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Abstract 
 

The sex discordance in COVID-19 outcomes has been widely recognized, with males 

generally faring worse than females and a potential link to sex steroids.  A plausible mechanism 

is androgen-induced expression of TMPRSS2 and/or ACE2 in pulmonary tissues that may 

increase susceptibility or severity in males. This hypothesis is the subject of several clinical 

trials of anti-androgen therapies around the world. Here, we investigated the sex-associated 

TMPRSS2 and ACE2 expression in human and mouse lungs and interrogated the possibility 

of pharmacologic modification of their expression with anti-androgens. We found no evidence 

for increased TMPRSS2 expression in the lungs of males compared to females in humans or 

mice. Furthermore, in male mice, treatment with the androgen receptor antagonist 

enzalutamide did not decrease pulmonary TMPRSS2. On the other hand, ACE2 and AR 

expression was sexually dimorphic and higher in males than females. ACE2 was moderately 

suppressible with enzalutamide therapy. Our work suggests that sex differences in COVID-19 

outcomes attributable to viral entry are independent of TMPRSS2. Modest changes in ACE2 

could account for some of the sex discordance. 
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Introduction 
 
The December 2019 outbreak caused by the severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) in Wuhan, China, has led to the coronavirus disease 2019 (COVID-19) 

pandemic (1, 2). The highly contagious nature of the disease as well as the lack of vaccines or 

clinically approved treatments has caused a worldwide public health emergency. Therefore, 

improved and timely understanding of the human susceptibilities to SARS-CoV-2 will prove 

invaluable in controlling the pandemic and treatment of those affected.  

SARS-CoV-2 enters cells using two host cellular proteins: angiotensin converting 

enzyme-2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). The virus first employs 

ACE2 as a cell entry protein, followed by TMPRSS2-mediated proteolytic processing of the 

SARS-2 spike protein, further facilitating viral entry (3). Targeting the activity or expression 

of both factors by a plethora of approaches has been proposed as potential treatment (3–5). 

TMPRSS2 is also a widely studied androgen-regulated gene in prostate tissue, contributing to 

prostate cancer pathogenesis by way of aberrantly driving oncogene expression. 

Approximately half of all prostate cancers harbor a fusion that juxtaposes a TMPRSS2 

transcriptional regulatory element, which is stimulated by potent androgens and the androgen 

receptor (AR), in front of an ERG oncogene. (6). The end result is AR stimulation of oncogene 

expression which promotes growth of prostate cancer. However, two population-based studies 

of men undergoing hormonal therapy for prostate cancer have yielded differing results on a 

possible protective effect of androgen suppression on risk of COVID-19 (7, 8). 

Androgen regulation of TMPRSS2 raises the possibility that the physiological roles of 

androgens may, at least partially, account for the sex-specific clinical outcomes (9, 10). 

Utilizing a high-throughput drug screening strategy, a recent study found that ACE2 levels in 

human alveolar epithelial cells can be downregulated by 5α-reductase inhibitors, suggesting an 
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androgen-driven mode of expression (11). Furthermore, due to its androgen-regulated nature 

in the prostate and its essential role in SARS-CoV-2 etiology, TMPRSS2 expression has been 

postulated to follow a similar pattern of regulation in pulmonary cells by the potent androgens 

testosterone and dihydrotestosterone (12).  If this link proves correct, it could pave the path to 

novel strategies, including re-purposing of FDA-approved potent androgen synthesis inhibitors 

or AR antagonists, such as enzalutamide (Enz) and apalutamide, for the treatment of COVID-

19.  These strategies are the subject of several clinical trials (e.g., NCT04374279, 

NCT04475601, NCT04509999, NCT04397718) (5, 13). 

Here, we show that the expression of pulmonary AR and ACE2 follows a sex-

discordant pattern with males expressing considerably higher levels of protein than females. In 

humans, there is no difference in ACE2 expression between non-smoking men and women, 

while in contrast, ACE2 expression is significantly higher in the lungs of male smokers. We 

provide in vivo evidence that neither mRNA nor protein levels of TMPRSS2 vary by sex or 

treatment with the potent AR-antagonist Enz. ACE2 expression however is modestly 

modifiable by anti-AR treatment and may to some extent explain the sex disparities in 

susceptibility to SARS-CoV-2. 

