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Dynamic oscillatory coherence is believed to play a central role in flexible communication
between brain circuits. To test this communication-through-coherence hypothesis,
experimental protocols that allow a reliable control of phase-relations between neuronal
populations are needed. In this modeling study, we explore the potential of closed-loop
optogenetic stimulation for the control of functional interactions mediated by oscillatory
coherence. The theory of non-linear oscillators predicts that the efficacy of local
stimulation will depend not only on the stimulation intensity but also on its timing
relative to the ongoing oscillation in the target area. Induced phase-shifts are expected
to be stronger when the stimulation is applied within specific narrow phase intervals.
Conversely, stimulations with the same or even stronger intensity are less effective when
timed randomly. Stimulation should thus be properly phased with respect to ongoing
oscillations (in order to optimally perturb them) and the timing of the stimulation onset
must be determined by a real-time phase analysis of simultaneously recorded local
field potentials (LFPs). Here, we introduce an electrophysiologically calibrated model
of Channelrhodopsin 2 (ChR2)-induced photocurrents, based on fits holding over two
decades of light intensity. Through simulations of a neural population which undergoes
coherent gamma oscillations—either spontaneously or as an effect of continuous
optogenetic driving—we show that precisely-timed photostimulation pulses can be used
to shift the phase of oscillation, even at transduction rates smaller than 25%. We
consider then a canonic circuit with two inter-connected neural populations oscillating
with gamma frequency in a phase-locked manner. We demonstrate that photostimulation
pulses applied locally to a single population can induce, if precisely phased, a lasting
reorganization of the phase-locking pattern and hence modify functional interactions
between the two populations.

Keywords: oscillations, functional connectivity, modeling, closed-loop systems, optogenetic stimulation, phase

response

INTRODUCTION
Neural activity of brain circuits at many scales has often been
reported to display oscillatory components at different frequen-
cies (Eckhorn et al., 1988; Gray et al., 1989; Kreiter and Singer,
1996; Tallon-Baudry et al., 1996; Roelfsema et al., 1997; Varela
et al., 2001; Brovelli et al., 2004; Samonds and Bonds, 2004;
Melloni et al., 2007; Buffalo et al., 2011). In particular, the
communication-through-coherence hypothesis (Fries, 2005) sug-
gests that oscillatory coherence between different neural cir-
cuits could control functional interactions between them with
a high degree of flexibility (Womelsdorf et al., 2007). In par-
ticular, evidence for a role of enhanced inter-areal oscillatory
coherence in attentional modulation is rapidly accumulating
(Fries et al., 2001; Gregoriou et al., 2009; Rotermund et al.,
2009; Bosman et al., 2012; Gregoriou et al., 2012; Grothe et al.,
2012).

The circuit mechanisms underlying the local generation of
oscillations, specifically in the gamma range of frequencies
(30–100 Hz) have been explored in studies in vitro (Whittington
et al., 1995; Bartos et al., 2007) and in silico (Brunel and Hakim,
1999; Whittington et al., 2000; Brunel and Hansel, 2006; Wang,
2010). All of these contributions have highlighted the crucial role
played by the interplay of GABAergic interneurons in creating
time-windows in which excitatory and inhibitory neurons can fire
in a sparsely synchronized manner, before being counteracted by
strong and delayed feedback inhibition. More recently, the func-
tional involvement of local inhibitory networks could be causally
verified in vivo by targeted selective optogenetic stimulation of
Parvalbumine-positive basket cells in a cortical circuit (Cardin
et al., 2006; Sohal et al., 2009).

In an analogous way, optogenetic techniques might be used for
direct tests of the communication-through-coherence hypothesis
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and other suggested functional roles of brain oscillations, like
their implication in phase coding (Lisman, 2005; Koepsell et al.,
2010; Nadasdy, 2010; Kayser et al., 2012). For such applications,
however, improved optogenetic stimulation protocols are needed
that allow for precise control of the phase relations between dif-
ferent neuronal populations or assemblies, rather than a pure
enhancement of oscillatory power.

Theoretical investigations suggest that, due to non-trivial
phase response properties (Pikovsky et al., 2001) of oscillating
neuronal populations (Akam et al., 2012), stimulation pulses
might have a strong influence on local and long-range phase-
relations, but only if properly timed with respect to the ongoing
oscillatory dynamics (Tiesinga and Sejnowski, 2010; Battaglia
et al., 2012). Application of phase-timed stimuli requires a real-
time estimate of the phase from continuously recorded local field
potential (LFP) data.

Optogenetic stimulation conditional on recorded activity con-
stitutes a closed-loop setup. The advantage of closed-loop stim-
ulation compared to open-loop stimulation is the possibility to
program an artificial feedback with defined rules and constraints
dependent on the target system’s dynamical history. Closed loop
electrical stimulation has been successfully used to clamp network
activity (Wallach et al., 2011), to control the firing rate of neurons
(Miranda-Dominguez et al., 2010), to control bursting activity
(Wagenaar et al., 2005), and to train cultured neuronal networks
(Marom and Shahaf, 2002). Closing the loop between living neu-
rons and robotics has also been used to realize embodiment—by
using representations generated by network activity either to con-
trol a robotic arm (Bakkum et al., 2007) or control autonomous
systems (Bandyopadhyay, 2005)—or to study neuronal plasticity
(Novellino et al., 2007).

In this study, we explore through a modeling approach the
feasibility of closed-loop optogenetic control of the phase of a
local oscillation and of inter-areal phase synchronization. To this
end, we simulated the activity of populations of excitatory and
inhibitory conductance-based neurons with random connectiv-
ity. To investigate the case where a sparse transduction with
Channelrhodopsin 2 (ChR2) is achieved in vitro or in vivo, small
fractions of these neurons were endowed with a newly devel-
oped and data-constrained conductance-based model of a light-
activated channel. This case is of particular interest, since it has
been shown that low transduction rates achieved through either
particle mediated gene transfer or via lipid reagents (Takahashi
et al., 2012) can increase the spatial specificity of light stimula-
tion (Schoenenberger et al., 2008). Our model, however, applies
robustly also to the case of higher ChR2 transduction rates, as the
ones that can be achieved using viral transfection (Adamantidis
et al., 2007; Aravanis et al., 2007), in utero electroporation
(Petreanu et al., 2007) or in T helper type 1 (Thy1) transgenic
mice (Wang et al., 2007).

Demonstrating the reliability of our model, we first simu-
lated phase shifting of LFP oscillations with open-loop opto-
genetic stimulation, quantitatively reproducing and generalizing
experimental results in vitro (Akam et al., 2012). We moved then
to the analysis of a canonical cortical circuit with two interact-
ing areas. Here, we simulated a realistic closed-loop stimulation
protocol which was suited to trigger lasting changes of inter-areal

phase relations and, correspondingly, to affect communication-
through-coherence. Thus, we intend our modeling exploration
to foster the implementation of a new generation of closed-loop
optogenetic experiments in vitro and in vivo aiming at inducing
distributed reorganization of functional interactions at the system
level.

MATERIALS AND METHODS
ChR2 PHOTOCURRENT EXPERIMENTAL CHARACTERIZATION
Human embryonic kidney cells were transfected with a plasmid
encoding a ChR2-YFP fusion protein. The pcDNA 3.1-ChR2-
YFP construct was kindly provided by Ernst Bamberg, (MPI for
Biophysics, Frankfurt, Germany). After two–four days, success-
fully transfected cells were identified by their YFP fluorescence. In
the whole-cell configuration, the membrane voltage was clamped
to −60 mV. Channelrhodopsin’s conductance was changed by
500 ms long light pulses. The conductance change was moni-
tored as a time and light-intensity dependent current change
(Figure 1B). In the case of cultured hippocampal neurons, cell
were transfected at 7 DIV with AAV1/2-CAG-ChR2-YFP virus.
After 1 week, successfully transduced cells could be identified by
their YFP fluorescence.

Whole-field illumination was provided by an extended laser
beam (488 nm). Light intensity was controlled by neutral density
filters (optical density 1 and 2, respectively) and by means of the
software provided for the laser. A comparison of the light-induced
current waveforms for 90% attenuation by software and a neu-
tral density filter with an optical density of 1.0 showed excellent
agreement, indicating that the software produced the intended
attenuation. The laser was switched using a built-in mechanical
shutter with a response time in the μs range, achieved through
the minute spatial extent of the beam.

BIOPHYSICALLY CALIBRATED MODEL OF ChR2 PHOTOCONDUCTANCE
Based on the results of the previously described experiment,
we modeled the evoked photocurrents as the product of acti-
vation and inactivation functions. The current activation could
be described by a single exponential function and the current
inactivation by the sum of two exponential functions (see also
Figure 1B). This light-induced conductance change could be well
described by the functional form:

FChR2(t) = Aact

(
1 − e− t−tON−d

τact

)

·
(

Apersist + A(1)
inacte

− t−tON−d

τ
(1)
inact + A(2)

inacte
− t−tON−d

τ
(2)
inact

)
(1)

Here d represents a latency observed between the times tON of
light onset and the actual start of the conductance rise and Apersist

is set to Apersist = 1 − A(1)
inact − A(2)

inact in order to prevent the inac-
tivation conductance factor from becoming negative. Note that
Equation 1 holds true only as long as the light is switched on.
After switching off the light, the response returns to baseline
with a single exponential time course with time constant τOFF.
When individual current responses were fitted, the latency d, the

amplitude Aact, the inactivating fractions A(1)
inact and A(2)

inact, and
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FIGURE 1 | Evoked ChR2 photocurrent: conductance-based model.

