in combination with N501Y and K417N16,26,47-49. Wang et al 308 

also showed reduced neutralisation by mRNA vaccine sera against E484K bearing 309 

pseudovirus34.  310 

Evidence for the importance role of NTD deletions in combination with E484K in immune 311 

escape is provided by Andreano et al.27 who describe the emergence of Δ140 in virus co-312 

incubated with potently neutralising convalescent plasma, causing a 4-fold reduction in 313 

neutralization titre. This Δ140 mutant subsequently acquired E484K which resulted in a 314 

further 4-fold drop in neutralization titre indicating a two residue change across NTD and 315 

RBD represents an effective pathway of escape that can dramatically inhibit the polyclonal 316 

response. 317 

Our study was limited by modest sample size. Although the spike pseudotyping system has 318 

been shown to faithfully represent full length infectious virus, there may be determinants 319 

outside the S that influence escape from antibody neutralization either directly or indirectly in 320 

a live replication competent system. On the other hand live virus systems allow replication 321 

and therefore mutations to occur, and rigorous sequencing at multiple steps is needed. 322 

Vaccines are a key part of a long term strategy to bring SARS-CoV-2 transmission under 323 

control. Our data suggest that vaccine escape to current Spike directed vaccines designed 324 

against the Wuhan strain will be inevitable, particularly given that E484K is emerging 325 

independently and recurrently on a B.1.1.7 (501Y.V1) background, and given the rapid global 326 

spread of B.1.1.7. Other major variants with E484K such as 501Y.V2 and V3 are also 327 

spreading regionally. This should be mitigated by designing next generation vaccines with 328 

mutated S sequences and using alternative viral antigens.  329 
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 372 

MATERIALS AND METHODS 373 

Participant recruitment and ethics 374 

Participants who had received the first dose of vaccine and individuals with COVID-19 375 

(Coronavirus Disease-19) were consented into the COVID-19 cohort of the NIHR 376 

Bioresource. The study was approved by the East of England – Cambridge Central Research 377 

Ethics Committee (17/EE/0025). 378 

 379 

SARS-CoV-2 serology by multiplex particle-based flow cytometry (Luminex):   380 

Recombinant SARS-CoV-2 N, S and RBD were covalently coupled to distinct carboxylated 381 

bead sets (Luminex; Netherlands) to form a 3-plex and analyzed as previously described 382 

(Xiong et al. 2020). Specific binding was reported as mean fluorescence intensities (MFI). 383 

Linear regression was used to explore the association between antibody response, T cell 384 

response and serum neutralisation in Stata 13. The Pearson correlation coefficient was 385 

reported. 386 

 387 

Recombinant expression of SARS-CoV-2-specific mAbs. 388 

Human mAbs were isolated from plasma cells or memory B cells of SARS-CoV-2 immune 389 

donors, as previously described 50-52. Recombinant antibodies were expressed in ExpiCHO 390 

cells at 37°C and 8% CO2. Cells were transfected using ExpiFectamine. Transfected cells 391 

were supplemented 1 day after transfection with ExpiCHO Feed and ExpiFectamine CHO 392 

Enhancer. Cell culture supernatant was collected eight days after transfection and filtered 393 

through a 0.2 µm filter. Recombinant antibodies were affinity purified on an ÄKTA xpress 394 

fast protein liquid chromatography (FPLC) device using 5 mL HiTrap™ MabSelect™ 395 

PrismA columns followed by buffer exchange to Histidine buffer (20 mM Histidine, 8% 396 

sucrose, pH 6) using HiPrep 26/10 desalting columns 397 

 398 
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Generation of S mutants 399 

Amino acid substitutions were introduced into the D614G pCDNA_SARS-CoV-2_S plasmid 400 

as previously described53 using the QuikChange Lightening Site-Directed Mutagenesis kit, 401 

following the manufacturer’s instructions (Agilent Technologies, Inc., Santa Clara, CA). 402 

Sequences were checked by Sanger sequencing. 403 

Preparation of B.1.1.7 or TM SARS-CoV-2 S glycoprotein-encoding-plasmid used to 404 

produce SARS-CoV-2-MLV based on overlap extension PCR. Briefly, a modification of the 405 

overlap extension PCR protocol54 was used to introduce the nine mutations of the B.1.1.7 406 

lineage or the three mutations in TM mutant in the SARS-CoV-2 S gene. In a first step, 407 

9 DNA fragments with overlap sequences were amplified by PCR from a plasmid (phCMV1, 408 

Genlantis) encoding the full-length SARS-CoV-2 S gene (BetaCoV/Wuhan-Hu-1/2019, 409 

accession number mn908947). The mutations (del-69/70, del-144, N501Y, A570D, D614G, 410 