Results 
 
Sexually dimorphic AR expression and ACE2 dimorphism in smokers  

Certain pulmonary disease outcomes, including asthma, are sex steroid-associated (14). 

Considering the poorer clinical outcome of COVID-19 in men, underlying androgen-related 

causes are suspected but not presently known. The SARS-CoV-2 co-receptor TMPRSS2 

harbors an AR-responsive enhancer that is induced by androgens in prostate tissue (15), raising 

the possibility of a similar mode of regulation in the respiratory system. We first asked whether, 

similar to TMPRSS2, ACE2 was also regulated by AR signaling in LNCaP, which is AR 
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expressing and androgen responsive. Indeed, both mRNA and protein expression of ACE2 

were strongly induced by the synthetic androgen R1881 and suppressed by Enz-mediated AR 

blockade (Fig. 1A and 1B). Moreover, ChIP-seq analysis of AR cistrome revealed multiple 

AR-binding sites upstream of the ACE2 region that were lost upon Enz treatment (Fig. 1C). 

These findings collectively indicate that ACE2 is indeed an androgen-driven gene in prostate 

cells.  

We next sought to investigate whether male sex was associated with higher expression 

of ACE2, TMPRSS2 or AR in human lung. To this end, we acquired the publicly available 

expression datasets in non-cancerous lung and associated respiratory tissues from the Genomic 

Expression Omnibus (GEO). Across all tissue-type comparisons, we found no evidence for 

elevated ACE2, TMPRSS2 or AR mRNA expression in males compared with females (Fig. 2). 

Next, we performed immunohistochemical (IHC) analyses to explore the possibility of a sex-

specific pattern of protein expression within distinct pulmonary cell types. The IHC-stained 

mouse and human lung specimens were assessed by an expert pulmonary pathologist (SM) and 

semi-quantified for protein expression using the H-score, a common and well-known 

semiquantitative scoring system that takes into consideration staining intensity as well as the 

percentage of cells staining positively (16–18). H-scores can range from 0 (no expression) to 

300 (3+ staining intensity in 100% of cells).    

Pulmonary TMPRSS2, predominantly expressed in airways (bronchial or bronchiolar 

epithelial cells), was neither associated with sex in humans (Fig. 3A) nor in mice (Fig. 3D). 

Furthermore, smoking did not appear to affect TMPRSS2 expression (Fig. 3A). In human 

lungs, alveolar epithelial cells also stained positive for TMPRSS2; expression was unchanged 

by smoking status or sex.  
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In contrast, we discovered that AR and ACE2 demonstrate sex-discordant expression; 

AR showed limited expression in airway cells of human males which was absent in human 

females (Fig. 3B). Smoking further elevated AR levels to a modest degree in men but the 

difference did not reach statistical significance (Fig. 3B and 3H). Consistent with the overall 

pattern observed in humans, lungs of male mice expressed markedly higher levels of AR 

protein than females (Fig. 3E and 4D). Alveolar pneumocytes (epithelial cells) were the 

dominant AR-expressing population in mouse lungs (Fig. 3G). Since the AR transcript levels 

did not differ by sex (Fig. 2B and 4C), we speculated that the high concentrations of circulating 

androgens in males may stabilize pulmonary AR expression (19). 

In the case of ACE2, we detected no significant difference between non-smoker men 

and women. Nevertheless, its expression was elevated in the lungs of male smokers compared 

with female smokers (Fig. 3C and 3I). Thus, we observed sexually dimorphic ACE2 

expression in smokers only. In mice, the sex disparity was readily detectable, with males 

expressing significantly higher ACE2 protein in airways than females (Fig. 3F). These data, 

together, suggest that pulmonary ACE2 and AR expression is sexually dimorphic.  

TMPRSS2 expression is unaffected and ACE2 modestly suppressed by potent AR 

blockade  

To further explore the possibility of inhibiting TMPRSS2 expression by means of AR 

blockade, we harvested lungs from female and male mice treated with control diet or Enz for 

> 10 days and analyzed them for protein and mRNA expression. The animal studies performed 

on bulk lungs yielded results consistent with the human expression analysis: i.e., there were no 

sex-specific TMPRSS2 changes. Additionally, Enz treatment failed to detectably downregulate 

TMPRSS2 (Fig. 4A and 4D). It has been previously noted that, due to glycosylation, full-length 

TMPRSS2 may be detected by SDS-PAGE at a higher molecular weight of approximately 70 
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kDa (20). In immunoblots performed with maximum-sensitivity substrate and extended 

exposures, we did not detect distinguishable bands for TMPRSS2 above 50 kDa (Fig. 4D). 

