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Abstract: Myoelectric prostheses help amputees to regain independence and a higher quality of life.
These prostheses are controlled by electromyography, which measures an electrical signal at the skin
surface during muscle contractions. In this contribution, the electromyography is measured with
innovative flexible insulated sensors, which separate the skin and the sensor area by a dielectric
layer. Electromyography sensors, and biosignal sensors in general, are striving for higher robustness
against motion artifacts, which are a major obstacle in real-world environment. The motion artifact
suppression algorithms presented in this article, prevent the activation of the prosthesis drive during
artifacts, thereby achieving a substantial performance boost. These algorithms classify the signal
into muscle contractions and artifacts. Therefore, new time domain features, such as Mean Crossing
Rate are introduced and well-established time domain features (e.g., Zero-Crossing Rate, Slope Sign
Change) are modified and implemented. Various artificial intelligence models, which require low
calculation resources for an application in a wearable device, were investigated. These models are
neural networks, recurrent neural networks, decision trees and logistic regressions. Although these
models are designed for a low-power real-time embedded system, high accuracies in discriminating
artifacts to contractions of up to 99.9% are achieved. The models were implemented and trained
for fast response leading to a high performance in real-world environment. For highest accuracies,
recurrent neural networks are suggested and for minimum runtime (0.99–1.15 µs), decision trees
are preferred.

Keywords: motion artifacts; insulated/capacitive EMG; artificial intelligence; neural network; time
domain features; myoelectric prosthesis

1. Introduction

Electromyography (EMG) sensors are applied, beyond others, for myoelectric prosthesis control,
diagnostic purposes and exoskeletons. The state-of-the-art dry sensors, which require a conductive
connection to the skin, are typically applied for myoelectric prosthesis control. This research group has
already published the developed flexible insulated EMG sensors [1,2] to overcome the disadvantages
associated with dry conductive EMG sensors. The insulated sensors avoid pressure marks and are
independent of sweat and the skin condition in general.

Various research has presented the control of high-level dexterity prostheses [3–5].
Well-established EMG features have been implemented [6–8] and different signal processing algorithms
have been developed [9–11]. Although these algorithms achieve high accuracies for distinguishing
hand movements, they often lack robustness in real-world environment [12,13]. However, in terms of
practical application, robustness is preferred over technologically complex and unreliable systems [14].

The main reason for the lacking robustness are the motion artifacts [15], which have various
origins. They typically occur in low frequency range. However, these artifacts also appear in the
frequency range of the contraction EMG, which limits the possibilities for filtering. To achieve high
robustness, real-time motion artifact suppression algorithms were implemented on an ultra-low-power
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microcontroller (µC) in this contribution. These algorithms aimed at an activation of the prosthesis
drive solely during an actual contraction. The aim of the algorithm was the distinction of the two
classes: contraction and artifact.

An algorithm with a frequency domain feature has already been presented by Roland et al. [16].
Frequency domain features require a Fourier transform, which leads to a long time span between
decisions. The presented algorithm in Roland et al. [16] has a weakness in detecting short contractions.
At the beginning and the end of a contraction, the muscle tissue moves relatively to the skin surface,
which causes a motion artifact. As short contractions mainly consist of the beginning and the end
of a contraction, a motion artifact is overlaid to the contraction EMG signal. However, these short
contractions are of high importance to enable co-contractions, which switch the prosthesis movement
mode.

In this article, only time domain (TD) features were implemented and instead of the linear
separator in Roland et al. [16] different artificial intelligence models, such as neural networks
(NN), were investigated. The algorithms were designed to confidently detect the short contractions.
Additionally, the algorithms aimed at a robust detection of strong and weak contractions to allow a
proportional control of the myoelectric hand prosthesis.

These algorithms were developed with MATLAB R© aiming at high accuracy but low calculation
resources. New features were designed, and different artificial intelligence models were trained, and
the resulting models were implemented on an ultra-low-power µC. The algorithms were designed for
the insulated EMG sensor, however, they can also be applied to increase the robustness of conductive
EMG sensors or even of other biosignal sensors.