P681H, S982A, T716I and D1118H or K417N, E484K and N501Y) were introduced by 411 

amplification with primers with similar Tm. Deletion of the C-terminal 21 amino acids was 412 

introduced to increase surface expression of the recombinant S55. Next, 3 contiguous 413 

overlapping fragments were fused by a first overlap PCR (step 2) using the utmost external 414 

primers of each set, resulting in 3 larger fragments with overlapping sequences. A final 415 

overlap PCR (step 3) was performed on the 3 large fragments using the utmost external 416 

primers to amplify the full-length S gene and the flanking sequences including the restriction 417 

sites KpnI and NotI. This fragment was digested and cloned into the expression plasmid 418 

phCMV1. For all PCR reactions the Q5 Hot Start High fidelity DNA polymerase was used 419 

(New England Biolabs Inc.), according to the manufacturer’s instructions and adapting the 420 

elongation time to the size of the amplicon. After each PCR step the amplified regions were 421 

separated on agarose gel and purified using Illustra GFX™ PCR DNA and Gel Band 422 

Purification Kit (Merck KGaA). 423 

 424 

Pseudotype virus preparation 425 

Viral vectors were prepared by transfection of 293T cells by using Fugene HD transfection 426 

reagent (Promega). 293T cells were transfected with a mixture of 11ul of Fugene HD, 1µg of 427 

pCDNAΔ19spike-HA, 1ug of p8.91 HIV-1 gag-pol expression vector56,57, and 1.5µg of 428 

pCSFLW (expressing the firefly luciferase reporter gene with the HIV-1 packaging signal). 429 

Viral supernatant was collected at 48 and 72h after transfection, filtered through 0.45um filter 430 
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and stored at -80˚C. The 50% tissue culture infectious dose (TCID50) of SARS-CoV-2 431 

pseudovirus was determined using Steady-Glo Luciferase assay system (Promega).  432 

 433 

Serum/plasma pseudotype neutralization assay 434 

Spike pseudotype assays have been shown to have similar characteristics as neutralisation 435 

testing using fully infectious wild type SARS-CoV-220. Virus neutralisation assays were 436 

performed on 293T cell transiently transfected with ACE2 and TMPRSS2 using SARS-CoV-437 

2 spike pseudotyped virus expressing luciferase58. Pseudotyped virus was incubated with 438 

serial dilution of heat inactivated human serum samples or sera from vaccinees in duplicate 439 

for 1h at 37˚C. Virus and cell only controls were also included. Then, freshly trypsinized 440 

293T ACE2/TMPRSS2 expressing cells were added to each well. Following 48h incubation 441 

in a 5% CO2 environment at 37°C, luminescence was measured using the Steady-Glo or 442 

Bright-Glo Luciferase assay system (Promega). Neutralization was calculated relative to virus 443 

only controls. Dilution curves were presented as a mean neutralization with standard error of 444 

the mean (SEM). ID50 values were calculated in GraphPad Prism. The ID50 withing groups 445 

were summarised as a geometric mean titre and statistical comparison between groups were 446 

made with Wilxocon ranked sign test. In addition, the impact of the mutations on the 447 

neutralising effect of the sera were expressed as fold change (FC) of ID50 of the wild-type 448 

compared to mutant pseudotyped virus. Statistical difference in the mean FC between groups 449 

was determined using a 2-tailed t-test. 450 

IFNγ FluoroSpot assays 451 

Frozen PBMCs were rapidly thawed, and the freezing medium was diluted into 10ml of 452 

TexMACS media (Miltenyi Biotech), centrifuged and resuspended in 10ml of fresh media 453 

with 10U/ml DNase (Benzonase, Merck-Millipore via Sigma-Aldrich), PBMCs were 454 

incubated at 37°C for 1h, followed by centrifugation and resuspension in fresh media 455 

supplemented with 5% Human AB serum (Sigma Aldrich) before being counted. PBMCs 456 

were stained with 2ul of each antibody: anti-CD3-fluorescein isothiocyanate (FITC), clone 457 

UCHT1; anti-CD4-phycoerythrin (PE), clone RPA-T4; anti-CD8a-peridinin-chlorophyll 458 

protein - cyanine 5.5 (PerCP Cy5.5), clone RPA-8a (all BioLegend, London, UK), 459 

LIVE/DEAD Fixable Far Red Dead Cell Stain Kit (Thermo Fisher Scientific). PBMC 460 

phenotyping was performed on the BD Accuri C6 flow cytometer. Data were analysed with 461 