Given the unchanged AR protein levels (despite a modest but statistically significant mRNA 

increase) in Enz-treated males, we infer that TMPRSS2 is not regulated by AR in the lung. 

Nevertheless, high resolution techniques such as single cell-sequencing or -proteomics may be 

employed to explore otherwise undetectable alterations of expression in minority cell 

populations. 

In keeping with human data, we found no evidence of sex-specific changes in AR 

transcript levels in mice (Fig. 4C). The lungs of male mice, however, expressed significantly 

higher amounts of AR protein compared with females (Fig. 4D). As mentioned previously, this 

may be due to AR stabilizing effects of abundant circulating androgens in males. Similar to 

AR, ACE2 expression also showed clear sexual dimorphism, with males expressing 

substantially higher levels of protein (Fig. 4D) and modestly but significantly higher amounts 

of mRNA (Fig. 4B) in bulk lungs compared with females. Treatment with Enz lowered the 

transcript levels in males down to female levels (Fig. 4B) and also partially reduced protein 

quantities (Fig. 4D) as evidenced by immunoblotting. The modest Enz-mediated suppression 

of ACE2 was not clearly captured in our IHC analyses. This could be explained by possible 

marginal changes of ACE2 within pulmonary cells that may fall below the IHC detection limit, 

however, accumulatively can be observed through total protein detection methods performed 

on bulk tissue. Overall, these data indicate sex-discordant AR and ACE2 regulation, and a 

potential androgen-regulated mode of expression for pulmonary ACE2. Therefore, androgen-

AR-mediated mechanisms could explain sex-specific differences in COVID-19 outcomes by 

TMPRSS2-independent mechanisms.  
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ACE2 and TMPRSS2 mRNA expression increases in current smokers whereas in former 

smokers, expression returns to levels found in never-smokers  

In addition to male sex, smoking is a risk factor for COVID-19 susceptibility and poor 

clinical outcomes (21). One recent study of 1,099 COVID-19-positive patients reported a more 

than two-fold increased risk for intensive care unit admission and death in smokers as 

compared with non-smokers (22). We identified human expression GEO datasets of 

bronchial/airway epithelial cells containing subject smoking status and asked whether smoking 

is associated with TMPRSS2 expression. Our analysis indicated a consistent pattern whereby 

expression of both TMPRSS2 (Fig. 5A) and the primary SARS-CoV-2 receptor ACE2 (Fig. 

5B) was modestly but significantly increased in smokers compared with non-smokers. 

Interestingly, the levels were downregulated to never-smoker levels in former smokers. The 

results of our analysis are in keeping with several recent reports on ACE2 and smoking (23–

25). Although the p-values range widely across different data sets, almost all show changes in 

a consistently increased direction for current smokers including multiple data sets with small 

p-values (Fig. 5A and 5B). Finally, for both TMPRSS2 (Fig. 5C) and ACE2 (Fig. 5D), there 

was no correlation between smoking pack-years and mRNA expression in either current or 

former smokers, suggesting that the change does not build up over time but is instead a rapid 

process akin to a switch.  

Discussion 
 
Sex-associated clinical outcomes have been long observed in a variety of infectious and 

inflammatory conditions.  Sex steroids (i.e., androgens and estrogens) are possible mediators 

of these biologic differences.  For COVID-19, potential androgen-mediated biologic 

differences include 1) SARS-CoV2 cellular receptor regulation and 2) immune modulation (5, 

13).  Our study addresses the first of these possibilities. 