(A) Whole cell voltage clamp recording of a cultured neuron, transduced with
Channelrhodopsine 2 (ChR2) and illuminated with LED light (during the time
interval shown by a green horizontal bar). Two current intensity recordings
have been performed, the first in a physiological solution, i.e., with all
channels active (black curve), the second with TTX in the bath, i.e., with
blocked Na-channels (red curve). When the Na channels are still active (black
curve), even the voltage clamp (−70 mV) at the soma cannot prevent the cell
from spiking. (B) Activation kinetics of the photo-induced conductance in
human embryonic kidney cells (HEK-293) that are transfected with ChR2. For
increasing light power density (100% Wmax corresponds approximately to
130 mW/mm2) the activation becomes faster. Peak conductance increases

from 0 to ∼10% of the maximal intensity and decreases for higher light
intensities. Note the different scale of evoked currents in neurons and HEK
cells. (C) Simulated photocurrents generated by the conductance-based model
described by Equation (1), for different light intensities (expressed relatively to
maximum illumination intensity) and for a rectangular shaped light pulse
stimulation with a duration of 3 ms. Model parameters and their dependence
on light intensity (see Table 2) are obtained from fits to photoconductance
recordings analogous to the one shown in panel (B), performed for different
light intensities. For short light pulses as used here, the experiments indicate
that the largest conductances are obtained for light intensities between 10%
and 50% (interpolation of the simulated photocurrent results in an optimal
value of 18% of the maximum light intensity).

the activation time constant τact were found to be dependent on
the light-intensity Wlight when individual current responses were
fitted. However, the time constants related to inactivation were
almost unchanged for different light intensities. Therefore, for
simultaneously fitting current responses evoked by different light
intensities (ranging over two orders of magnitude), two global

(i.e., light-independent) parameters τ
(1)
inact and τ

(2)
inactwere used. In

order to model the dependence on the light intensity of the other

parameters (d, τact, Aact, A(1)
inact, and A(2)

inact) we fitted the following
functions to the recorded data:

d = dA + dBWlight + dC

Wlight
(2)

τact = τ
(0)
act + cacte

−kactWlight (3)

Aact = a0 + amin − 1

1 + (
W0.5/Wlight

)2
(4)

A(1)
inact = b0 + b1

b2 + (
Wlight − Winact

)2
(5)

A(2)
inact = cinacte

−kinactWlight (6)

All the parameters of Equations (2–5) are the result of least-
squared fits. For Equation (6) kinact has been set manually to

assure convergence of the fitting procedure. All fitted parame-
ters of the ChR2 conductance model, together with their standard
deviations, are summarized in Table 1. Light intensity is mea-
sured relatively to the maximum intensity Wmax that can be
achieved in our setup. A precise calibration of the absolute power
density at the maximal intensity was not performed. We have esti-
mated it to be approx. Wmax = 130 mW/mm2 for a continuous
illumination, which is rather high if compared to 5–6 mW/mm2

used by Ishizuka et al. (2006) and Ernst et al. (2008) and the
maximum (around 20 mW/mm2) used in Nikolic et al. (2009).

ChR2-TRANSDUCED NEURONAL POPULATIONS MODEL
A local neuronal population was modeled as a random net-
work of NE = 4000 excitatory and NI = NE/4 = 1000 inhibitory
conductance-based model neurons of the Wang-Buzsáki (WB)
type (Wang and Buzsáki, 1996). The WB model describes a sin-
gle compartment neuron endowed with sodium and potassium
currents. The membrane potential follows the equation:

C
dV

dt
= −IL − INa − IK + Isyn + Inoise + κIChR2 (7)

where C is the capacitance of the neuron, IL = gL(V − VL) is
the leakage current, Isyn reflects recurrent interactions with other
neurons in the network, Inoise models the driving exerted by
background noise and IChR2 is the photocurrent-induced by
external light stimulation. Sodium and potassium currents are
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Table 1 | Parameters of the ChR2 conductance model.

Type of parameter Parameter Value ± SD l.sq fit (unit)

Latency dA 0.27 ± 0.04 (ms)

dB −0.05 ± 0.06 (ms/[Wlight])
dC 0.0126 ± 0.0006 (ms × [Wlight])

Activation τ
(0)
act 0.74 ± 0.20 (ms)

cact 12.0 ± 0.4 (ms)

kact 25 ± 2 (1/[Wlight ])

a0 1.00 ± 0.04

amin 0.4 ± 0.1

W0.5 0.38 ± 0.15 ([Wlight])

Inactivation (first
component)

τ
(1)

inact 9.06 (ms)

b0 0.16 ± 0.01

b1 0.013 ± 0.004 ([Wlight]2)

b2 0.027 ± 0.007 ([Wlight]2)

Winact 0.11 ± 0.01 ([Wlight])

Inactivation (second
component)

τ
(2)

inact 59.6 (ms)

cinact 0.29

kinact 2.4 (1/[Wlight])

Deactivation τoff 10 (ms)

Coupling prefactor gChR2 0.007 (μS)

Parameters to simulate time and light-intensity dependent conductance changes

mediated by channelrhodopsin 2. Errors are sample standard deviations.

Parameters returned from the global fit procedure do not have a measure of

uncertainty. See section Materials and methods for the model description.

voltage-dependent and given by INa = gNam3∞h(V − VNa) and
IK = gK n4(V − VK). The activation of the sodium current was
modeled as instantaneous. We used sodium and potassium cur-
rent voltage-dependent activation and inactivation functions as
given in Wang and Buzsáki (1996).

The synaptic current evoked by a single presynaptic action
potential was given by Ispike(t) = −gαsspike(t)(V − Vα), where
the reversal potential Vα of the synapse is 0 mV for excita-
tory AMPA synapses (α = E) and −80 mV for inhibitory GABA
synapses (α = I). The time-course of the postsynaptic conduc-
tance was described as a difference of exponentials:

sspike(t) ∝
(

e−(t + dsyn − tspike)/τrise − e−(t + dsyn − tspike)τdecay

)
(8)

for t > tspike, 0 otherwise, where tspike is the time of the presy-
naptic spike, dsyn is a combined conduction and synaptic delay,
and τrise and τdecay are respectively the rise- and decay time con-
stants. The normalization constant of sspike(t) was chosen such
that its peak value is equal to 1. The peak conductances of all exci-
tatory and inhibitory synapses were set to gE and gI , respectively.
The total recurrent current Isyn(t) was then given by the sum of
the contributions Ispike(t) from all presynaptic spikes fired before
time t.

The background noise input Inoise to each neuron was modeled
as an additional synaptic current-induced by statistically indepen-
dent Poisson trains of excitatory spikes with a common firing rate
νnoise and a peak conductance gnoise.

Excitatory and inhibitory neurons in the populations were
transduced by ChR2 with a same probability, given by the
transduction rate PChR2. The photocurrent prefactor κ was set
to 1 and 0 respectively for transduced and non-transduced
neurons. The induced photocurrent was given by IChR2(t) =
−gChR2FChR2

[
Wlight(t)

]
(V − VChR2). The conductance wave-

form FChR2(t) given by Equation (1)—that depends on the
applied waveform Wlight(t) of the optical stimulation—was mul-
tiplied by a prefactor gChR2, such that the peak photocurrent
evoked by a pulse with optimal light intensity in the used model
neurons (simulated at resting potential) was 2 nA . The reversal
potential was VChR2

∼= 0.
Excitatory neurons established synapses with other excitatory

or inhibitory neurons within the same local circuit with prob-
ability PE, inhibitory neurons with probability PI . In addition,
when considering multiple interconnected local areas, excitatory
neurons within a local circuit established long-range connections
with excitatory or inhibitory neurons in a remote local area with

a probability P(lr)
E .

ADOPTED PARAMETERS AND OSCILLATORY SYNCHRONY
The neuronal population model described in the previous sec-
tion can generate two qualitatively different dynamical regimes,
characterized by different degrees of oscillatory coherence. The
network resides in one or the other regime depending both on the
drive to the network, controlled in this study by varying the back-
ground firing rate νnoise, and on the strength of local inhibitory
interactions, controlled in this study by varying the probability of
inhibitory connection PI .

The single neuron and network parameters used for all simu-
lations are summarized in Table 2. However, we note that qual-
itatively similar dynamical features, in particular the existence
of a smooth transition between a weakly and a strongly syn-
chronous oscillatory regime, would be obtained for a broad range
of parameters, with the frequency of the collective oscillation
primarily determined by the synaptic time constants, τrise and
τdecay, (Brunel and Wang, 2003). We also find that the transi-
tion toward strong synchrony tends to get sharper with increasing
network size [not shown, but see as well (Brunel and Hakim,
1999)].