2. Methods

Figure 1 shows the signal flow graph of the capacitive EMG signal. The data acquisition, filtering,
rectification and smoothing were described in detail by Roland et al. [1,2]. The block diagram of the
digital signal processing is plotted in Figure 2. Additional data pre-processing, the feature calculation,
the decision algorithm (logistic regressions, decision trees, NN or recurrent neural networks (RNN))
and the data post-processing as well as the signal delay are described in this section.
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Figure 1. First, the EMG signal coupled from the human body is amplified and filtered by the analog
circuit (ASP). In the µC, the signal is then digitally filtered and evaluated (DSP). The contraction EMG
signal is provided at the prosthesis drive via the digital-to-analog converter (DAC). For experimental
applications, the signal can be connected to the oscilloscope or Bluetooth (BLE) module (Adapted from
Roland et al. [2]).

DAC

ProsthesisDown-

Comb Lowpass

Feature Model

Delay

Post-

Filter

Calculation sampling Decision Processing Drive

Filter
Rectification
Smoothing

Highpass
Filter

Figure 2. Signal flow of the digital signal processing. The decision of the model (0 for artifacts or 1 for
contractions) is multiplied with the delayed processed EMG signal.

2.1. Data Acquisition and Pre-Processing

Insulated EMG data were acquired with the sensor developed by Roland et al. [1,2]. Figure 3
shows flexible coupling electrodes, which are an assembly of textiles or a flexprint. The EMG sensing
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system filtered the signal with a first-order analog bandpass ( fCL= 11 Hz, fCU = 1064 Hz), a digital
comb (50 Hz and harmonics) and a first-order digital lowpass ( fC = 531 Hz). In the feature calculation
path, a second order digital high pass ( fC = 60 Hz) was implemented. The optimal choice of these
above-mentioned parameters was investigated in Roland et al. [1,2]. The parameter values were
selected according to these findings. The flexible sensor was placed at the musculus extensor digitorum
at the human forearm of one subject. Four different types of data were measured. Data for strong
and weak isometric contractions, random sequences of short contractions and measurements of many
artifacts were acquired. Therefore, various different motion artifacts were generated, such as sensor
lift-off, external mechanical shocks or vibrations.

The data were measured with a digital oscilloscope (HS3 of TiePie Engineering) at the µC’s
digital-to-analog converter. The 10 s measurements were sampled by the oscilloscope at 10 kHz to
fulfill the Nyquist-Shannon sampling theorem [17]. A measured contraction and a motion artifact are
presented in Figure 4. The measured EMG data were downsampled by averaging to 2 kHz. According
to Roland et al. [2] downsampling to 2 kHz does not reduce the EMG signal quality. This sampling
frequency of 2 kHz was applied for the feature calculation. Time windows with small signals, which
would not lead to a prosthesis drive activation, were removed from the data set.

(a) (c)

(b)

Figure 3. (a) Textile capacitive EMG sensing electrode. (b) Flexprint capacitive EMG sensing electrode.
(c) Control of myoelectric hand prosthesis with capacitive EMG measurement setup (Adapted from
Roland et al. [1]).
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Figure 4. Raw signals measured with the capacitive EMG sensor at a sampling frequency of 10 kHz.
(a) EMG signal of a strong contraction. (b) Exemplary artifact. Please note that artifacts are varying
greatly, depending on its origin.

After these pre-processing steps, a total of 381 s of contractions and 489 s of artifacts were the
remaining training, test and validation data. These data comprised a wide variety of different
contractions and artifacts to achieve high robustness in real-world environment.
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The contraction and artifact signals were mixed to 1 s long windows. The contraction and artifact
signal windows were alternated, hence a fast reaction to the changing signal class was ensured. The
features were calculated over these alternating time windows. Features which were slow at the
transients led to errors at the transition from one class to the other. By iterating the classes in the data
set, these slow features were consequentially removed by the feature selection. This is essential for
real-world performance, where artifacts and contractions are alternating and a fast reaction of the
decision is required. For the training and validation set of the RNN, the duration of the windows was
varied for each snipped, thereby preventing the RNN to learn the periodic behavior of the training set.