.CC-BY-NC-ND 4.0 International licensepreprint (which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for thisthis version posted October 14, 2020. . https://doi.org/10.1101/2020.04.21.051201doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.21.051201
http://creativecommons.org/licenses/by-nc-nd/4.0/


 In both humans and mice, AR protein is clearly more highly expressed in the lungs of 

males compared with females. Detection of AR protein in male compared with female lung 

might be surprising in the absence of a detectable difference in AR transcript.  This might be 

explained by stabilization of AR protein in the presence of androgens, which is recognized to 

occur in prostatic tissues (19). To our knowledge, there are no prior reports of this sexually 

dimorphic pulmonary AR expression. The specific presence of AR protein in male lungs raises 

the question of its transcriptional program – namely expression of TMPRSS2 and ACE2. 

We find no evidence for androgen regulation of TMPRSS2 in pulmonary tissues.  This 

evidence includes 1) the absence of any TMPRSS2 increase in male compared with female 

human lung 2) no TMPRSS2 increase in male compared with female mouse lung 3) no evidence 

for TMPRSS2 suppression with next-generation AR antagonist treatment. Our observations are 

in agreement with a new study that provides evidence for the absence of AR-binding and open 

chromatin state within the TMPRSS2 locus in lung as compared with prostate cells (26). We 

do find evidence for an increase in TMPRSS2 transcript but not protein expression with 

smoking.  This difference in findings for transcript vs. protein expression might be attributable 

to differences in the biospecimens sampled across studies or differential expression in cellular 

subtypes. 

In contrast to TMPRSS2, we do find evidence for sexually dimorphic ACE2 expression. 

Specifically, protein expression is higher in the lungs of male smokers compared with female 

smokers and in male mice compared with female mice. In terms of pharmacologic intervention, 

suppression of ACE2 expression with a potent AR antagonist in the lungs of male mice is 

significant albeit modest.  Whether this apparent magnitude of androgen regulation of ACE2 

expression is meaningful for SARS-CoV-2 infection or COVID-19 severity is unclear. 
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Nevertheless, this will be tested in several ongoing clinical trials (including ClinicalTrials.gov 

NCT04475601, NCT04397718, NCT045009999 and NCT04374279). 

 Sexually dimorphic AR expression in an organ not associated with sexual 

differentiation – the male lung – raises the question of function.  This is reminiscent of sexually 

dimorphic AR protein expression in the male human kidney, in which AR function includes 

regulating glucocorticoid metabolism and downstream steroid receptor activity (27).  Whether 

this physiology also occurs in the lung has yet to be determined. This may have implications 

for regulation of inflammatory processes including asthma. 

In conclusion, we find no evidence for androgen regulation of TMPRSS2 in the male 

lung.  Therefore, TMPRSS2 regulation in the lung appears to fundamentally differ from clear 

androgen-dependent regulation in prostatic tissues.  In contrast, there is a sex discordance in 

AR and ACE2 expression in lungs of mice and humans.  In humans, elevated ACE2 expression 

is apparent in the lungs of male smokers compared with female smokers. Pulmonary TMPRSS2 

regulation appears not to account for the sex-discordance in COVID-19 clinical outcomes.  In 

contrast, ACE2 expression is elevated in smokers and particularly in males. The magnitude of 

ACE2 suppression with enzalutamide in mouse is modest. The ultimate effects of anti-

androgens on human pulmonary ACE2 expression and COVID-19 outcomes are not yet 

known. Smokers could partly mitigate their increased risk by quitting smoking.  

Materials and methods 
 
Mice, treatments and lung harvest 

 A cohort of adult NSG mice (> 6 weeks old) were obtained from Cleveland Clinic Biological 

Resources Unit. The male mice were arbitrarily divided between two groups receiving control 

chow or Enz diet 62.5 mg/kg. Following 11 days on diet, the mice were sacrificed using a lethal 

dose of Nembutal followed by cardiac puncture. Once sacrificed, the abdominal and thoracic 
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cavities of the mice were opened, the inferior vena cava was cut, and the lungs were gently 

perfused with warm saline via the right ventricle. Next, the lungs were removed, and the 

individual lobes were either fixed in 10% formalin, or embedded in paraffin, or snap frozen for 

subsequent RNA or protein analysis. 