Synchronization of the population activity was quantified
through the synchronization index χ (Golomb and Hansel,
2000):

χ = σ2
LFP

〈σ2
Vi

〉 (9)

given by the ratio between the variance of the average membrane
potential of all excitatory and inhibitory neurons in the local
population—here briefly defined conventionally as the “LFP”
signal—and the average variance of the membrane potentials
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Table 2 | Parameters of the spiking neuronal network model.

Type of parameter Parameter Value (unit)

Single neuron gL 0.01 (μS)

VL −65 (mV)

C 100 (pF)

gNa 3.5 (μS)

VNa 55 (mV)

gk 0.9 (μS)

Vk −90 (mV)

m∞, h, n See Wang and Buzsáki

(1996)

Population size NE 4000

NI 1000

Excitatory synapses τrise 1 (ms)

τdecay 3 (ms)

gE 0.5 (μS)

Inhibitory synapses τrise 1 (ms)

τdecay 4 (ms)

gI 18 (μS)

Synaptic latencies dsyn (local) 1.5 (ms)

dsyn (long-range) 1.0 (ms)

Connection probabilities PI 0.3

PE 0.12

P(lr)
E 0.06

Background noise vnoise 3 (kHz)

gnoise 0.5 (μS)

Parameters to simulate the activity of transduced neuronal populations (see

section Materials and methods for the model description).

Vi of individual neurons in the population. The synchroniza-
tion index χ is bounded in the unit range, χ = 0 meaning
asynchronous and χ = 1 fully synchronous dynamics.

The dependency of firing rate of excitatory and inhibitory neu-
rons, of the collective oscillation frequency and of the synchrony
level χ was studied by systematically varying the parameters νnoise

in the range between 2 and 6 kHz and PI between 0.2 and 0.6
(the reference values, tabulated in Table 2, being νnoise = 3 kHz
and PI = 0.3). All the quantities were evaluated over simulated
time-series lasting 20 s of real time.

ANALYSIS OF PHASE RESPONSE
Although the simulation generates spike trains for all neurons,
we focus here on alterations of the ongoing collective activity
and, therefore, on the oscillating LFP signal. A single rectangular-
shaped light pulse with a given intensity Wlight and duration
Tlight was applied to the considered network at a specific time
of application tON. For different values of Wlight and Tlight, we
tested the effects of overall 1500 different light onset times tON,
distributed uniformly over a time interval of approximately 50
oscillation periods. Indeed, averaging over multiple periods was
required, because of stochastic fluctuations of the period length.

For each stimulation pulse, the activity of the network was further
simulated over 60 oscillation cycles following the perturbation.

In every simulation run, the initial conditions, the network
topology and the background noise were kept identical, in order
to exclusively study the dependence of the induced perturbation
on the parameters of the light stimulation and its application
time. Pairs of LFP time series were thus generated consisting of
a time series after the application of a photostimulation and a
time series of the corresponding unperturbed neural dynamics.
For every such pair of time series, instantaneous phase values were
extracted using a Hilbert transform (Gabor, 1946), an approach
extensively used for investigating phase dynamics and synchro-
nization of non-linear oscillators (Pikovsky et al., 2001). The
induced phase shift was then measured by averaging the phase
difference �φ between the perturbed and the unperturbed LFPs
over the last 50 recorded oscillation cycles. A transient of 10 oscil-
lation cycles immediately following tON was discarded to ignore
transient effects caused by the applied light pulse. The times
of perturbation application tON were translated into phases and
binned into 30 equally sized phase bins. The observed phase shifts
�φ were averaged over each bin and plotted as a function of the
phase of perturbation application φ(tON) for different light inten-
sities Wlight and perturbation pulse duration Tlight, and also for
networks with different transfection rates PChR2.

The dependency of phase responses on varying values of light
intensity, pulse duration and timing of the perturbation were
investigated for a specific realization of the network random
connectivity. We have repeated our analysis for three different
random realizations of connectivity (with the same homogeneous
probabilities of connection, PI and PE). The corresponding phase
responses to light stimuli were qualitatively and quantitatively
very similar (not shown). In particular, differences between ran-
dom network instances were of the same order of magnitude as
the error bars shown in Figure 4, corresponding to fluctuations
of the phase response over time for a same connectivity realiza-
tion. These similarities are not surprising and match theoretical
expectations, since dynamical effects arising from fluctuations
due to finite-size connectivity are small for the large network size
adopted here (Golomb and Hansel, 2000). Therefore, we can con-
clude that our results hold in general for random networks with
the same (in a probabilistic sense) connectivity features.

ANALYSIS OF PHASE LOCKING CHANGES
If two coupled neuronal populations are simulated with the
parameters given in Table 2, the oscillations of the two LFPs
self-organize in a phase-locked configuration. The temporar-
ily stable relative phase difference, �φ, can have two different
values: �φlocked or 1−�φlocked (phases are measured over the
cyclic unit interval 0 ≤ φ ≤ 1). Both phase-locking values corre-
spond to out-of-phase configurations in which either of the two
populations leads in phase over the other.

In our simulations, only one of the two local neuronal pop-
ulations was transduced with ChR2. We applied light stimula-
tion pulses to this transduced population, with a light intensity
Wlight = 20% (expressed as the percentage of the maximum pos-
sible light intensity of our setup Wmax) and a pulse duration of
Tlight = 3 ms. Similar to the protocol used for the phase response
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analysis of a single population, 1500 different pulse onset times,
tON, were used, which were uniformly distributed over 50 oscil-
lation cycles. Starting from random initial conditions, no pertur-
bation was applied for the first 100 oscillation cycles, to ensure
complete convergence to a stable phase-locked attractor. Without
loss of generality, we considered the configuration in which the
phase of the transduced population leads over that of the not
transduced population (i.e., in which the stable inter-circuit phase
difference is close to �φlocked before the perturbation).

Variations of the phase-difference between the two popula-
tions were measured in two different time-windows. We first
studied the short-term effects of the light stimulation, by aver-
aging the instantaneous Hilbert phase difference over the first 5
oscillation cycles after the perturbation. Binning different onset
times according to the corresponding phase of application of
the perturbation (as done for the estimation of single popula-
tion phase response), we quantified the probability Pshifting(φ),
that a light pulse induces a relative variation of more than 10%
(reduction or increase) of the inter-population phase-difference.
For each application phase bin, Pshifting(φ) was compared with the
probability of observing similarly large spontaneous fluctuations
of �φ in the unperturbed activity of the same network.

We then studied longer term effects of the light stimulation
by averaging the difference of the instantaneous Hilbert phases
over the 50 cycles that follow the ten omitted oscillation cycles
directly after stimulation. The aim of this long-term analysis was
to assess the occurrence of a switching from the phase-locking
pattern with phase-difference close to �φlocked toward the other
phase-locking pattern with phase difference close to 1-�φlocked.
Once again binning onset times according to the corresponding
phase of perturbation application, we quantified the probabil-
ity Pswitching(φ) that the long-term averaged phase difference was
within a tolerance interval of 1 − �φlocked ± δ, with δ = 0.05
(i.e., the transduced population switched steadily from the role of
phase leader to phase laggard). For each phase bin, Pswitching(φ)

was compared to the probability of observing a spontaneous
switching of the phase locking (from �φlocked to 1-�φlocked) over
an equivalent time span of 50 cycles, based on time-series of the
unperturbed dynamics of the same network.

The probabilities Pshifting(φ) and Pswitching(φ) were finally plot-
ted as polar histograms with ten equally-spaced bins for the phase
of the onset of the light stimulation φ(tON), in which the corre-
sponding probabilities of spontaneous shifting or switching were
also reported in order to identify phase bins in which the effects
induced by the perturbation pulse were significantly low or high
(Figure 5).

ONLINE PHASE PREDICTION
A closed-loop approach (Figure 6) is necessary to estimate a time
tON which corresponds to a future occurrence of a given tar-
get phase φtarget, leading to the largest possible probability of
switching of the inter-areal locking (Figure 5).

To study the feasibility of such an approach, we modeled its
implementation, considering the same bi-areal network used to
characterize induced switching between phase-locked states (see
previous section and Figure 5). Simulated LFPs were recorded
from both the stimulation target area and a second coupled

area. However, the calculations performed online involved only
the LFP time-series V(t) recorded in the target area. The time-
series Ṽ(t) of the second area were recorded and analyzed
offline to determine phase-locking patterns before and after the
stimulation.

We approximated the “true” Hilbert phase φH(t) associated to
V(t) by a linearly interpolated phase. This approximation could
be simply done by interpolating a variable φL(t)that was lin-
early growing in the unit interval 0 ≤ φL < 1 between any two
times tk and tk+1 delimiting an oscillation cycle. As shown by
Figure 7B, the phase variables φH(t) and φL(t) are related by a
mildly non-linear map, described as a static non-linearity φH =
fLH(φL). However, we systematically ignored this non-linearity in
the following by approximating φH(t) directly by φL(t).