The training (70%) and validation (15%) set amounted to 85% of the data. The validation data
were selected out of the 85% of the data when training the models with cross validation, see Section 2.6.
The remaining 15% were the test set, which was equal for all models. The training, validation and test
set comprised an equal percentage of the strong, short, and weak contractions, and artifacts according
to their share on the whole data set. A sample of the features highly correlates to the previous and
next sample in time, the adjacent feature values are very similar. Drawing individual samples for the
allocation to the training, validation and test data would lead to non-generalizable results. Therefore,
continuous time sequences were selected in the allocation in order that the training, validation and test
data are independent from each other.

2.2. Feature Calculation

In this contribution, new features and modifications of features for biosignal processing, and
well-established features were included to the feature calculation. The TD features were hand-crafted
as the models should achieve high accuracies with a shallow model architecture. The feature vector
f eat was calculated by filtering with a first-order lowpass, an exponentially decaying moving average
filter (EMA) [18]:

f eati = ( f eati−1 + f (xi))b , (1)

where f (xi) denotes a function of the current comb and lowpass filtered value xi. The function f (xi) is
defined differently for each feature. The coefficient b was selected in the interval [0, 1] (in floating-point
format). This b was implemented as a fixed-point with a multiplication and a shift operation to avoid
operations with floating-point variables. This implementation requires less calculation resources than
a standard moving average filter [2].

The features were designed with the aim to detect differences of contraction EMG and artifacts.
These TD features also attempt to detect frequency information, which is relevant for the distinction of
the classes, e.g., by the zero-crossing rate. Some features were implemented several times with varied
parameters, which enables the extraction of different signal characteristics.

The features were designed with MATLAB R© and implemented on the µC in C. The MATLAB R©

and C implementation were in the same value range and truncation, overflow and saturation were
considered. Hence, the values listed in the following section are valid for both implementations.

Some features were saturated at an upper bound (ub) and/or a lower bound (lb) to avoid a
drift of the feature values, thus achieving a fast transition between the different classes. The selected
parameters of the implemented features are listed in Tables 1–7.

2.2.1. Zero-Crossing Rate (ZCR)

The ZCR (Figure 5a) is a well-established feature for EMG signal analysis, which comprises
frequency information. When the EMG signal crosses zero, the feature is increased by 100. This
feature update parameter is set to 100 to prevent the feature variable from vanishing right away due
to truncation caused by the shift operation in the lowpass filter in Equation (1). Moreover, the value
was not selected higher to prevent overflows. The parameter was determined, so that no overflows
occurred in the training data. These facts are also valid for the selection of this feature update parameter
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for the following described features. As also noise with low amplitude contributes to the feature, a
hysteresis (hyst) was added to detect the crossings only, when the signal exceeds a certain amplitude.
An upper bound ub was included in ZCR2S to avoid a drift of the feature value, thereby achieving
fast transitions. The conditions for the ZCR were defined as

f (xi) =


100, [s = 1]; if xi > hyst ∧ s = 0
100, [s = 0]; if xi < −hyst ∧ s = 1
0, [s = s]; else ,

(2)

where s denotes the sign of the previous zero-crossing.
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Figure 5. Exemplary sketches of features. Note that different variants of the sketched features were
calculated. (a) Zero-Crossing (ZC): The crossings of the raw signal through the zero line are detected.
(b) Mean crossing (MC): The crossings of the raw signal through the smoothed signal (+/− a hysteresis)
are detected. (c) Slope Sign Change (SSC): The changes of the slope sign of the raw signal are detected.

Table 1. Parameters of ZCR implementations.

Feature b hyst ub

ZCR1 0.9961 0 216−1

ZCR2 0.9961 242 216−1

ZCR2S 0.9961 242 1000

2.2.2. Mean Crossing Rate (MCR)

The contraction EMG is usually superimposed to a slight artifact at short contractions, due to the
relative movement of the muscle tissue to the skin surface at the beginning and the end of a contraction.
To detect this superimposed EMG signal, the crossing of the signal through the smoothed signal, as
shown in Figure 5b, increases the feature by 100.

A hysteresis hyst was included to avoid noise contributing to the feature. A feature variant with a
saturation at an upper bound (ub) and a lower bound (lb) was implemented. The conditions for the
MCR were defined as

f (xi) =


100, [s = 1]; if xD > (v + hyst) ∧ s = 0
100, [s = 0]; if xD < (v− hyst) ∧ s = 1
0, [s = s]; else ,

(3)

where s denotes the sign of the previous mean crossing and v is defined as

v = (smoi)e . (4)

The smoothed signal smoi is calculated with an EMA with the coefficient c:

smoi = (smoi−1 + xi)c . (5)

The input xi is delayed and scaled by

xD = (xi−delay)d . (6)
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Table 2. Parameters of MCR implementations.