FlowJo v10 (Becton Dickinson, Wokingham, UK). 1.5 to 2.5 x 105 PBMCs were incubated 462 
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in pre-coated Fluorospot plates (Human IFNγ FLUOROSPOT (Mabtech AB, Nacka Strand, 463 

Sweden)) in triplicate with peptide mixes specific for Spike, Nucleocapsid and Membrane 464 

proteins of SARS-CoV-2 (final peptide concentration 1µg/ml/peptide, Miltenyi Biotech) and 465 

an unstimulated and positive control mix (containing anti-CD3 (Mabtech AB), 466 

Staphylococcus Enterotoxin B (SEB), Phytohaemagglutinin (PHA) (all Sigma Aldrich)) at 467 

37ºC in a humidified CO2 atmosphere for 48 hours. The cells and medium were decanted 468 

from the plate and the assay developed following the manufacturer’s instructions. Developed 469 

plates were read using an AID iSpot reader (Oxford Biosystems, Oxford, UK) and counted 470 

using AID EliSpot v7 software (Autoimmun Diagnostika GmbH, Strasberg, Germany). All 471 

data were then corrected for background cytokine production and expressed as spot forming 472 

units (SFU)/Million PBMC or CD3 T cells. The association between spike Tcell response, 473 

spike specific antibody response and serum neutralisation was deterimined using linear 474 

regression and the Pearson correlation coefficient between these variables were determined 475 

using Stata 13. 476 

 477 

Ab discovery and recombinant expression 478 

Human mAbs were isolated from plasma cells or memory B cells of SARS-CoV or SARS-479 

CoV-2 immune donors, as previously described 48,56-58. Recombinant antibodies were 480 

expressed in ExpiCHO cells at 37°C and 8% CO2. Cells were transfected using 481 

ExpiFectamine. Transfected cells were supplemented 1 day after transfection with ExpiCHO 482 

Feed and ExpiFectamine CHO Enhancer. Cell culture supernatant was collected eight days 483 

after transfection and filtered through a 0.2 µm filter. Recombinant antibodies were affinity 484 

purified on an ÄKTA xpress FPLC device using 5 mL HiTrap™ MabSelect™ PrismA 485 

columns followed by buffer exchange to Histidine buffer (20 mM Histidine, 8% sucrose, pH 486 

6) using HiPrep 26/10 desalting columns.   487 

 488 
MAbs pseudovirus neutralization assay 489 

MLV-based SARS-CoV-2 S-glycoprotein-pseudotyped viruses were prepared as previously 490 

described (Pinto et al., 2020). HEK293T/17cells were cotransfected with a WT, B.1.1.7 or 491 

TM SARS-CoV-2 spike glycoprotein-encoding-plasmid, an MLV Gag-Pol packaging 492 

construct and the MLV transfer vector encoding a luciferase reporter using X-tremeGENE 493 

HP transfection reagent (Roche) according to the manufacturer’s instructions. Cells were 494 

cultured for 72 h at 37°C with 5% CO2 before harvesting the supernatant. VeroE6 stably 495 

expressing human TMPRSS2 were cultured in Dulbecco’s Modified Eagle’s Medium 496 
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(DMEM) containing 10% fetal bovine serum (FBS), 1% penicillin–streptomycin (100 I.U. 497 

penicillin/mL, 100 µg/mL), 8 µg/mL puromycin and plated into 96-well plates for 16–24 h. 498 

Pseudovirus with serial dilution of mAbs was incubated for 1 h at 37°C and then added to the 499 

wells after washing 2 times with DMEM. After 2–3 h DMEM containing 20% FBS and 2% 500 

penicillin–streptomycin was added to the cells. Following 48-72 h of infection, Bio-Glo 501 

(Promega) was added to the cells and incubated in the dark for 15 min before reading 502 

luminescence with Synergy H1 microplate reader (BioTek). Measurements were done in 503 

duplicate and relative luciferase units were converted to percent neutralization and plotted 504 

with a non-linear regression model to determine IC50 values using GraphPad PRISM 505 

software (version 9.0.0). 506 

 507 
Antibody binding measurements using bio-layer interferometry (BLI) 508 

MAbs were diluted to 3 µg/ml in kinetic buffer (PBS supplemented with 0.01% BSA) and 509 

immobilized on Protein A Biosensors (FortéBio).  Antibody-coated biosensors were 510 

incubated for 3�min with a solution containing 5�µg�/ml of WT, N501Y or E484K SARS-511 

CoV-2 RBD  in kinetic buffer, followed by a 3-min dissociation step. Change in molecules 512 

bound to the biosensors caused a shift in the interference pattern that was recorded in real 513 

time using an Octet RED96 system (FortéBio).  The binding response over time was used to 514 

calculate the area under the curve (AUC) using GraphPad PRISM software (version 9.0.0). 515 