The workflow for the prediction of the perturbation onset time
tON is split up into multiple stages (Figure 6). First of all, it was
necessary, during a testing stage, to detect the presence of suf-
ficiently strong local oscillations and to measure their average
frequency fpeak. It was important to monitor the characteristics
of LFP oscillations (band-passed around fpeak) in the stimulation
target area (monitoring stage) and to extract, based on observa-
tions of past activity, a model able to approximately predict future
phase evolution (prediction stage).

Even in the ideal case of an elevated synchrony index χ and
sustained oscillations, the duration of oscillation periods Ti fluc-
tuated from cycle-to-cycle around their average T̄(cf. Figure 7A).
Let us suppose that the last oscillation period recorded in the
monitoring stage was Tk = tk − tk−1 and that the prediction
stage lasts (less than) s oscillation cycles. Neglecting correlations
between period lengths of consecutive cycles, the time of begin-
ning of the next cycle after the end of the prediction stage could
be estimated via a simple linear extrapolation:

t(0)
k + s = tk + sT̄ (10)

However, for our network model, the temporal autocorrelation
function of period lengths Ti, i = 1, . . . , k displayed a fast but not
instantaneous decay for increasing lags (measured in oscillation
cycles). These weak, positive correlations between consecutive
cycle durations could be well captured by a first order autore-
gressive process [AR(1)], Ti = T̄ + a(Ti − 1 − T̄) + εi, with T̄ the
average oscillation period over the monitoring time-window, a
the AR(1) coefficient and i an i.i.d. Gaussian distributed residual
noise term (Brockwell and Davis, 1996). With this AR(1) model,
the beginning of the next cycle was estimated as:

t(1)
k + s = tk + sT̄ +

(
as + 1 − a

a − 1

)
· Tk (11)

The AR(1) coefficient was derived as:

a = k

k − 1

∑k − 1
i = 1

(
Ti − T̄

) (
Ti+1 − T̄

)
∑k

i = 1

(
Ti − T̄

)2 (12)

based on the periods Ti, i = 1, . . . , k, measured during the mon-
itoring stage and on their average duration T̄.
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Spectral analysis of LFPs recorded in the stimulation target
area and in a second coupled area was performed during the test-
ing stage. A windowed Fast Fourier Transform (FFT) was applied
to demeaned chunks of the LFP signal, to extract a rough esti-
mate of the instantaneous power spectrum. When the power at
some frequency fpeak in the gamma range exceeded a determined
threshold in both recorded areas, the monitoring stage started.

During the monitoring stage, a computationally efficient low-
order recursive time domain filter (Percival and Walden, 1993)
was applied to clean the oscillating LFP signals. The filtered time-
series was computed online as:

Vfiltered(t) = V(t) + α1Vfiltered(t − 1) + α2Vfiltered(t − 2) (13)

Filter coefficients were chosen as α2 = −0.99 and α1 =
4α2 cos(2π(1 − fpeak))/(1 − α2) (assuming a sampling rate of
1 kHz). The pass frequency was then equal to fpeak and the main
frequency of the activity of recorded areas was maintained. The
LFP time-series V(t) and Ṽ(t) recorded during the monitoring
stage were stored. An analysis of the inter-areal phase-locking
pattern before stimulation was then performed offline, while
the closed-loop experiment was continuing. A monitoring stage
including approximately 20 oscillation cycles was found to be
sufficiently long to achieve accurate model estimation.

The limited amount of fast computations to be performed
during the prediction stage is summarized as follows:

1. Subtract the mean value from the band-passed LFP time series
Vfiltered(t) measured during the monitoring window in the
stimulation target area.

2. Calculate the timings t0, t1, . . . , tk at which the LFP Vfiltered(t)
crosses zero. Their differences Ti = ti − ti − 1, i = 1, . . . , k are
the estimated period lengths of the observed oscillations.

3. Calculate the average period length T̄ from the series of Ti.
4. If the AR(1) approach is used, then compute the a coeffi-

cient based on equation (12) and compute the perturbation

onset time as t(1)
ON = t(1)

k + s + φtargetT̄, where t(1)
k + s is given by

Equation (11).
5. If a simpler linear extrapolation is used, compute the pertur-

bation onset time directly as t(0)
ON = t(0)

k+s + φtargetT̄, where t(0)
k+s

is given by Equation (10).

After the application of the perturbation pulse, the LFPs of
both areas were recorded and stored. An analysis of the inter-
areal phase-locking pattern after stimulation was then performed
offline and compared to the phase-locking assessed before stim-
ulation. In case of failed switching, either the same linear model
was used to extrapolate directly the time tON of a further stim-
ulation pulse, or a new testing stage was initiated, verifying that
oscillations were still ongoing or waiting for the next oscillatory
epoch to begin.

The decision between a prediction scheme based on the AR(1)
model and a simpler linear extrapolation scheme depends ulti-
mately on the correlation statistics of the series of period lengths.
It can be shown that the prediction error of the estimated phase
is reduced by the AR(1) prediction scheme compared to lin-
ear extrapolation by a maximal amount of 100%/

√
1 − a2 (and

by exactly this amount for Gaussian distributed samples). If the
AR(1) parameter a estimated from the recordings during the
monitoring window is small (as a rule of thumb, a < 0.3), then
the performance improvement is negligible and advantage can be
taken from the faster computation of the simpler linear extrapo-
lation. Unfortunately, this criterion requires the evaluation of a.
Nevertheless, the analysis of Figure 7E indirectly suggests that the
AR(1) coefficient depends non-monotonically on the synchrony
level, and that it increases going from low to intermediate syn-
chrony indices χ, but drops again going toward higher χ. The
choice of a high power threshold during the testing stage guar-
antees a high level of synchrony and, therefore, small values of a
during the monitoring stage. This allows one to adopt the compu-
tationally faster step (5) instead of (4). However, a tradeoff should
be made between the need of a fast prediction and the probability
to detect a number of oscillatory epochs sufficient for meeting the
testing stage criteria.

RESULTS
DATA-CONSTRAINED MODEL OF ChR2-PHOTOCURRENT
In order to assess from in silico experiments the efficacy of opto-
genetic stimulation in inducing changes of local phase or of
inter-areal phase relations, we first derived a realistic and fully
data-constrained model of the evoked ChR2 conductance. To
do so, we first performed an experimental characterization of
photocurrents evoked in living cells in vitro by light stimulation
over a broad range of light intensities spanning two decades of
power (see section Materials and Methods). Then, based on this
systematic set of measurements, we fitted to the whole dataset
a unique conductance-based model that describes the evoked
time-dependent photocurrent, and hence the conductance, as the
product of activation and inactivation factors.

The light-activated ChR2 ion channel mediates a current that
is carried mostly by Na+, K+, and H+ with contributions of Ca2+.
Its reversal potential is typically around 0 mV and therefore it is
depolarizing at neuronal resting potential. We found that upon
illumination onset, a current built up with a nearly exponential
time course with a time constant τact ranging from 10 ms, for very
weak light intensities that barely evoked any current response,
to below 1 ms for high intensities. For a large range of intensi-
ties the current displayed a transient behavior and its amplitude,
after reaching a peak, decayed over tens of milliseconds to reach
a plateau. This inactivation behavior was biphasic and its time
constants were not dependent on light intensity, unlike the acti-
vation time constant. Finally, when the light was switched off, the
current decayed back to baseline with a time course that was well
described by a single exponential with a 10 ms time constant.

Figure 1A depicts inward currents induced by a light pulse
of moderate intensity (approximately 3 mW/mm2 for 10 ms) in
a cultured hippocampal neuron transduced with ChR2. Even
such a weak light pulse was able to elicit an action current, as
the axon escaped the voltage-clamp (Figure 1A, black line). The
ChR2 photocurrent could be isolated, by blocking Na-channels
with tetrodotoxin (Figure 1A, red line).

To achieve an improved characterization of the photocurrent
time-course, we systematically analyzed recordings over (non-
spiking) transfected kidney cells (Figure 1B) using a very large
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range of light power densities for the characterization of ChR2
activation and inactivation kinetics. We found that the peak and
steady state photocurrent do not increase monotonically with
light power density. A maximal peak current is achieved around
10–20% of the maximum power density (see section Discussion).
For applications, where such power densities can be attained, for
instance with a laser or a strongly focused LED, a careful tuning
of the applied light intensity could thus potentially reduce the
minimum transduction rate needed to efficiently drive the local
oscillations in a target area.

As detailed in section Materials and Methods, it was possible to
capture the time-course of the evoked ChR2 current with a single
conductance-based model with light-dependent parameters. The
simulated photocurrents generated by the model in response to a
single square pulse of light lasting 3 ms are shown in Figure 1C
for various light intensities (corresponding to the typical short
pulse length used in the simulations of next sections). As evident
from Figure 1C, our data-constrained model was able to cap-
ture the non-monotonic dependence of peak photocurrent on the
light intensity, leading to the largest peak photocurrent for a light
intensity of approximately 18% the largest deliverable intensity
Wmax.