Feature b c d e delay hyst lb ub

MCR1 0.9961 0.8750 6 1 8 1044 0 216−1

MCR1S 0.9961 0.8750 6 1 8 1044 2000 3600

MCR2 0.9922 0.9688 1 0.0313 8 0 0 216−1

2.2.3. Slope Sign Change (SSC)

When the EMG signal slope is changing (Figure 5c), the feature is increased by 100. To avoid noise
contribution, the feature is calculated with the smoothed signal from Equation (5). Variants of the
feature require the signal slope to maintain the direction for a minimum number of data points dmin and
a maximum number of data points dmax. This way capturing the desired frequency information. Again,
features with a saturation at a lower lb and an upper bound ub were implemented. The conditions
were defined as

f (xi) =



100, [s = 1, w = 0, p = 0];
if v > u ∧ s = 0∧ w ≥ dmin ∧ p < dmax

0, [s = 1, w = 0, p = 0];
elseif v > u ∧ s = 0∧ w ≥ dmin

0, [s = s, w = w + 1, p = p];
elseif v > u ∧ s = 0

0, [s = 1, w = 0, p = p + 1];
elseif v > u

100, [s = 0, w = 0, p = 0];
elseif v < u ∧ s = 1∧ w ≥ dmin ∧ p < dmax

0, [s = 0, w = 0, p = 0];
elseif v < u ∧ s = 1∧ w ≥ dmin

0, [s = s, w = w + 1, p = p];
elseif v < u ∧ s = 1

0, [s = 0, w = 0, p = p + 1];
else ,

(7)

where s denotes the sign of the previous slope. The variables w and p are counters and u and v are the
smoothed signal from Equation (5):

u = smoi−1 , (8)

v = smoi . (9)

Table 3. Parameters of SSC implementations.

Feature b c dmin dmax lb ub

SSC1 0.9961 0.9922 0 216−1 0 216−1

SSC1S 0.9961 0.9922 0 216−1 2000 5000

SSC2 0.9961 0.5 0 216−1 0 216−1

SSC2S 0.9961 0.5 0 216−1 0 14000

SSC3 0.9961 0.9961 5 216−1 0 216−1

SSC3S 0.9961 0.9961 5 216−1 900 2000

SSC4 0.9961 0.9961 0 1 0 216−1

SSC5 0.9961 0.75 3 200 0 216−1

SSC5S 0.9961 0.75 3 200 1500 3000
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2.2.4. Waveform Length (WFL)

Different variants of the feature WFL were implemented. The waveform length is calculated by

f (xi) = |xi − xi−1|d . (10)

Table 4. Parameters of WFL implementations.

Feature b d ub

WFL1 0.9961 0.0078 216−1

WFL1S 0.9961 0.0078 1300

WFL2S 0.9922 0.0156 1894

2.2.5. Mean Absolute Value (MAV)

The function f (xi) for the MAV was defined as

f (xi) = |xi| . (11)

The MAV2 is calculated by means of the MAV1 by

MAV2i = (MAV2i−1 + |MAV1i −MAV1i−delay|)c . (12)

The feature MAV1S is saturated at the upper bound ub1 and the MAV2S at ub2.

Table 5. Parameters of MAV implementations.

Feature b c delay ub1 ub2

MAV1 0.9961 - 0 216−1 216−1

MAV1S 0.9961 - 0 600 216−1

MAV2 0.9375 0.9961 8 216−1 216−1

MAV2S 0.9375 0.9961 8 4000 6000

2.2.6. Wilison Amplitude (WAM)

When the EMG signal exceeds a defined threshold thresh, the feature is increased by 100. The
conditions for WAM1 were defined as

f (xi) =

{
100; if |xi| > thresh
0; else .

(13)

For WAM2, the smoothed signal smoi is calculated with Equation (5) and the conditions are

f (xi) =

{
10; if |(xi−delayd)− smoi| > thresh
0; else .