 516 

Production of SARS-CoV-2 and B.1.1.7 receptor binding domains and human ACE2  517 

The SARS-CoV-2 RBD (BEI NR-52422) construct was synthesized by GenScript into 518 

CMVR with an N-terminal mu-phosphatase signal peptide and a C-terminal octa-histidine tag 519 

(GHHHHHHHH) and an avi tag. The boundaries of the construct are N-328RFPN331 and 520 

528KKST531-C
59. The B.1.1.7 RBD gene was synthesized by GenScript into pCMVR with the 521 

same boundaries and construct details with a mutation at N501Y. These plasmids were 522 

transiently transfected into Expi293F cells using Expi293F expression medium (Life 523 

Technologies) at 37°C 8% CO2 rotating at 150 rpm. The cultures were transfected using PEI 524 

cultivated for 5 days. Supernatants were clarified by centrifugation (10 min at 4000xg) prior 525 

to loading onto a nickel-NTA column (GE). Purified protein was biotinylated overnight using 526 

BirA (Biotin ligase) prior to size exclusion chromatography (SEC) into phosphate buffered 527 

saline (PBS). Human ACE2-Fc (residues 1-615 with a C-terminal thrombin cleavage site and 528 

human Fc tag) were synthesized by Twist. Clarified supernatants were affinity purified using 529 

a Protein A column (GE LifeSciences) directly neutralized and buffer exchanged. The Fc tag 530 
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was removed by thrombin cleavage in a reaction mixture containing 3 mg of recombinant 531 

ACE2-FC ectodomain and 10 μg of thrombin in 20 mM Tris-HCl pH8.0, 150 mM NaCl and 532 

2.5 mM CaCl2.The reaction mixture was incubated at 25°C overnight and re-loaded on a 533 

Protein A column to remove uncleaved protein and the Fc tag. The cleaved protein was 534 

further purified by gel filtration using a Superdex 200 column 10/300 GL (GE Life Sciences) 535 

equilibrated in PBS. 536 

 537 

Protein affinity measurement using bio-layer interferometry 538 

Biotinylated RBD (WT, N501Y, or TM) were immobilized at 5 ng/uL in undiluted 10X 539 

Kinetics Buffer (Pall) to SA sensors until a load level of 1.1nm. A dilution series of either 540 

monomeric ACE2 or Fab in undiluted kinetics buffer starting at 1000-50nM was used for 541 

300-600 seconds to determine protein-protein affinity. The data were baseline subtracted and 542 

the plots fitted using the Pall FortéBio/Sartorius analysis software (version 12.0). Data were 543 

plotted in Prism.  544 

  545 

Statistical analysis 546 

Linear regression was used to explore the association between antibody response, T cell 547 

response and serum neutralisation in Stata 13. The Pearson correlation coefficient was 548 

reported. 549 

 550 

Neutralisation data analysis 551 

Neutralization was calculated relative to virus only controls. Dilution curves were presented 552 

as a mean neutralization with standard error of the mean (SEM). IC50 values were calculated 553 

in GraphPad Prism. The inhibitory dilution (ID50) within groups were summarised as a 554 

geometric mean titre and statistical  comparison between groups were made with Wilxocon 555 

ranked sign test. In addition, the impact of the mutations on the neutralising effect of the sera 556 

were expressed as fold change of ID50 of the wild-type compared to mutant pseudotyped 557 

virus. Statistical difference in the mean FC between groups was determined using a 2-tailed t-558 

test 559 
   560 
For antibody level  561 

IFNγ FluoroSpot assay data analysis  562 

The association between spike Tcell response, spike specific antibody response and serum 563 

neutralisation was determined using linear regression and the Pearson correlation coefficient 564 

between these variables were determined using Stata 13. 565 
 566 
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Data availability.  567 

The neutralization and BLI data shown in Fig. 4 and Extended Data Fig. 5-7 can be found in 568 

Source Data Fig. 4. Other data are available from the corresponding author on request. 569 

 570 
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 572 

 573 

Table 1. Kinetic analysis of human ACE2 binding to SARS-CoV-2 Wuhan-1, N501Y 574 
and N501Y/ E484K/ K417N (TM) RBDs by biolayer interferometry. Values reported 575 
represent the global fit to the data shown in Extended Data Fig. 8.  576 
 577 

  SARS-CoV-2 RBD WT SARS-CoV-2 RBD N501Y SARS-CoV-2 RBD TM 

KD (nM) 

kon (M
-1.s-1) 

koff (s
-1) 

 

hACE2 

133 

1.3*105 

1.8*10-2 

22 

1.4*105 

3*10-3 

64 

1.3*105 

8.5*10-3 

 578 

 579 
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Extended Data Table 1. Neutralization, V gene usage and other properties of tested mAbs. 
mAb Domain 

(site) 
VH usage (% 

id.) 
Source 
(DSO) 

IC50 
WT 

(ng/ml) 

IC50 
B.1.1.7 
(ng/ml) 

ACE2 
blocking 

SARS-
CoV 

Escape residues Ref. 