SPIKING NETWORK MODELS OF TRANSDUCED OSCILLATING AREAS
To study the response to light stimulation of systems involving
transfected neuronal areas, we simulated the activity of simple
canonic circuits composed of just one local area or of two local
areas mutually coupled with equal strength. Each area was mod-
eled as a large network of randomly interconnected excitatory and
inhibitory neurons. As shown in Figure 2A, a fraction of these
excitatory and inhibitory model neurons were equipped with
ChR2 photoconductances, inducing depolarization in response to
simulated light stimulation.

For most of the analyses reported in this study, we adopted
within each local area strong and delayed inhibition and a suffi-
ciently strong background drive (see Table 2). With such a choice
of parameters, local circuits underwent—through an “ING”-
type (i.e., “interneuron-generated”) mechanism (Whittington
et al., 2000; Brunel and Wang, 2003; Brunel and Hansel, 2006;
Tiesinga and Sejnowski, 2009) a marked and persistent oscil-
latory activity, well visible in the traces of a LFP-like signal.
The collective frequency of oscillation was in the gamma range.
Since driving was provided by background Poisson noise, the
spiking activity of individual neurons was very irregular and
characterized by a weaker firing rate (cf. Figure 2B). Weak
pairwise correlations between spike trains coexisted thus with
stronger pairwise correlations between membrane potential fluc-
tuations (Yu and Ferster, 2010; Battaglia and Hansel, 2011). While
inhibitory connections were confined within each local area,
excitatory neurons could additionally establish long-range con-
nections between distant local areas (Figure 5A). In this case,
the gamma oscillations generated by each local circuit were
set into one of many possible multistable phase-locked states
(Figure 5B).

The dynamical features of the simulated neural activity,
including in particular its degree of oscillatory synchrony,
depended sensibly on the noisy drive to the network and on the

A
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Transduced

B

#1

#100

Spikes

“LFP”

40 ms

FIGURE 2 | Model of a ChR2-transduced population. (A) Graphic cartoon
of a randomly-connected network of inhibitory and excitatory spiking
neurons. In order to model the effects of local ChR2 transduction a variable
fraction of the neurons is endowed with a ChR2 photoconductance. (B)

Sample activity from the local circuit model of panel (A). Due to strong and
delayed recurrent mutual inhibition, the network undergoes a collective
oscillatory activity with a frequency in the gamma range. Even when
oscillations at the population level are very regular (see an example
“LFP”—i.e., average membrane potential—time series), individual neurons
spike very irregularly with a much lower firing rate (see raster plot of the
activity of 100 excitatory neurons).

strength of local inhibition. For increased drive intensity and/or
stronger inhibitory interactions, a smooth transition occurred
toward a dynamic regime characterized by elevated collective
synchronization (Figure 3A). In this synchronous regime, the fre-
quencies of the network oscillation were in the gamma range,
varying between 40 and 70 Hz (Figure 3B), while the average fir-
ing rate of individual excitatory neurons varied between 1 and
3 Hz (Figure 3C) and of inhibitory neurons between 2 and 7 Hz
(Figure 3D).

Starting from a very wide range of parameters including the
probability of inhibitory connections and the strength of the
external driving force (Figure 3), oscillatory synchrony can be
robustly boosted by enhancing the external drive to the net-
work. Qualitatively reproducing existing experimental findings
(Adesnik and Scanziani, 2010; Akam et al., 2012), our simulations
showed that slowly ramping or constant low-intensity optoge-
netic stimulation can be used to “switch on” a markedly oscil-
latory behavior. As shown by Figure 3E a network with poorly
synchronous activity can be optogenetically driven toward higher
oscillatory synchrony, as evident not only from LFP spectrograms
but also visually from LFP traces.

In the following, we will mainly consider model networks
tuned to generate strong LFP gamma oscillations. However, such

Frontiers in Neural Circuits www.frontiersin.org April 2013 | Volume 7 | Article 49 | 8

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Witt et al. Precisely-phased optogenetic stimulation

A

C D

B E

0 2 4 6 8
0

0.5

%
 W

Time (s)

0

0.5

1.0 P
ow

er (a.u.)

10

0 2 4 6 8 10
Time (s)

0 Hz

50 Hz

100 Hz

“LFP”

Light

0.2 0.60.4

2

6

4

ν no
is

e 
(k

H
z)

PI

E firing rate

0

5

10

H
z

0

5

10

H
z

0.2 0.60.4

I firing rate

PI

0.2 0.60.4
PI

30

50

80

H
z

Collective freq.Synchrony

0

0.4

0.8

χ

0.2 0.60.4
PI

2

6

4

ν no
is

e 
(k

H
z)

FIGURE 3 | Driving the network toward coherent oscillations. The
dynamical regime of a neuronal population depends on the strength of
local inhibition (parameterized by the probability pI of inhibitory
connections) and on the strength of an external driving force
(parameterized by the rate νnoise of background inputs). Shown are the
synchronization index (A) which has values in the unit interval (0
corresponds to asynchronous and 1 to perfectly synchronous dynamics);
the oscillation frequency of collective activity (B); and the average
firing rates of excitatory (C) and inhibitory (D) neurons. All four quantities

are presented in their dependence on the probability of inhibitory
connections, PI , and the rate of background noise input, νnoise. (E)

Constant or slowly ramping optogenetic stimulation increases the
external drive to a neuronal population. This results in intensified
collective oscillations and enhanced synchronization at the population
level. From top to bottom: LFP time-series (purple) observed during a
slowly ramping photostimulation (green); the associated spectrogram
(graph at the bottom) indicates the development of highly coherent
gamma oscillations as an effect of continuous photostimulation.

a choice is not an arbitrary restriction. Indeed, high synchrony
regimes—either spontaneously emergent or induced artificially
by continuous photostimulation—are particularly suited for
analyses of phase shifting and locking.

SHIFTING THE PHASE OF AN ONGOING LOCAL OSCILLATION
It is well known that the effect of a perturbation to an oscillat-
ing system depends on the phase at which the perturbation is
applied (Pikovsky et al., 2001). To explore the phase dependency
of light stimulation, we applied simulated stimulation pulses
with different durations Tlight to local populations with different
transduction rates PChR2 (Figure 4). Light intensity was always
set to the optimum value of Wlight = 18% Wmax, which led to
maximum evoked peak photocurrents.

For all the explored conditions, we always found strongest
effects on the phase of an ongoing oscillation when the pertur-
bation was applied at a phase half-way between the trough and
the peak of the collective population oscillation (Figure 4B). In
this case the phase of the perturbed oscillation was advanced
with respect to the unperturbed case (Figures 4C,D). Short pulses
lasting 1 or 3 ms led only to phase advance effects. As shown
in Figure 4C, phase advances of the order of one quarter of a
cycle could be achieved using such short pulses, over a very wide
range of transduction rates, going from very high (100%) down
to moderate (25%). Noticeable phase advance effects (although
reduced to just one tenth of a cycle) could even be detected for
transduction rates as low as 5%.

As displayed by Figure 4D, longer stimulation durations also
led to phase lagging effects. These effects occurred in different

ranges of perturbation application phases than for phase advanc-
ing effects. However, phase lagging effects were always weaker
than phase advancing effects. For instance, for a transduction rate
of 25%, pulses lasting 10 ms could induce phase advances of over
a quarter of cycle, but only phase laggings of less than one tenth
of cycle.

The positive peaks of the phase response curves (PRCs) plotted
in Figures 4C,D were aligned across all conditions. The strongest
phase shifting effects were always observed when the perturba-
tion was applied in proximity of the phase φ = 0.17. We also
mention that for the short stimulation duration used, the evoked
photocurrent was dominated by the fast activation time-course.
Inactivation played no role in determining the response. As a mat-
ter of fact, the effect of the fast initial rise of the photocurrent was
to evoke a spike in the transduced neurons, as in panel 1A, and
additional synchronous spikes evoked in a subpopulation of cells
were the dynamic cause of the induced phase shift, as in Battaglia
et al. (2012).

