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Abstract

We study the effects of two mechanisms which increase the efficacy of contact-tracing appli-

cations (CTAs) such as the mobile phone contact-tracing applications that have been used

during the COVID-19 epidemic. The first mechanism is the introduction of user referrals. We

compare four scenarios for the uptake of CTAs—(1) the p% of individuals that use the CTA

are chosen randomly, (2) a smaller initial set of randomly-chosen users each refer a contact

to use the CTA, achieving p% in total, (3) a small initial set of randomly-chosen users each

refer around half of their contacts to use the CTA, achieving p% in total, and (4) for compari-

son, an idealised scenario in which the p% of the population that uses the CTA is the p%

with the most contacts. Using agent-based epidemiological models incorporating a geomet-

ric space, we find that, even when the uptake percentage p% is small, CTAs are an effective

tool for mitigating the spread of the epidemic in all scenarios. Moreover, user referrals signif-

icantly improve efficacy. In addition, it turns out that user referrals reduce the quarantine

load. The second mechanism for increasing the efficacy of CTAs is tuning the severity of

quarantine measures. Our modelling shows that using CTAs with mild quarantine measures

is effective in reducing the maximum hospital load and the number of people who become

ill, but leads to a relatively high quarantine load, which may cause economic disruption. For-

tunately, under stricter quarantine measures, the advantages are maintained but the quar-

antine load is reduced. Our models incorporate geometric inhomogeneous random graphs

to study the effects of the presence of super-spreaders and of the absence of long-distant

contacts (e.g., through travel restrictions) on our conclusions.

1 Introduction

Agent-based epidemiological models allow a population to be embedded in a geometric space

to capture the effect of the “local” and “long-distance” contacts that arise in real populations.

We use a stochastic susceptible-exposed-infected-removed (SEIR) type agent-based model to

study the efficacy of contact-tracing applications such as the mobile phone contact-tracing

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0250435 May 19, 2021 1 / 36

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Goldberg LA, Jorritsma J, Komjáthy J,
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applications that have been introduced during the COVID-19 epidemic. Our simulation study

compares the efficacy of four different uptake scenarios for the contact-tracing application

(CTA), combined with the effect of quarantining measures of various strengths. We compare

four uptake scenarios (defined in Section 1.3): (i) the users of the CTA are a random subset of

the population, the users are selected by one of two different recommender scenarios, in which

randomly-chosen initial users recommend the CTA to some of their contacts ((ii) either to just

one of them, or (iii) to roughly half of them) who also use the CTA, and finally (iv) a (hypo-

thetical) degree-targetted uptake scenario, in which CTA-users are individuals with the highest

number of connections. In each of these CTA-uptake scenarios, we assume that individuals in

the population will quarantine themselves as soon as their symptoms are sufficiently strong

(exceeding a certain threshold). At this point, users of the CTA also notify their CTA-using

contacts, who also quarantine themselves. We examine the combined effect of differing CTA-

uptake scenarios and different symptom thresholds for quarantine. We decouple the effects of

CTA-uptake scenarios and symptom thresholds from the effects of testing delays, which have

been studied in [1]. In order to focus on the former, we work in an idealised hypothetical sce-

nario where testing is immediate upon symptom onset (or where there is only a single virus

present in the population that could cause the symptoms) and where the symptom-severity

does not influence the probability of a virus transmission between two individuals. We empha-

sise that our study is qualitative, rather than quantitative, and we aim for universally valid

observations in terms of the performance of CTA-uptake scenarios.

Main observations. In our first experiment (Section 1.3) we qualitatively compare the four

uptake scenarios. In all uptake scenarios, we find that contact-tracing applications (CTAs) are

effective in decreasing the size of an epidemic (the total number of people who become ill) and

in decreasing the maximum number of people who are simultaneously hospitalised, and typi-

cally this effectiveness increases linearly or super-linearly with the percentage of the population

that use CTA. In these respects, we show that CTAs are effective even with low uptake rates.

This confirms the results of a recent study modelling CTAs in Washington state [2]. The nov-

elty of our study is to compare recommendation-based uptake with random uptake, where we

find that recommending can significantly improve the efficacy of the CTA. In brief, we find

that in scenarios where the CTA is recommended to acquaintances the epidemic size and max-

imum hospital load decrease at a much higher rate than the rate that would be achieved by

randomly selecting the same number of CTA users. One might expect these advantages of rec-

ommendation-based uptake to come at the cost of increased quarantine. This is true, however

in networks with fewer super-spreaders the quarantine load decreases with uptake percentage

(after an initial increase). Once the uptake percentage is sufficiently high, recommendation-

based uptake leads to less quarantine, rather than more. Finally, we emphasise that the uptake

percentage necessary to completely eradicate the epidemic from the population is generally

very high, as was also found in [3], though this is not the focus of this article.

In our second experiment (Section 1.4) we study the impact of the severity of quarantine

measures, both on the epidemic itself and on the economic disruption that it may cause (mea-

sured in terms of the time that people spend in quarantine over the course of the epidemic).