4A8 NTD (i) 1-24 N/A 38 - Neg. - S12P; C136Y; 
Y144del; H146Y; 
K147T; R246A 

60
 

S2L26 NTD (i) 1-24 (97.2) Hosp. (52) 70 - Neg. - N/A 24
 

S2L50 NTD (i) 4-59 (95.4) Hosp. (52) 264 50 Neg. - N/A 24
 

S2M28 NTD (i) 3-33 (97.6) Hosp. (46) 295 12'207 Neg. - P9S/Q; S12P; 
C15F/R; L18P; 
Y28C; A123T; 

C136Y; G142D; 
Y144del; 
K147Q/T; 

R246G; P251L; 
G252C 

24
 

S2X107 NTD (i) 4-38-2 (97) Sympt. (75) 388 - Neg. - N/A 24
 

S2X124 NTD (i) 3-30 (99) Sympt. (75) 221 - Neg. - N/A 24
 

S2X158 NTD (i) 1-24 (96.3) Sympt. (75) 56 - Neg. - N/A 24
 

S2X28 NTD (i) 3-30 (97.9) Sympt. (48) 1'399 - Neg. - P9S; S12P; 
C15W; L18P; 

C136G/Y; F140S; 
L141S; G142C/D; 

Y144C/N; 
K147T/Q/E; 

R158G; L244S; 
R246G 

24
 

S2X303 NTD (i) 2-5 (95.9) Sympt. 
(125) 

69 - Neg. - N/A 24
 

S2X333 NTD (i)  
3-33 (96.5) 

Sympt. 
(125) 

66 - Neg. - P9L; S12P; 
C15S/Y; L18P; 

C136G/Y; F140C; 
G142D; K147T 

24
 

S2D106 RBD 
(I/RBM) 

1-69 (97.2) Hosp. (98) 27 20 Strong - N/A 8
 

S2D19 RBD 
(I/RBM) 

4-31 (99.7) Hosp. (49) 128 75'200 Moderate - N/A 8
 

S2D32 RBD 
(I/RBM) 

3-49 (98.3) Hosp. (49) 26 11 Strong - N/A 8
 

S2D65 RBD 
(I/RBM) 

3-9 (96.9) Hosp. (49) 24 12 Weak - N/A 8
 

S2D8 RBD 
(I/RBM) 

3-23 (96.5) Hosp. (49) 27 58'644 Strong - N/A 8
 

S2D97 RBD 
(I/RBM) 

2-5 (96.9) Hosp. (98) 20 17 Weak - N/A 8
 

S2E11 RBD 
(I/RBM) 

4-61 (98.3) Hosp. (51) 27 16 Weak - N/A 8
 

S2E12 RBD 
(I/RBM) 

1-58 (97.6) Hosp. (51) 27 31 Strong - G476S (3x) 8,61
 

S2E13 RBD 
(I/RBM) 

1-18 (96.2) Hosp. (51) 34 77 Strong - N/A 8
 

S2E16 RBD 
(I/RBM) 

3-30 (98.3) Hosp. (51) 36 38 Strong - N/A 8
 

S2E23 RBD 
(I/RBM) 

3-64 (96.9) Hosp. (51) 139 180 Strong - N/A 8
 

S2H14 RBD 
(I/RBM) 

3-15 (100) Sympt. (17) 460 64'463 Weak - N/A 8,62
 

S2H19 RBD 
(I/RBM) 

3-15 (98.6) Sympt. (45) 239 - Weak - N/A 8
 

S2H58 RBD 
(I/RBM) 

1-2 (97.9) Sympt. (45) 27 14 Strong - N/A 8
 

S2H7 RBD 
(I/RBM) 

3-66 (98.3) Sympt. (17) 492 573 Weak - N/A 8
 

S2H70 RBD 
(I/RBM) 

1-2 (99) Sympt. (45) 147 65 Weak - N/A 8
 

S2H71 RBD 
(I/RBM) 

2-5 (99) Sympt. (45) 36 9 Moderate - N/A 8
 

S2M11 RBD 
(I/RBM) 