(14)

Table 6. Parameters of WAM implementations.

Feature b c d delay thresh

WAM1 0.9922 - - 0 44

WAM2 0.9961 0.9922 16 64 3636
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2.2.7. Variance (VAR)

The VAR is the squared EMG signal, which was also implemented with a saturation at the upper
bound ub. The VAR is calculated by

f (xi) = xi
2 . (15)

Table 7. Parameters of VAR implementations.

Feature b ub

VAR 0.9961 216−1

VARS 0.9961 4000

2.3. Downsampling

For the training of the NN, decision tree, and logistic regression, the features were downsampled
from 2 kHz to 40 Hz to accelerate model training. In the implementation the features were not
downsampled to achieve short time periods between the decisions. For the RNN, the features were
downsampled from 2 kHz to 250 Hz, which led to a higher calculation effort in the learning process.
However, an equal sampling frequency in the training and implementation is indispensable for high
accuracies of RNNs.

2.4. Correlation of Features

To reduce the number of features before training, the Pearson correlation coefficients [19] of the
feature vectors were calculated by pairwise comparison. For an absolute value of the correlation
coefficient greater than 0.9, one feature of the pair was eliminated.

2.5. Normalization

For the logistic regression, NN and RNN (but not for the decision tree) the min-max normalization
was calculated for each entry of the feature vector f eat:

f eat′i =
(ymax − ymin)( f eati − f eatmin)

( f eatmax − f eatmin)
+ ymin (16)

with ymax = 1 and ymin = −1 in floating-point format. The minimum and maximum ( f eatmin, f eatmax)
were determined for the feature vector calculated with the training data.

2.6. Training of Models

All models were trained with a 5-fold cross validation. The validation data were randomly drawn
time sequences of the strong, short and weak contractions and the artifacts. The decisions within
100 ms after a transition of the target value were not included in the error calculation of the validation
data. Wrong decisions, starting from 100 ms after a transition of the target value, were recorded as
errors, thus achieving fast models. For the test data, this tolerance was set to 150 ms (cf. signal delay,
Section 2.8.3). The models were trained with functions provided by the MATLAB R© toolbox “Statistics
and Machine Learning”.

2.6.1. Logistic Regression

The features were selected with the lasso algorithm [20] assuming a binomial distribution. 30
different regularization penalties (λ) were applied. The range of the λ was defined such that the
resulting feature vectors were ranging from a maximum number of regression coefficients to maximum
sparsity. A vector with the desired number of features was selected and the non-zero entries were the
selected features.
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With these features the logistic regression model was trained by the Ridge Regression algorithm
[21]. Finally, the model with the highest accuracy was selected.

2.6.2. Decision Tree

Binary decision trees were trained with different numbers of maximum splits, which avoids
overfitting. The split and the respective feature was selected by calculating the Gini Diversity Index
[22].

2.6.3. Neural Network (NN)

The features for the shallow NNs with one hidden layer were chosen by sequential backwards
selection [23]. The activation function for the hidden unit was SATLINS, and PURELIN for the output
layer. These activation functions allow a fast calculation on an embedded system. The NNs were
trained by the Levenberg-Marquardt algorithm [24,25], aiming at the minimization of the cross-entropy
loss [26]. The model was trained with a maximum number of epochs of 1000 and a maximum of 6
validation failures.

2.6.4. Recurrent Neural Network (RNN)

For the RNN (Figure 6), the maximum number of epochs was set to 100. All other hyperparameters
were set as described in Section 2.6.3.

Input
W I

+

Hidden

WO

bO
+

Output
Output

bI

W D

D0

D1

Figure 6. Shallow NN with one recurrent path with a delay of one (D1).

2.7. Offline Data Post-Processing

The model decision was further processed to increase the stability against short wrong decisions.
The system should be prevented from incorrect reactions due to individual false classified samples. To
allow a transition of the decision, a minimum number of equal consecutive decisions was required.
The transition at the output was only conducted after (excl.) nslope equal decisions. For the offline
post-processing nslope was set to 2 for the NNs, decision trees and logistic regressions, and to 3 for
the RNNs. This parameter introduces an additional delay, which is depending on the model decision
frequency and the value of nslope. The parameter nslope was selected in a way to achieve similar delays
for the different implementations. Despite the additional delay, nslope is essential for a high stability of
the system. This parameter value was selected, as it is a good trade-off between delay and stability,
however, it can be adapted to the individual amputee’s preference.