PERTURBING PHASE RELATIONS BETWEEN DIFFERENT OSCILLATING
POPULATIONS
After the controlled shifting of the phase of a local oscillation, we
explored whether precisely phased stimulation could be used to
manipulate phase relations between different local oscillating cir-
cuits. To do so, we considered a canonic circuit of two coupled
oscillating areas, interconnected by long-range random excitatory
projections (Figure 5A). In general, when driven into a syn-
chronous regime, motifs of a few local areas mutually connected
with equal strength can give rise to different phase-locked states.
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FIGURE 4 | Phase shifts induced by photostimulation. (A) Examples of
phase shifts induced by a single light pulse. Top: the phase (blue curve) of
the oscillation of the transduced population is shifted by light perturbation
(illustrated as a lightning symbol with green background) and, afterwards
(magenta curve), remains advanced with respect to the unperturbed
oscillation (gray curve). Bottom: such a phase shift cannot be seen when
the timing of the light perturbation corresponds to other differently chosen
oscillation phases. (B) Waveform of the oscillating LFP in dependence on
the Hilbert phase. Shown are 500 oscillation cycles (gray) of a LFP and
their average waveform (blue). By our conventions, the phase ranges in
the unit interval. The maximum of the LFP is obtained for (Hilbert) phase

values close to 0.3 while the minimum occurs for phase values close to
0.6. (C,D) phase shifts caused by light pulses applied at different (Hilbert)
phases of the ongoing LFP oscillation. An optimal light intensity of 18%
Wmax is used. (C) Dependence of the phase shift on the transduction rate
PChR2 of the population (for a stimulus duration Tlight = 3 ms). (D)

Dependence of the phase shift on the stimulus duration Tlight (for a fixed
transduction rate of PChR2 = 25%). Bold characters in the legend denote
the “reference” phase shift, i.e., PChR2 = 25% and Tlight = 3 ms of
stimulus duration (green curves). In panels (C) and (D), error bars are
standard deviation of the phase shifts obtained for different perturbations
applied in a same time-bin.

These states are associated to different patterns of inter-areal
phase relations, which are maintained in a relatively stable man-
ner over long time intervals (Battaglia et al., 2007, 2012).

The specific bi-areal network of Figure 5A generated two
multi-stable phase-locked states. In the unperturbed system,
background noise caused spontaneous switching between these
two states (i.e., from one configuration of inter-areal phase rela-
tions to another). The result of these stochastic fluctuations was a
clearly bimodal distribution of the instantaneous phase difference
between the two areas (Figure 5B). The actual phase relations
in the phase-locked modes depend ultimately on the PRC of
the coupled populations. As discussed in Battaglia et al. (2007,
2012), the PRCs associated to our network model are such that
they lead to out-of-phase locking for sufficiently strong inhibi-
tion (unless long-range synaptic delays are tuned ad-hoc within
narrow intervals associated to in- or anti-phase configurations).
Out-of-phase locking is found also in more general systems of
pulse-coupled neurons (or neuronal masses) under certain con-
ditions on synaptic delays (Woodman and Canavier, 2011; Wang
et al., 2012).

In out-of-phase locked modes, it is always possible to iden-
tify one area (leader) whose oscillations lead in phase over the
oscillations of the other area (laggard). This leads to anisotropic
directed functional influences between local circuits (Battaglia
et al., 2012), in agreement with the communication-through-
coherence hypothesis (Fries, 2005), despite the fact that inter-
areal connections are reciprocal and of equal strength in both

directions. Switching between alternative phase-locking con-
figurations would thus correspond to changes in the domi-
nant direction of inter-areal functional influences. Spontaneous
switching was a relatively rare event in the high synchrony
regime explored here (the average waiting time for sponta-
neous switching was over 60 periods). Nevertheless, optogenetic
stimulation could be used to actively trigger switching events
(Figure 5C).

Inter-areal phase relations after the application of a single
perturbation pulse were compared to the average locked phase
difference before the pulse itself. We studied how both transient
short-term and persistent long-term effects depend on the phase
of perturbation onset. Figure 5D shows the probability that the
average inter-areal phase difference for the five cycles directly fol-
lowing the perturbation has increased or reduced by at least 10%
relative to the average phase difference prior to the perturbation.
For a wide range of phases of stimulation onset, such proba-
bility was larger than 50% and remarkably larger than the level
accounted for by spontaneous fluctuations of the inter-areal phase
difference.

The dependency on the perturbation phase was more pro-
nounced for long-term effects. Figure 5E shows the probability of
a switch in phase locking, i.e., that the average inter-areal phase
difference over a long time window beginning ten cycles after
the perturbation has changed its sign (note, indeed, that the two
phase-locked configurations of the simulated bi-areal motif are
characterized by average phase-differences of �φ = ±�φlocked,
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FIGURE 5 | Local photostimulation can reorganize long-range

phase-locking patterns. (A) Cartoon of two local populations (each of
them with an individual background color: orange and violet) coupled by
long-range excitatory connections. (B) Both populations oscillate in a
non-regular way but with the same main frequency. A histogram of the
instantaneous phase difference is shown for a pair of very long LFP time
series (over 50,000 oscillation cycles). This distribution is clearly bimodal,
indicating the existence of two favorite modes of approximate out-of-phase
locking (with the orange population leading in phase over the violet, or the
other way around). (C) LFP traces of two phase-locked populations. The
application of a light pulse stimulation (denoted by a green background and
a lightning symbol) can induce switching to another phase-locked mode.
This is shown by the qualitative changes between the crosscorrelogram
(XC, computed over 500 ms) of the two LFPs before (left) and after (right)
light stimulation. Note the changed sign of the lag of the highest XC peak,

which corresponds to an inversion of the direction of functional
connectivity. (D) Probability of changing the average inter-population phase
difference of more than 10% during five oscillation cycles after light
stimulation (PChR2 = 25%, Tlight = 3 ms). This probability is presented by a
polar histogram in dependence on the phase of the onset of the light
stimulation (with respect to the leader population). The red circle indicates
the probability of similarly large spontaneous phase shifts (i.e., without
photostimulation). (E) Phase difference averaged over 50 cycles starting 10
cycles after the light pulse. A switching is considered as successful if the
sign of this average phase difference has changed (see panel B). The
probability of successful phase switching is given by a polar histogram, as
in panel (D). The red circle indicates the probability of spontaneous
switching in the case of non-stimulated activity. Ignoring transient effects,
switching can be induced with high probability only if the perturbation is
applied within a specific narrow phase range.

cf. Figure 5B). In contrast to short-term shifting, the probability
of actual switching was concentrated in a narrow phase interval
centered on the peak of the single-area PRC, as expected from
theory (Battaglia et al., 2012). The switching probability for other
phase bins dropped quickly to the level of spontaneous switching.

Our simulations show that the peak probability of
optogenetically-induced switching could rise above 60% even
for small transduction rates of 25%. However, this happened
only if the phase of the perturbation onset was precisely selected.
Indeed, the comparison of Figures 5D,E shows that many of the
short-term shifting effects observed for randomly phased pertur-
bations did not develop into lasting changes in phase-locking. To
conclude, we would like to mention that a similar pulse-induced
reorganization of inter-areal phase relations could be achieved
even when the perturbation was applied to the laggard rather than
to the leader area [not shown, but see (Battaglia et al., 2012)].

CLOSING THE LOOP
As discussed in the last section, the controlled switching of inter-
areal phase-locking—and, hence, of functional connectivity—
required perturbations optimally phased with respect to ongoing

oscillations. To increase the probability to induce switching, the
timing of perturbation must thus be determined based on phase
information extracted from recordings of the recent popula-
tion activity. We suggest here a possible closed-loop protocol for
the online prediction of the timing of stimulation achieving an
optimal switching rate. The workflow of the proposed idealized
experiment is outlined by a schematic time bar (Figure 6A) and
a corresponding flow chart (Figure 6B). The potential perfor-
mance of such protocol was studied by simulating the induction
of switching in the bi-areal network of Figure 5A.

In contrast to this well behaved in silico model, oscillatory
coherence in vivo or in vitro recordings is usually transient and
confined to specific epochs. There is nevertheless experimental
evidence that epochs of phase synchronization at fast gamma fre-
quencies can persist over several hundreds of ms in vivo (Varela
et al., 2001; Pesaran et al., 2002; Gregoriou et al., 2009; Bosman
et al., 2012; Grothe et al., 2012). Detecting the onset of one of such
oscillatory epochs was precisely the aim of the testing stage, in
which LFPs in both areas of the bi-areal motif were recorded and
their spectral characteristics extracted in real-time to verify that
LFP power and inter-areal coherence with respect to a common
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FIGURE 6 | Closed loop strategy for precisely phased

photostimulation. (A) Schematic illustration of the proposed experimental
protocol. During the testing stage (light blue) the LFP is recorded and
tested for sufficiently strong power in the gamma-range. If the gamma
band power is high enough, then a bandpass-filter is tailored to its peak
frequency (light gray arrow). In the monitoring stage (red), phases are
extracted from the band-passed LFP. Based on these observations, during
the prediction stage (yellow), lasting only a very few oscillation periods, a
linear model of phase evolution is extrapolated to predict the time at which
the target phase of the oscillation will occur next. A light pulse is then
delivered at this predicted time (green background with lightning symbol).
(B) The workflow of the closed loop experiment is presented as a flow
chart, with the left swim lane presenting computation and decision steps
and the right swim lane showing recording and stimulation of the
transfected neuronal population. Curved green arrows highlight the
closed-loop nature of the workflow, i.e., the light pulse stimulation delivered
at a time depending on the phase evolution of LFP oscillations during the
monitoring window.

frequency (band) rose above a minimum threshold (see section
Materials and Methods).