1-2 (96.5) Hosp. (46) 11 4 Weak - Y449N; L455F; 
E484K; E484Q; 
F490L; F490S; 

S494P 

8,61
 

S2N12 RBD 4-39 (97.6) Hosp. (51) 76 40 Strong - N/A 8
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(I/RBM) 
S2N22 RBD 

(I/RBM) 
3-23 (96.5) Hosp. (51) 32 21 Strong - N/A 8

 

S2N28 RBD 
(I/RBM) 

3-30 (97.2) Hosp. (51) 72 21 Strong - N/A 8
 

S2X128 RBD 
(I/RBM) 

1-69-2 (97.6) Sympt. (75) 50 112 Strong - N/A 8
 

S2X16 RBD 
(I/RBM) 

1-69 (97.6) Sympt. (48) 45 103 Strong - N/A 8
 

S2X192 RBD 
(I/RBM) 

1-69 (96.9) Sympt. (75) 326 - Weak - N/A 8
 

S2X227 RBD 
(I/RBM) 

1-46 (97.9) Sympt. (75) 26 14 Strong - N/A  

S2X246 RBD 
(I/RBM) 

3-48 (96.2) Sympt. (75) 35 30 Strong - N/A  

S2X30 RBD 
(I/RBM) 

1-69 (97.9) Sympt. (48) 32 53 Strong - N/A 8
 

S2X324 RBD 
(I/RBM) 

2-5 (97.3) Sympt. 
(125) 

8 23 Strong - N/A  

S2X58 RBD 
(I/RBM) 

1-46 (99) Sympt. (48) 32 47 Strong - N/A 8
 

S2H90 RBD (II) 4-61 (96.6) Sympt. (81) 77 32 Strong + N/A 8
 

S2H94 RBD (II) 3-23 (93.4) Sympt. (81) 123 144 Strong + N/A 8
 

S2H97 RBD (V) 5-51 (98.3) Sympt. (81) 513 248 Weak + N/A  

S2K15 RBD (II) 2-26 (99.3) Sympt. (87) 361 235 0 + N/A  

S2K21 RBD (II) 3-33 (96.2) Sympt. 
(118) 

201 189 0 + N/A  

S2K30 RBD (II) 1-2 (97.2) Sympt. (87) 185 134 0 + N/A  

S2K63v2 RBD (II) 3-30-3 (95.6) Sympt. 
(118) 

144 215 0 + N/A  

S2L17 RBD (?) 5-10-1 (98.3) Hosp. (51) 313 127 Moderate + N/A 8
 

S2L49 RBD (?) 3-30 (97.9) Hosp. (51) 24 32 Neg. + N/A 8
 

S2X259 RBD 
(IIa) 

1-69 (94.1) Sympt. (75) 145 91 Moderate + N/A  

S2X305 RBD (?) 1-2 (95.1) Sympt. 
(125) 

34 21 Strong - N/A  

S2X35 RBD 
(IIa) 

1-18 (98.6) Sympt. (48) 140 143 Strong + N/A 62
 

S2X450 RBD (?) 2-26 (96.9) Sympt. 
(271) 

368 198 Strong + N/A  

S2X475 RBD (?) 3-21 (93.8) Sympt. 
(271) 

1'431 851 Strong + N/A  

S2X607 RBD (?) 3-66 (95.4) Sympt. 
(271) 

41 23 Strong - N/A  

S2X608 RBD (?) 1-33 (93.2) Sympt. 
(271) 

21 35 Strong - N/A  

S2X609 RBD (?) 1-69 (93.8) Sympt. 
(271) 

47 35 Strong - N/A  

S2X613 RBD (I) 1-2 (91.7) Sympt. 
(271) 

28 19 Strong - N/A  

S2X615 RBD (I) 3-11 (94.8) Sympt. 
(271) 

23 17 Strong - N/A  

S2X619 RBD (?) 1-69 (92.7) Sympt. 
(271) 

36 60 Strong - N/A  

S2X620 RBD (?) 3-53 (95.1) Sympt. 
(271) 