2.8. Implementation

The features and the models were implemented on an ultra-low-power µC, the ATSAML21E18B
from Microchip Technology Inc. (Chandler, AZ, USA) with a 32 bit ARM R© CORTEX R©-M0+ processor,
256 kB flash, and 32 kB SRAM main memory. The clock frequency was set to 48 MHz to test the
implementations. The clock frequency can be reduced (depending on the runtime of the selected
model) to decrease power consumption [2].

The analog digital sampling of the EMG signal has been described by Roland et al. [2]. The
digital signal processing sampling frequency was set to 2 kHz. For the RNN (250 Hz), the 48 MHz clock
provides 192,000 clock cycles (4 ms) between two decisions. The NN, decision tree, logistic regression,
and the feature calculation (2 kHz) provide 24,000 clock cycles (500µs) between two samples.
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2.8.1. Fixed-Point Representation

All algorithms were implemented in fixed-point format, as described by ARM Ltd. (Cambridge,
UK) [27], which is faster than a floating-point implementation on this µC. For high precision and to
avoid overflows or saturations the optimal value range of the variables was selected to exploit the
full operating range of the data type. The quantization effects and possible overflows or saturations
had already been considered in the offline design. The high performance of the µC 32 bit hardware
multiplier was exploited with this fixed-point implementation. All divisions were replaced by shift
operations to require low calculation resources.

2.8.2. Online Data Post-Processing

As mentioned above, the time between two decisions was deviating in the offline and online
implementations for the NN, decision tree and logistic regression. Therefore, different post-processing
parameters were selected. The parameter nslope was set to 20 in the implementation of the NN, decision
tree and logistic regression. For the RNN, nslope was set to 3, equal to the offline design.

2.8.3. Signal Delay

The filtered EMG signal and the decision were multiplied at the output; therefore, they should
correspond to each other in time. Hence, the input signal was delayed, so that it corresponds to the
current decision. The smoothing had a time constant T of 51 ms [2], which introduced a delay. An
additional delay was set to 100 ms in the implementation.

3. Results

Table 8 lists the accuracies of the resulting models. Please note that these accuracies were
calculated for test data with many transitions. Additionally, many artifacts were in a similar frequency
and amplitude range than the contractions. Furthermore, transitions longer than 150 ms were recorded
as errors and small signals were removed from the data set. Consequently, these challenging data led
to higher error rates in the evaluation but to a highly robust behavior in practical application.

The runtime of the implemented features is shown in Table 9 and of the models in Table 10. The
runtime of the decision tree is listed for the shortest and longest branch.

The time constant T of the EMA for the features MCR2, WFL2S, WAM1 was 63.5 ms, and 127.5 ms
for all other features.

For the logistic regression, NN and RNN, the feature calculation was followed by the
normalization to ensure that the features were in an equal value range. For the decision tree, no
normalization was required. The coefficients were determined with the features calculated for the
training data. These quantized coefficients were implemented on the µC. The resulting runtime for
each feature normalization was 0.53µs.

Table 8. Accuracies of quantized models in %.

Model\Num. Features 3 6 9 12

NN (3 Hidden Units) 97.24 97.30 97.05 98.95

NN (6 Hidden Units) 97.24 98.95 98.89 98.87

NN (9 Hidden Units) 95.79 97.28 98.68 99.06

RNN (3 Hidden Units) 77.47 96.51 98.66 99.22

RNN (6 Hidden Units) 91.63 97.06 99.16 98.66

RNN (9 Hidden Units) 93.20 98.33 99.91 99.67

Decision Tree 96.96 97.93 98.76 98.18

Log. Regression 94.34 95.22 95.60 95.12
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Table 9. Runtime of input features in µs at a 48 MHz clock.