Protein and mRNA expression analysis 

Approximately 40–50 mg freshly frozen lung was added to soft tissue homogenizing CK14 

tubes (Betin Technologies) with 200 ml RIPA buffer containing HALT protease and phosphate 

inhibitor cocktail. Lung tissues were then homogenized with a homogenizer (Minilys, Betin 

Technologies) three times (60 s each time) at the highest speed, with 5-10 minute intervals on 

ice to cool lysates. The lysates were then centrifuged for 15 min at 16,000 x g and the 

supernatants were collected for immunoblot analysis with antibodies for TMPRSS2 (Abcam: 

ab92323 and Proteintech: 14437-1-AP), AR (EMD Millipore: PG-21 and Santa Cruz 

Biotechnology: N-20), PSA (Cell signaling: D6B1) and GAPDH (D16H11). 

Total RNA was harvested by homogenizing 25 mg lung tissue in 350 µl RLT buffer 

(RNeasy kit, Qiagen) following the manufacturer’s instructions. cDNA synthesis were then 

carried out with the iScript cDNA Synthesis Kit (Bio-Rad). Quantitative PCR (qPCR) analysis 

was conducted in triplicate in an ABI 7500 Real-Time PCR machine (Applied Biosystems) 

using iTaq Fast SYBR Green Supermix with ROX (Bio-Rad) with the following primer sets:  

Tmprss2 - forward gtcatccacacacatcccaagtc; reverse tcccagaacctccaaagcaaga; Ace2 - 

forward actatgaagcagagggagcagatg; reverse ggctgatgtaggaagggtaggtat; Ar - forward 

ggcagcagtgaagcaggtag; reverse cggacagagccagcggaa; Rplp0 - forward 

gacctccttcttccaggctttg; reverse ctcccaccttgtctccagtcttta; TMPRSS2 - forward 

atcggtgtgttcgcctctacg; reverse  atccgctgtcatccactattcctt; ACE2 - forward 
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ggaggatgtgcgagtggcta; reverse taggctgttgtcattcagacgg; RPLP0 – forward 

attacaccttcccacttgctg; reverse  actcttccttggcttcaacctta. 

  

ChIP-seq 

ChIP-Seq analysis was performed in  LNCaP cells treated with vehicle (DMSO) or Enz 10 μM. 

Briefly, 106 cells were cross-linked using 1% formaldehyde (reconstituted in 1X PBS) at room 

temperature for 10 min, followed by quenching with Glycine (final concentration 125 mM) 

and further incubation at room temperature for 5 min. Fixed cells were lysed in SDS buffer (50 

mM Tris-HCl pH 8, 1% SDS, 10 mM EDTA), and sonicated at 4 degrees using Bioruptor 

sonicator (Diagenode) for 20 cycles on high setting: 10” on/10” off. The lysates were then 

immunoprecipitated in ChIP Dilution Buffer (20 mM Tris-HCl pH 8, 1% Triton-X 100, 2 mM 

EDTA, 150 mM NaCl + PIC), using 3 μg chromatin, 10 μl of anti-AR (Millipore, EMD 

Millipore: PG-21), and 50 μl of blocked A/G beads. Recovered DNA was used to prepare 

libraries using the Illumina Nextera library prep method, subsequently sequenced on a NextSeq 

500 and analyzed using the ChiLin analytical pipeline. Finally, genomic AR occupancy was 

visualized and compared using the Integrated Genome Viewer. 

Immunohistochemistry 

Immunohistochemistry staining was performed using the Discovery ULTRA automated stainer 

from Roche Diagnostics (Indianapolis, IN). In brief, antigen retrieval was performed using a 

tris/borate/EDTA buffer (Discovery CC1, 06414575001; Roche), pH 8.0 to 8.5, at 95o C for 32 

minutes. For AR staining only, 64 minutes of antigen retrieval time was applied. The slides 

were then incubated with primary antibodies for 1 hour at room temperature with the following 

dilutions: TMPRSS2 (ab92323), 1:3000; TMPRSS2 (ab214462), 1:200; Androgen Receptor 
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(ab133273), 1:100; ACE2 (R&D Systems, #AF933), 1:400. The antibodies were visualized 

using the OmniMap anti-Rabbit HRP (05269679001; Roche), and OmniMap anti-Goat HRP 

(06607233001; Roche) in conjunction with the ChromoMap DAB detection kit (05266645001; 

Roche).  Lastly, the slides were counterstained with hematoxylin and bluing. The specificity 

of each antibody was first tested on appropriate control tissues before proceeding to staining 

of the lung sections. 