34 45 Strong - N/A  

id., identity. DSO, days after symptom onset.  * as described in Piccoli et al and McCallum et al. N/A, not available; -, not neutralising 
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Figure 1. Neutralization by first and second dose mRNA vaccine sera against wild type and B.1.1.7 Spike
mutant SARS-CoV-2 pseudotyped viruses. a, Spike in open conformation with a single erect RBD (PDB: 6ZGG) in
trimer axis vertical view with the locations of mutated residues highlighted in red spheres and labelled on the monomer
with erect RBD. Vaccine first dose (b-c, n=37), second dose (d-e, n=21) and convalescent sera, Conv. (f-g,n=27)
against WT and B.1.1.7 Spike mutant with N501Y, A570D, 𝚫H69/V70, 𝚫144/145, P681H, T716I, S982A and D1118H.
GMT with s.d presented of two independent experiments each with two technical repeats. Wilcoxon matched-pairs
signed rank test p-values * <0.05, ** <0.01, ***<0.001, **** <0.0001, ns not significant HS – human AB serum control.
Limit of detection for 50% neutralization set at 10.
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Figure 2. E484K appearing in background of B.1.1.7 with evidence of transmission a.
Representation of Spike RBM:ACE2 interface (PDB: 6M0J) with residues E484, N501 and K417
highlighted as spheres coloured by element b. Maximum likelihood phylogeny of a subset of
sequences from the United Kingdom bearing the E484K mutation (green) and lineage B.1.1.7 (blue),
with background sequences without RBD mutations in black. As of 11th Feb 2021, 30 sequences from
the B.1.1.7 lineage (one cluster of 25 at top of phylogenetic tree) have acquired the E484K mutation
(red). c. Sequence accumulation over time in GISAID for UK sequences with B.1.1.7 and E484K. RBD
– receptor binding domain; NTD – N terminal domain.

a

b

c

Figure 2

14
/1

2/
20

20

21
/1

2/
20

20

28
/1

2/
20

20

04
/0

1/
20

21

11
/0

1/
20

21

18
/0

1/
20

21

25
/0

1/
20

21

01
/0

2/
20

21

0

10

20

30

Date

C
um

ul
at

iv
e 

N
o.

 C
as

es

2.0E-4

B.1.1.7 (UK Variant) + 484K
B.1.351 (South Africa)
E484K (no other major spike mutations)
B.1.17 (UK Variant)
UK Sequences (No RBD/NTD spike mutations)



a

b

Figure 3. Neutralization potency of mRNA vaccine sera and convalescent sera (pre SARS-CoV-2 B.1.1.7)
against pseudotyped virus bearing Spike mutations in the B1.1.7 lineage with and without E484K in the
receptor binding domain (all In Spike D614G background). a, Example neutralization curves for vaccinated
individuals. Data points represent mean of technical replicates with standard error and are representative of two
independent experiments (b-g). 50% neutralisation titre for each virus against sera derived (b,c, n=37) following first
vaccination (d,e, n=21) following second vaccination and (f,g, n=20) convalescent sera (CS) expressed as fold
change relative to WT. Data points are mean fold change of technical replicates and are representative of two
independent experiments. Central bar represents mean with outer bars representing s.d. Wilcoxon matched-pairs
signed rank test p-values *<0.05, **<0.01, ***<0.001, ****<0.0001; ns not significant. Limit of detection for 50%
neutralization set at 10.
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Figure 4. Neutralization and binding by a panel of NTD- and RBD-specific mAbs against
WT, B.1.1.7 and RBD mutant SARS-CoV-2 viruses. a, Neutralization of WT D614G (black),
B.1.1.7 (blue) and a triple mutant (TM, carrying RBD mutations K417N/E484K/N501Y) (red)
pseudotyped SARS-CoV-2-MLVs by 3 selected mAbs (S2E12, S2X333 and S2H14) from one
representative experiment. Shown is the mean ± s.d. of 2 technical replicates. b, Neutralization of
WT (D614G), B.1.1.7 and TM SARS-CoV-2-MLVs by 60 mAbs targeting NTD (n=10), RBM (n=31)
and non-RBM sites in the RBD (n=19). Shown are the mean IC50 values (ng/ml) of n=2
independent experiments. c-e, Neutralization shown as mean IC50 values (upper panel) and
mean fold change of B.1.1.7 (blue) or TM (red) relative to WT (lower panel) of NTD (c), RBM (d)
and non-RBM (e) mAbs. Lower panel shows IC50 values from 2 independent experiments. f-h,
Kinetics of binding of mAbs to WT (black), N501Y (blue) and E484K (red) RBD as measured by
bio-layer interferometry (BLI). Shown in (f) are the 4 RBM-targeting mAbs with no reduced binding
to N501Y or E484K RBD. Area under the curve (AUC) (g) and AUC fold change (h) of 50 mAbs
tested against WT, N501Y and E484K RBD. mAbs with a >1.3 AUC fold change shown in blue
and red. mAbs: monoclonal antibodies. NTD: N- terminal domain
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Extended Data Figure 1: Immune responses three weeks after first dose of Pfizer SARS-
CoV-2 vaccine BNT162b2 a, Serum IgG responses against N protein, Spike and the Spike
Receptor Binding Domain (RBD) from first vaccine participants (green), recovered COVID-19
cases (red), 3 convalescent plasma units and healthy controls (grey) as measured by a flow
cytometry based Luminex assay. MFI, mean fluorescence intensity. Geometric mean titre (GMT
with standard deviation (s.d) of two technical repeats presented. b, Relationship between serum
IgG responses as measured by flow cytometry and serum neutralisation ID50. c, Relationship
between serum neutralisation ID50 and T cell responses against SARS-CoV-2 by IFN gamma
ELISpot. SFU: spot forming units. d, Relationship between serum IgG responses and T cell
responses. Simple linear regression is presented with Pearson correlation (r), P-value (p) and
regression coefficient/slope (β).
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Extended data Fig 2. Neutralization by first dose BNT162b2 vaccine and convalescent sera against wild type and mutant 
(N501Y, A570D, 𝚫H69/V70) SARS-CoV-2 pseudotyped viruses: (a-b) Vaccine sera dilution for 50% neutralization against WT and 
Spike mutant with N501Y, A570D, 𝚫H69/V70. Geometric mean titre (GMT) + s.d of two independent experiments with two technical 
repeats presented. (c-d) Convalescent sera dilution for 50% neutralization against WT and Spike mutant with N501Y, A570D, 
𝚫H69/V70. GMT + s.d of representative experiment with two technical repeats presented. e, Representative curves of convalescent 
serum log10 inverse dilution against % neutralization for WT v N501Y, A570D, 𝚫H69/V70. Where a curve is shifted to the right this 
indicates the virus is less sensitive to the neutralizing antibodies in the serum. Data are means of technical replicates and error bars 
represent standard error of the mean. Data are representative of 2 independent experiments. Limit of detection for 50% neutralization 
set at 10.
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Extended Data Fig. 3. Representative neutralization curves of BNT162b2 vaccine
sera against pseudovirus virus bearing eight Spike mutations present in B.1.1.7
versus wild type (all In Spike D614G background). Indicated is serum log10 inverse
dilution against % neutralization. Where a curve is shifted to the right this indicates the virus
is less sensitive to the neutralizing antibodies in the serum. Data are for first dose of vaccine
(D1). Data points represent means of technical replicates and error bars represent standard
error of the mean. Limit of detection for 50% neutralization set at 10.