ZCR1 1.97 ZCR2 2.05 ZCR2S 2.05 MCR1 3.62

MCR1S 3.62 MCR2 3.55 SSC1 2.42 SSC1S 2.42

SSC2 2.42 SSC2S 2.42 SSC3 2.42 SSC3S 2.42

SSC4 2.42 SSC5 2.42 SSC5S 2.42 WFL1 2.57

WFL1S 2.57 WFL2S 2.57 MAV1 2.05 MAV1S 2.05

MAV2 5.42 MAV2S 5.42 WAM1 2.95 WAM2 3.77

VAR 2.27 VARS 2.12

Table 10. Runtime of models in µs at a 48 MHz clock.

Model\Num. Features 3 6 9 12

NN (3 HU) 12.16 15.16 17.78 20.77

NN (6 HU) 18.53 24.14 29.39 35.28

NN (9 HU) 24.89 33.13 41.75 49.99

RNN (3 HU) 19.65 23.02 26.39 29.76

RNN (6 HU) 38.75 45.49 52.23 58.98

RNN (9 HU) 64.22 74.56 84.82 94.93

Decision Tree 0.99–1.15 0.99–1.30 1.15–1.60 1.15–1.67

Log. Regression 1.67 2.12 2.87 3.62

Selected Models

The choice of the final model depends on the requirements. For a highly robust system, the author
suggests the RNN with 9 hidden units and 9 features. Figure 7 shows the output of the selected model
for a window of the test data. The confusion matrix of the test data for this RNN is presented in
Table 11.

For an application with minimum calculation effort but high performance, the decision tree
with 3 features (SSC3, ZCR2, VAR1S) and 4 splits is the best choice. In comparison to the RNN, the
decision tree has a longer time lag at the transitions (see Figure 8), which leads to lower accuracies. By
increasing the signal delay, the accuracy could be improved; however, in this article, long transitions
were recorded as an error, because it was aimed at a fast system. The confusion matrix of the selected
decision tree is presented in Table 12. Please note that the decision tree has less test samples due to a
lower sampling frequency, see Section 2.3. However, the durations of the test data time sequences of
the decision tree and RNN are equal.

Table 11. Confusion matrix for selected RNN model (9 hidden units, 9 input features).

NTestSamples =16,008
Predicted Predicted

Contraction Artifact

Actual Contraction 7665 3

Actual Artifact 12 8328

Table 12. Confusion matrix for selected decision tree (3 input features).

NTestSamples = 4774
Predicted Predicted

Contraction Artifact

Actual Contraction 2215 65

Actual Artifact 80 2414
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Figure 7. Output, decision and target of the selected RNN for a window of the test data, corrected by
the signal delay (Section 2.8.3). The target value is 1024 (= 1 in floating-point format) for contractions
and 0 for artifacts. A decision of 1024 leads to an activation of the prosthesis drive. When an artifact is
detected, the current output value is maintained or the prosthesis drive is turned off, depending on the
selected policy.
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Figure 8. Output, decision and target of the selected decision tree for a window of the test data,
corrected by the signal delay (Section 2.8.3). The target value is 1024 (= 1 in floating-point format)
for contractions and 0 for artifacts. A decision of 1024 leads to an activation of the prosthesis drive.
Decisions for artifacts maintain the current output value or turn off the prosthesis drive, depending on
the selected policy.

4. Conclusions

Prosthesis drive activation due to artifacts is highly unpleasant for amputees. Avoiding incorrect
activation leads to higher performance and thereby increases the acceptance of the myoelectric
prostheses. With the presented models, the artifacts and contraction EMG signals were successfully
distinguished with high accuracies. These algorithms substantially improved the robustness of the
flexible insulated EMG sensors in real-world environment. Activation of the prosthesis drive due
to artifacts is now effectively prevented by the implemented models. This high performance was
achieved also by the algorithms’ fast reaction to signal changes. All the models were designed to
require low calculation effort for implementation on low-power wearable systems. With the shallow
models, high accuracies were accomplished, although many transitions of the classes were included
in the test data. The algorithms led to a short time between decisions as no Fourier transform had to
be calculated. The presented models use hand-crafted time domain features only. Due to the wisely
designed features, high accuracies were achieved with shallow models.