Gene expression in human lung 

The public genomics data repository Gene Expression Omnibus (GEO, ncbi.nlm.nih.gov/geo) 

was searched for data sets containing expression profiling of samples from non-cancerous 

human lung and bronchial/airway epithelial cells with samples identified by gender and/or 

smoking status of subjects. The following data sets were identified: GSE994 (airway epithelial 

cells from current/former/never smokers), GSE4115 (histologically normal bronchial epithelial 

cells from smokers with and without lung cancer),  GSE7895 (airway epithelial cells from 

current/former/never smokers), GSE16008 (bronchial epithelial cells from healthy current and 

never smokers),  GSE18385 (large and small airway epithelial cells from healthy current and 

never smokers), GSE37147 (bronchial epithelial cells from current and former smokers with 

and without COPD), GSE43696 (bronchial epithelial cells from asthma patients and healthy 

controls), GSE63127 (small airway epithelial cells from healthy current and never smokers), 

GSE103174 (lung tissue from smokers and nonsmokers with and without COPD), and 

GSE123352 (non-involved lung parenchyma from ever and never smokers with lung 

adenocarcinoma). TMPRSS2, AR, and ACE2 gene expression values were obtained from each 

data set and analyses for comparisons between groups (for each data set for which gender 

and/or current smoking status information was available) were performed using R. 

Statistics 
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For comparisons involving more than two groups, ANOVA with post hoc tests as indicated in 

figure legends was performed, or Kruskal-Wallis with post hoc tests for IHC results. For 

comparisons between two groups, t-tests were performed. For correlations between gene 

expression and smoking pack years, linear models were fit to data. All statistical tests were 

two-sided. Analyses were performed in R or GraphPad Prism. 

Study approval 

Mouse studies were performed under a protocol approved by the Institutional Animal Care and 

Use Committee (IACUC) of the Cleveland Clinic Lerner Research Institute.  Studies using 

human tissues are deidentified and were deemed to be IRB exempt. 
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Figures and figure legends 

 

 

Figure1. ACE2 is an androgen-regulated gene in prostate cells. A) Immunoblots and B) 

RT-qPCR analysis of TMPRSS2 and ACE2 expression in LNCaP cells treated with Enz (10 

µM) for 14 days or stimulated with R1881 (5 nM) for 48 hours. Vehicle (Veh) used for Enz 

and R1881 were DMSO and ethanol, respectively. Results (mean±SD) are representative of 

three biological repeats, performed in triplicate. p values were determined using one-way 

ANOVA. Arrows indicate the location of specific bands. C) ChIP-seq track examples of AR 

occupancy within TMPRSS2 and ACE2 gene regions, in LNCaP cells treated with Veh 

(DMSO) or Enz (5 μM) for 14 days. 
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Figure 2. TMPRSS2, AR, and ACE2 transcript expression in human lung are similar in 

males and females. (A) Box plot of TMPRSS2 expression (normalized so that the mean within 

each data set equals 1) from the publicly available Gene Expression Omnibus (GEO) data sets. 
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Center lines indicate median values, edges of boxes indicate first and third quartile values, 

whiskers indicate largest and smallest values extending no more than 1.5 * inter-quartile range 

from edges of boxes, and dots indicate outlier values. P-values from t-tests are shown for 

female vs. male comparison within each data set. N for each data set: GSE103174 = 22 

female/31 male; GSE123352 = 81 female/95 male; GSE16008 = 15 female/11 male; 

GSE18385 large airway = 16 female/36 male; GSE18385 small airway = 35 female/74 male; 

GSE37147 = 103 female/135 male; GSE4115 = 41 female/122 male; GSE43696 = 74 

female/34 male. Data sets 18385 and 4115 contained multiple TMPRSS2 reference sequences; 

none of the individual sequences had female vs. male expression differences with p < 0.05, and 

the expression values of the different sequences were added together for this plot. (B) Box plot 

of AR expression from the same data sets as in (A). (C) Box plot of ACE2 expression from the 

same data sets as in (A). 
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Figure 3. AR and ACE2, but not TMPRSS2, display sex-discordant patterns of 

immunohistochemical staining in human and mouse lung. (A-F) Plots of H-scores from 