Extended Data Fig. 3



Extended Data Fig. 4. Representative neutralization curves of convalescent sera
against wild type and B.1.1.7 Spike mutant SARS-CoV-2 pseudoviruses. Indicated is
serum log10 inverse dilution against % neutralization. Where a curve is shifted to the right
this indicates the virus is less sensitive to the neutralizing antibodies in the serum. Data
points represent means of technical replicates and error bars represent standard error of
the mean. Limit of detection for 50% neutralization set at 10.
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Extended Data Fig. 5. Neutralisation of WT (D614G), B.1.1.7 and TM (N501Y,
E484K, K417N) SARS-CoV-2 Spike pseudotyped virus by a panel of
57 monoclonal antibodies (mAbs). a-c, Neutralisation of WT (black), B.1.1.7
(blue) and TM (red) SARS-CoV-2-MLV by 9 NTD-targeting (a), 29 RBM-targeting
(b) and 19 non-RBM-targeting (c) mAbs.
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Extended Data Fig. 6. Kinetics of binding to WT and N501Y SARS-CoV-2 RBD of 43
RBD-specific mAbs. a-b, Binding to WT (black) and N501Y (blue) RBD by 22 RBM-
targeting (a) and 21 non-RBM-targeting (b) mAbs. An antibody of irrelevant specificity
was included as negative control. mAbs: monoclonal antibodies

Extended Data Fig. 6
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Extended Data Fig. 7

Extended Data Fig. 7. Kinetics of binding to WT and E484K SARS-CoV-2 RBD of
46 RBD-specific mAbs. a-b, Binding to WT (black) and E484K (red) RBD by 27 RBM-
targeting (a) and 19 non-RBM-targeting (b) mAbs. An antibody of irrelevant specificity
was included as negative control. mAbs: monoclonal antibodies



Extended Data Fig. 8. Binding of human ACE2 to SARS-CoV-2 WT, N501Y, TM
(N501Y, E484K, K417N) RBDs. a-b. BLI binding analysis of the human ACE2
ectodomain (residues 1-615) to immobilized SARS-CoV-2 WT RBD (a) and B.1.1.7
RBD (c). Black lines correspond to a global fit of the data using a 1:1 binding
model. RBD: receptor binding domain.
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