The author suggests an RNN or a regular NN for highest accuracies (99.91%/99.06%). For an
implementation, which requires very little calculation resources, the author suggests a decision tree
(98.76% accuracy).
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the signal delay (Section 2.8.3). The target value is 1024 (= 1 in floating-point format) for contractions
and 0 for artifacts. A decision of 1024 leads to an activation of the prosthesis drive. When an artifact is
detected, the current output value is maintained or the prosthesis drive is turned off, depending on the
selected policy.
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Figure 8. Output, decision and target of the selected decision tree for a window of the test data,
corrected by the signal delay (Section 2.8.3). The target value is 1024 (= 1 in floating-point format)
for contractions and 0 for artifacts. A decision of 1024 leads to an activation of the prosthesis drive.
Decisions for artifacts maintain the current output value or turn off the prosthesis drive, depending on
the selected policy.

4. Conclusions

Prosthesis drive activation due to artifacts is highly unpleasant for amputees. Avoiding incorrect
activation leads to higher performance and thereby increases the acceptance of the myoelectric
prostheses. With the presented models, the artifacts and contraction EMG signals were successfully
distinguished with high accuracies. These algorithms substantially improved the robustness of the
flexible insulated EMG sensors in real-world environment. Activation of the prosthesis drive due
to artifacts is now effectively prevented by the implemented models. This high performance was
achieved also by the algorithms’ fast reaction to signal changes. All the models were designed to
require low calculation effort for implementation on low-power wearable systems. With the shallow
models, high accuracies were accomplished, although many transitions of the classes were included
in the test data. The algorithms led to a short time between decisions as no Fourier transform had to
be calculated. The presented models use hand-crafted time domain features only. Due to the wisely
designed features, high accuracies were achieved with shallow models.

The author suggests an RNN or a regular NN for highest accuracies (99.91%/99.06%). For an
implementation, which requires very little calculation resources, the author suggests a decision tree
(98.76% accuracy).

Figure 8. Output, decision and target of the selected decision tree for a window of the test data,
corrected by the signal delay (Section 2.8.3). The target value is 1024 (= 1 in floating-point format)
for contractions and 0 for artifacts. A decision of 1024 leads to an activation of the prosthesis drive.
Decisions for artifacts maintain the current output value or turn off the prosthesis drive, depending on
the selected policy.

4. Conclusions

Prosthesis drive activation due to artifacts is highly unpleasant for amputees. Avoiding incorrect
activation leads to higher performance and thereby increases the acceptance of the myoelectric
prostheses. With the presented models, the artifacts and contraction EMG signals were successfully
distinguished with high accuracies. These algorithms substantially improved the robustness of the
flexible insulated EMG sensors in real-world environment. Activation of the prosthesis drive due
to artifacts is now effectively prevented by the implemented models. This high performance was
achieved also by the algorithms’ fast reaction to signal changes. All the models were designed to
require low calculation effort for implementation on low-power wearable systems. With the shallow
models, high accuracies were accomplished, although many transitions of the classes were included
in the test data. The algorithms led to a short time between decisions as no Fourier transform had to
be calculated. The presented models use hand-crafted time domain features only. Due to the wisely
designed features, high accuracies were achieved with shallow models.

The author suggests an RNN or a regular NN for highest accuracies (99.91%/99.06%). For an
implementation, which requires very little calculation resources, the author suggests a decision tree
(98.76% accuracy).
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As mentioned above, the linear separation algorithm presented by Roland et al. [16] has difficulties
in detecting short contractions. This algorithm is now outperformed by the new models. Additionally,
the need for the calculation of the short-time Fourier transform is obviated.

In the next step, models will be trained on amputees and the EMG sensor system with the
presented motion artifact suppression will be applied to real-world prosthesis control. Furthermore,
the potential of improving the performance by a random forest or a convolutional NN will be evaluated.
The accuracies of ensemble models will be investigated. The runtime of the features and the models
will be included to the cost term and a global optimization problem, which also comprises the feature
parameters, will be solved. Additionally, the application of these algorithms to the state-of-the-art
conductive EMG sensors and to other biosignal sensors (e.g., EEG or ECG) will be investigated.
Furthermore, a multiple subject dataset will be acquired, and the presented models will be trained
with the new data. The effect of inter-subject variability in the EMG signal will be evaluated. It will be
examined whether a model trained on multiple subjects or a model trained on the individual EMG
data leads to the best performance.
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