The monitoring stage was entered immediately after the detec-
tion of an epoch of reliable inter-areal coherence. During this
monitoring stage, LFP signals were recorded, filtered in real
time through a low-order band-pass filter with a pass frequency
optimized during the testing window and, finally, stored.

A fast online analysis of the phase dynamics of the stored LFP
of only the target area was then performed during the follow-
ing prediction stage. Its aim was to predict the timing of one of
the next occurrences of the target phase, solely from the phase
information acquired during the monitoring stage. To keep the
prediction window as short as possible, we propose to use com-
putationally cheap and consequently linear techniques for phase
extrapolation. Indeed, the “real” phase values (given by Hilbert
Transform of the LFP signal, see section Materials and Methods)
and a simple linear descriptor of the phase are strongly corre-
lated (Figure 7B) and non-linear effects can be neglected in a
first-order approximation.

The phase-locking between LFPs recorded after the stimula-
tion application was finally compared with the locking existing
before the stimulation to verify the successful induction of state
switching.

Figure 7 analyzes the simulated performance of the proposed
protocol, when applied to in silico recordings from the bi-areal
network motif of Figure 5. Figure 7C shows how the predicted
onset phases of light stimulation concentrate around the actual
target phase given by the peak PRC value of φtarget = 0.18.
The scattering of predicted phases is computed by hypothesiz-
ing prediction stages with different possible (short) durations.
This estimate was done with two prediction schemes which both
have fast implementations: a simple linear extrapolation based on
the average period length and a first-order autoregressive model
[AR(1)] (see section Materials and Methods), accounting for cor-
relations between the durations of successive oscillation cycles, at
least approximately. For increasing lengths of the prediction win-
dow, the median and the average value of the predicted Hilbert
phase remained very close to the target (Figure 7C). However, the
distribution of extrapolated phase values broadened, as indicated
by their increasing dispersion. Nevertheless, for a prediction win-
dow lasting three oscillation cycles—a sufficiently long time to
perform the fast computation required for linear extrapolation
(see section Discussion)—the interquartile range of predicted
phase values was still contained in the width of the reference PRC.
Consequently, we still expect an enhanced effectiveness of light
stimulation pulses applied at the inferred time tON, compared to
randomly timed pulses.

The error made in predicting a target phase depends neces-
sarily on the quality of the recorded oscillation. The dynamical
regime of the simulations in Figures 5 and 7C was strongly syn-
chronous. As previously discussed, the degree of synchrony of
the collective response depends on the external driving force to
the network and on the strength of local inhibition (Figure 3A).
We performed phase prediction based on recordings of simu-
lated dynamics with different degrees of synchrony. As shown in
Figure 7D, stronger synchrony was associated to smaller predic-
tion errors. Interestingly, prediction errors remained moderate

Frontiers in Neural Circuits www.frontiersin.org April 2013 | Volume 7 | Article 49 | 12

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Witt et al. Precisely-phased optogenetic stimulation

C

P
re

di
ct

io
n 

tim
e 

(c
yc

le
s)

Estimated Hilbert phase

2

-0.2 0.0 0.2 0.4 0.6 0.8

3

1

0.0

0.2

Linear

AR(1)

Target

BA

D

2

6

4

ν no
is

e 
(k

H
z)

0.2 0.60.4
PI

0

0.1

0.3 P
hase std

Prediction error

0.2

AR(1) rel. error

-50%

-25%

0%

0.2 0.60.4
PI

E

18

TH

16

14P
er

io
d 

(m
s)

0

0.5

-0.5P
ha

se
 (

H
ilb

er
t)

-0.5 0 0.5

Phase (linear)

fLH

FIGURE 7 | Online prediction of the phase of stimulation onset. (A) The
period length of LFP oscillations fluctuates from cycle to cycle and has a
broad-range uni-modal distribution (here shown for period lengths as
estimated from the Hilbert phases). (B) Hilbert phase versus linear phase for
a sample LFP time series. To speed-up the computation of tON in the
prediction stage, the Hilbert phase can be approximated by a linear phase,
since, as here shown, they are strongly correlated and the mild static
non-linearity fLH linking them can be neglected. (C) Distribution of the phase
of tON predicted by two different methods and for different lengths of the
prediction window (measured in oscillation cycles). Shown are histograms
and box plots (box giving median and interquartile range, white circle the
mean value and whiskers the 5-th and 95-th percentiles) of the predicted
phase of light stimulation φ(tON) for two prediction methods—pure linear
extrapolation based on the average period length (green) and first order
autoregressive [AR(1)] models (orange)—applied to period lengths recorded

during the monitoring stage. Both the median and the mean of predicted
Hilbert phase are in good agreement with the exact target phase (leading
with highest probability to a phase shift) with a dispersion not larger than the
width of the positive part of the reference phase-shift response curve
(reproduced from Figures 4C,D on the top of the panel). (D) The prediction
error (i.e., the standard deviation of the inferred phase φ(tON) of
photostimulation onset) depends on the synchronization level of the neuronal
population activity (cf. Figure 3A). The prediction error based on linear
extrapolation (measured in units of average oscillation period lengths) is
shown for different probabilities of local inhibitory connection pI and
background noise rates νnoise. Larger synchronization leads to better
prediction. (E) The ratio of the prediction error based on the AR(1) model and
the prediction error based on linear extrapolation in dependence on the same
parameters. For intermediate synchrony levels, the prediction error can be
consistently reduced by the use of an AR(1) model.

even when considering regimes “at the edge of synchrony.”
Furthermore adopting a more elaborate AR(1) approach yielded
the strongest performance improvement with respect to simpler
linear extrapolation precisely for these intermediate synchrony
values (Figure 7E).

In contrast, prediction errors associated to weak synchronous
dynamics were larger and even the AR(1) approach failed to
improve over linear extrapolation in these cases. However, in
these regimes, the dynamics rarely displayed long-lasting oscil-
latory epochs and the probability of spontaneous switching was
comparable to the one of induced switching, thus invalidating
our analysis protocol. In these cases, therefore, continuous photo-
stimulation should be used to enhance the degree of coherence of
the coupled populations activity (analogously to Figure 3E).

DISCUSSION
FROM POWER BOOSTING TO RELIABLE PHASE CONTROL
Optogenetic stimulation has been successfully applied to boost
the power of fast neural oscillations in vivo and in vitro. In
Cardin et al. (2006), pulsed optogenetic stimulation in vivo was
used to highlight the existence of a resonance at gamma range
frequencies of local inhibitory cortical microcircuits. Adesnik
and Scanziani (Adesnik and Scanziani, 2010) and Akam et al.

(2012) experimented with ramped light stimulation to induce
long-lasting oscillatory episodes in slices.

Beyond controlling oscillation power, the experiments by
Akam et al. (2012) are closely related to the first part of our
model study. They used 5 ms-long light stimulation pulses to shift
local oscillation phases and quantify the phase response curves
(PRCs) of oscillations in hippocampal slices, analogously to the
simulated experiment of Figure 4. The hippocampal PRC mea-
sured by Akam et al. (2012) was distinctly biphasic, leading to
phase advancement or phase delaying, depending on the phase
of application of the stimulation. Such biphasic PRC shape is
in qualitative and approximately in quantitative agreement with
the PRCs extracted from our local population model for stimu-
lation pulses of comparable lengths (cf. Figure 4D, orange curve
for 5 ms-long pulses and red curve for 10 ms-long pulses).

Interestingly, however, the PRCs extracted from our model
for shorter stimulation durations lacked phase-delaying regions
and displayed only a narrow phase range leading to consistent
phase advancement. Furthermore, they were characterized by a
relatively broad range of application phases for which light stim-
ulation was completely ineffective. These features of the PRC
shapes are robustly obtained if the circuit mechanism for the
generation of oscillations dominantly relies on delayed mutual
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interactions within interneuronal networks (Battaglia et al., 2007,
2012). One can actually use very different neuronal models to
obtain oscillatory and phase-locking behaviors that qualitatively
match those observed. For instance, spatially structured networks
of integrate-and-fire neurons (Battaglia and Hansel, 2011) have
dynamical regimes that tightly correspond to those of homo-
geneous networks of the conductance-based neurons (Battaglia
et al., 2007) that we adopt here. We predict therefore that sim-
ilarly looking PRCs could be obtained in the case of Kainate-
induced in vitro oscillations in slices, in which excitatory neurons
are entrained by a coherently oscillating interneuronal popula-
tion but are not actively involved in the generation of the local
rhythm (Fisahn et al., 2004; Bartos et al., 2007; Andersson et al.,
2012).

Narrow phase ranges associated to large PRC values reduce
the probability of inducing stable phase shifting by applying
stimulation at arbitrary times. However such narrow intervals
become a desirable resource when optogenetic stimulation is pre-
cisely phased conditional to ongoing oscillations, as executable
in perspective with a closed-loop setup. Indeed, PRC shapes
like the reference PRC discussed in Figure 3 (green curve for
PChR2 = 25%, and Tlight = 3 ms light-pulses) could allow an
“all-or-none” control of phase shifting, in which strong effects
are obtained only if the stimulation is applied within a spe-
cific target range of phases, but in which undesired switch-
ing triggered by noise or by a misapplied input is largely
suppressed.