staining for TMPRSS2 (A, D), AR (B, E), and ACE2 (C, F) in human (A-C) and mouse (D-F) 

lung samples. Note that for AR in mouse, alveolar epithelial scores are shown, as airway scores 

were zero for all samples; for all other panels, airway scores are shown. Humans were smokers 

or never-smokers as indicated. Male mice were given control chow or enzalutamide as 

indicated whereas female mice were given control chow. Plots show each individual data point 

and horizontal lines for mean values. P-values from Kruskal-Wallis tests are shown, and for 
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plots in which Kruskal-Wallis tests suggested differences between groups, p-values from post 

hoc Wilcoxon tests are shown. (G-I) Representative images (400x magnification) illustrating 

sex differences in staining. (G) AR staining in control male (top) and female (bottom) mice. 

Black arrows indicate alveolar epithelial cells with positive nuclear staining in male and 

negative in female. Red arrow indicates lack of staining in bronchiolar epithelial (airway) cells. 

(H) AR staining in human male smoker (top) and female smoker (bottom). Black arrows 

indicate airway epithelial cells with positive nuclear staining in male and absence of staining 

in female. Red arrows indicate alveolar epithelial cells negative in both. (I) ACE2 staining in 

human male smoker (top) and female smoker (bottom). Black arrows indicate positive apical 

membrane staining in male airway epithelial cells and absence of staining in female airway 

epithelial cells. 
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Figure 4. AR and ACE2 protein but not TMPRSS2 present a pattern of sex discordance 

in mouse lung. (A-C) Transcript levels of Tmprss2 (A), Ace2, (B) Ar (C) in female (n=5) and 

male NSG mice treated with control (n=6) or Enz diet (n=6). Gene expression was assessed in 

triplicate and normalized to Rplp0 levels. The statistical differences were calculated using one-

way ANOVA with Tukey’s post hoc test. Results are shown as mean ± s.d. (n = 3 technical 

repeats). (D) Immunoblots showing the expression of pulmonary TMPRSS2, ACE2 and AR in 

male mice fed with Enz or control chow for 11 days, and in male vs female mice. Results are 

representative of 4 technical repeats. TMPRSS2 (Ab1: ab92323; Ab2: 14437-1-AP) and AR 

(Ab1:PG-21 and Ab2: N-20). Arrow indicates the location of ACE2. 
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Figure 5. Expression of both TMPRSS2 and ACE2 transcript in human bronchial 

epithelia increases in current smokers compared to both former and never smokers and 

the increases do not depend on smoking pack years. (A) Box plot of TMPRSS2 expression 

(normalized; mean within each data set equals 1) from GEO data sets. N for each data set: 

GSE16008 = 13 current/13 never smoker; GSE18385 large airway = 32 current/20 never 

smoker; GSE18385 small airway = 58 current/51 never smoker; GSE37147 = 99 current/139 

former smoker; GSE61327 = 112 current/71 never smoker; GSE7895 = 52 current/31 

former/21 never smoker; GSE994 = 34 current/18 former/23 never smoker. Data sets 18385, 

63127, 7895, and 994 contained multiple TMPRSS2 reference sequences whose expression 

values were summed. In all data sets containing four reference sequences (18385 large and 

small airway and 63127), the difference between groups was largest for sequence AI660243, 

so expression using that sequence alone is also shown. For data sets with two groups, p-values 

were obtained from t-tests. For data sets with three groups, Tukey HSD p-values were obtained 

after one-way ANOVA (ANOVA p-values: GSE7895 0.009, GSE994 0.033). (B) Box plot of 

ACE2 expression from the same data sets as in (A). Data sets 18385 and 63127 contained 

multiple ACE2 reference sequences whose expression values were summed. For data sets with 

two vs. three groups, p-values were obtained as in (A) (ANOVA p-values for three group sets: 

GSE7895 0.82, GSE994 0.010). (C) Scatter plots of normalized TMPRSS2 expression vs. 

smoking pack years for current and former smokers in data sets containing pack year data. 

GSE37147 (former smokers) had adjusted R2 = 0.03 and p = 0.03; no other linear regression 

had p < 0.1. (D) Scatter plots of normalized ACE2 expression vs. smoking pack years. No 

linear regression had p < 0.1. 
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