A SIMPLE ChR2 MODEL CAPTURES NON MONOTONIC
PHOTORESPONSE
The light-activated cation channel ChR2 activates more rapidly
and supports larger peak current amplitudes for increasing light
intensities. Therefore, we speculated that brief, high intensity light
pulses would provide the optimal stimulation for our purposes.
To our knowledge there were no studies that systematically docu-
mented ChR2 current responses for stimuli with light intensities
above 20 mW/mm2 (Ishizuka et al., 2006; Ernst et al., 2008; Lin
et al., 2009). At this intensity the activation rate is still light sensi-
tive and we aimed to increase it even more using light intensities
as high as approximately 130 mW/mm2. While the activation rate
did indeed decrease further, the fact that the peak current ampli-
tude decreased for intensities above approximately 20 mW/mm2

came to us as a surprise (Figures 1B,C). This behavior has not
been reported before, to the best of our knowledge, though the
measurements published in Lin et al. (2009) hint at a decreasing
peak amplitude for the highest intensity applied there, which was
approximately 19.8 mW/mm2.

Such phenomenon might be reminiscent of the photoreactive
P480b intermediate state, which can be converted by blue light to
the early P500 intermediate state. This transition was proposed as
a shortcut of the photocycle from a spectroscopic study of ChR2
channels (Ritter et al., 2008). Since previously published models
of ChR2 currents (Nikolic et al., 2006, 2009) could not account
for this non-monotonic light response, it was necessary to deploy
a novel model. Our simple conductance-based model correctly
captures the existence of an optimal light intensity for photostim-
ulation, without need to incorporate elaborate details about the

ChR2 molecular structure and dynamics. Note that the applica-
tion of our model is not limited to brief light pulses, but can also
predict light-induced conductance in response to ramps of light
(cf. Figure 3E).

Our model is also accurately data-constrained. To calibrate
model parameters, light induced changes of ChR2 conductance
were measured in voltage clamp. If the voltage can be clamped
throughout a cell, any changes in the whole-cell current can
be attributed to ChR2 conductances. In differentiated neurons,
however, this perfect voltage control cannot be attained. This is
obvious from the recording in Figure 1A (black trace), where
the activation of ChR2 depolarized the axon sufficiently to
activate voltage-dependent sodium channels, which created an
unclamped spike. Even when sodium channels are blocked, the
conditions are not optimal for a precise biophysical characteriza-
tion. Using essentially passive and electrotonically compact cells,
such as HEK-293 cells (Nikolic et al., 2009), provided optimal
recording conditions (Figure 1B). The smaller amplitude of the
photocurrents in these cells reflected differences in cell surface
and expression levels, while the biophysical properties of ChR2
were most likely identical to those expressed in neurons.

TECHNICAL FEASIBILITY
As discussed above, the extraction of PRCs describing the col-
lective response of a transduced neuronal population to light
stimulation was already achieved in vitro (Akam et al., 2012).
Our modeling study suggests that a similar approach could be
successfully applied in vivo, since phase-shifting effects can be
robustly obtained with high and low transduction rates, covering
the wide range achievable with different experimental techniques
(Adamantidis et al., 2007; Petreanu et al., 2007; Wang et al.,
2007; Takahashi et al., 2012). The success rate will depend on
a suitably tuned light intensity and on the ability to select the
phase of the stimulation onset conditional on ongoing oscillation
dynamics. Another factor that might enhance the controllability
of phases is the use of faster variants of Chr2, such as ChETA
(Gunaydin et al., 2010) and the E123T/T159C (Berndt et al.,
2011) mutants.

A closed-loop approach is required for determining the opti-
mal timing of pulse stimulations. Figure 7C shows that if the
time required for the prediction stage is of the order of a
few oscillation cycles, then the discrepancy between the tar-
get and the actual perturbation phase is comparable to the
width of the peak of the PRC. Consequently the resulting
phase shifting should remain close to the optimum. The pre-
diction strategy that we propose (Figure 6) is based uniquely
on a small number of linear computations, which are par-
ticularly suited for ultrafast (millisecond scale) implementa-
tion on reconfigurable hardware chips (Zhuo and Prasanna,
2008; Sadrozinski and Wu, 2011) or on GPU architectures
(Owens et al., 2008; Volkov and Demmel, 2008) on which
FFT algorithms can be efficiently implemented (Bhattacharyya
et al., 2010). As a matter of fact, hardware implementations
of period extraction (Waskito et al., 2010) and autoregres-
sive modeling of biologic signals (Marinkovic et al., 2005;
Kim and Rosen, 2010) have already proven to be order(s)
of magnitude faster than on conventional CPUs. Taking into
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account these high levels of performance and the approx-
imations we propose to implement, a length of the pre-
diction window of ∼50 ms that corresponds to approxi-
mately three cycles of a 40–70 Hz rhythm appears completely
realistic.

Our simulated oscillations constitute an idealized model
for neuronal rhythms measured in vivo or in vitro. In our
model, especially when the synchronization index is very
high, cycle-to-cycle period length fluctuations are positively
correlated with weak to intermediate correlation strength.
In real neuronal oscillations, however, adaptation or other
phenomena might introduce more complex correlation pat-
terns between the lengths of different periods. Nevertheless,
such correlations might still be captured by AR(1) mod-
eling, as hinted to by the better performance of AR(1) in
dynamic regimes at the “edge of synchrony” (Figure 7E),
in which period length fluctuations are more strongly
correlated.

Under specific experimental conditions, long-lasting oscil-
latory epochs might be a rare event. It would then become
difficult to meet the conditions for the applicability of our pro-
tocol (i.e., the testing stage of Figure 6 might never be passed).
In this case, continuous optogenetic stimulation could be used
to stabilize and boost oscillations, as simulated in Figure 3E.
Then, similarly to the approach of Akam et al. (2012), pre-
cisely timed “kicks,” superposed on this continuous light stim-
ulation, could be used to perturb the instantaneous phase. In
this sense, optogenetic stimulation is more promising than elec-
tric micro-stimulation. First, it allows combining continuous and
pulsed stimulation within a single setup. Second, it can con-
trol with high selectivity the degree of synchronization, not only
by providing an unspecific drive to the entire network, but also
enhancing the drive to specific neuronal subpopulations, like for
instance FS-PV cells which provide the phasic inhibition cru-
cial for rhythm generation (Cardin et al., 2006; Sohal et al.,
2009).

Finally, we are optimistic that the network models of trans-
duced neural populations that were pioneered by Talathi et al.
(2011) and further developed in this study are powerful tools,
which will be increasingly adopted to conduct, optimize and
accelerate the design and the calibration of closed-loop optoge-
netic experimental protocols.

PROBING PHASE-CODING AND
COMMUNICATION-THROUGH-COHERENCE
Reliable optogenetic manipulation of the phase dynamics of
oscillating neuronal populations would open the way to an
interventional exploration of phase coding schemes. In the
phase coding framework, it is argued that the phase of spikes
relative to a “reference clock”—paced either by a stimulus-
locked (De Charms and Merzenich, 1996; Arabzadeh et al.,
2006) or an internally-generated oscillation (O’Keefe and
Recce, 1993; Siegel et al., 2009)—carry information, which
is independent from and multiplexed with the one conveyed
by rate fluctuations (Montemurro et al., 2008). Anticipating
or delaying the ticks of such a “reference clock,” as the

one putatively framed by slow cortical oscillations (Kayser
et al., 2012), should perturb the decoding of phase-based
representations.

Beyond the control of the phase of a local oscillation,
inter-areal phase correlations could be disrupted transiently by
unspecific optogenetic stimulation (Figure 5D). Furthermore,
precisely-phased perturbations determined within a closed-loop
system could induce persistent switching between alternative
phase-locked dynamic patterns (Tiesinga and Sejnowski, 2010;
Battaglia et al., 2012). In this sense, the realization of an exper-
iment inspired by the idealized analysis of Figure 4, would pro-
vide a direct testing of the communication-through-coherence
hypothesis (Fries, 2005). More specifically, it would allow exper-
imental testing of whether different sets of inter-areal phase
relations lead to different inter-areal functional interactions
and to an altered balance between bottom-up and top-down
information flows, as predicted by theory (Battaglia et al.,
2012).

A reorganization of phase relations between distant neu-
ronal populations might have perceptual or behavioral conse-
quences. Selective alteration of inter-population phase relations,
for instance between areas FEF and V4 (Gregoriou et al., 2009)
or areas V1 and V4 (Grothe et al., 2012), might be used to sup-
press or boost attentional effects or even to emulate reorienting
of attention. Furthermore, our theoretical investigations suggest
that stimulation applied locally to a single area might induce dis-
tributed reorganization of phase relations between other more
distant areas (Battaglia et al., 2012). Closed-loop optogenetic
stimulation might then in perspective be used to trigger system-
level switching between global brain states (Deco et al., 2009;
Freyer et al., 2011).
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