Already under “mild” quarantine measures, the maximum hospital load is drastically reduced

and the size of the epidemic is somewhat reduced. However, the economic disruption caused

by quarantine is very high. Perhaps surprisingly, imposing stricter quarantine measures (i.e.,

quarantining individuals already with less severe symptoms), ensures not only that the epi-

demic is better contained, but also that the economic disruption is lower (under strict enough

social distancing measures, travel restrictions, and sufficiently high app uptake). The critical

point on the ‘quarantine-strictness scale’ above which the social disruption starts decreasing

comes earlier in recommender scenarios and degree-targetted uptake than in random uptake,
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and even earlier if individuals are more restricted in their movements, i.e., the underlying con-

tact network does not have many long-range connection, ranging over large spatial distances.

As a disclaimer, we recall that we study a case where a single SEIR (susceptible-exposed-

infected-removed) epidemic is present in the population (see Section 2) and individuals who

are not infected do not show any symptoms similar to those that are caused by the virus under

investigation. This might be unrealistic for certain types of diseases, but might be a better

approximation of reality for others. Finally, we emphasise that we aim for qualitative, compar-

ative results that are robust against changes in the dynamics and the underlying contact net-

work. We refrain from making numerical predictions.

Organisation. In the remainder of this section we describe the underlying contact network,

the CTA-uptake scenarios and varying quarantine measures that we study. We then explain

and interpret our main findings regarding each of these. In Sections 2 and 3 we define the

agent-based model that we use and the underlying contact networks that we use to model the

population.

1.1 Networks to model the population

We use a so-called SEIR-type (susceptible-exposed-infected-removed) agent-based models to

model the spread of the epidemic, where individuals may or may not show symptoms. The

model is defined precisely in Section 2. Roughly, each agent goes through the following stages

upon infection: exposed, infected, either symptomatic or asymptomatic, and finally removed.

Upon showing symptoms, individuals using the CTA send notifications to the other CTA

users that they are in contact with, who then move to quarantine for a fixed duration of time.

The model involves a quarantining scheme: agents who show sufficiently severe symptoms

and agents notified via the CTA both move into quarantine.

Next we briefly discuss the underlying contact network of the agents. We assume that a

population is embedded in a geometric space, and the connections between individuals are

modelled using a random network model called a Geometric Inhomogenous Random Graph

(GIRG) [4]. We define the model in Section 3, while here we only highlight its main features.

The GIRG model is a state-of-the-art model for real-world social and technological networks,

embedded in a geometric space. We think of the nodes of the network as individuals, each of

which has a fixed location in space. The neighbours of a node u are nodes with a direct connec-

tion (also called a link or an edge) to u. A connection may correspond to a friendship or an

acquaintance, or simply a contact event, and is correlated with, but does not necessarily coin-

cide with spatial proximity.

There are two robust parameters of GIRGs that control the qualitative features of the net-

work: a parameter τ controls the variability in the number of neighbours that individual nodes

have (the number of neighbours of a node is called its “degree”). Smaller values of τ corre-

spond to more variability, while keeping the average the same. A second parameter α controls

the number of long-range edges: long-range edges would tend to be present in populations

without travel restrictions, (as observed in real-life contact networks, see e.g. [5–7]).

A value of α close to 1 corresponds to having many long-range edges, in this case the net-

work resembles an ageometric (or mean-field) network model (for more on this see Section

3.1 below); while increasing α reduces the number of long-range contacts, thus transforming

the network into one where the underlying geometry is intrisically more apparent. The follow-

ing summary will help the reader to understand the experimental results reported below.

• τ = 2.3: a GIRG with plenty of “super-spreaders” (nodes with many connections) due to

degree variability,
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• τ = 3.3: a GIRG with fewer super-spreaders,

• α = 1.3: a GIRG with many long-range edges, hence the underlying geometry is “less

apparent”

• α = 2.3 a “more geometric” GIRG, i.e., a network that resembles a lattice better, since it does

not have too many long-range connections.

The parameter values (τ, α) are chosen to represent each universality class of GIRGs with

respect to average distance in the network. See more details and explanation in Section 3.

For comparison, we also used a common uncorrelated network model, the configuration
model, corresponding to a network with no underlying geometry, see details in Section 3.2.

Configuration models do not have an associated α parameter expressing the strength of geom-

etry, though there is still a parameter τ indicating the presence of many (or fewer) super-

spreaders. To make comparison to GIRGs possible, also in the configuration model we take

τ = 2.3 for modelling a network with plenty of superspreaders and τ = 3.3 for a model with

fewer superspreaders, that again correspond to the universality classes of these models with

respect to average distance. We tune the parameters of all underlying networks so that they

have the same average degree and size.

Another family of commonly-used correlated network models are spatial preferential
attachment models [8, 9]. GIRGs have two key advantages over these models for our purposes.

The first is that they are much simpler to analyse from a theoretical perspective due to the

large amount of independence present in the model. The second is that long-range edges are

key to our paper as a way of modelling travel restrictions. While some spatial preferential

attachment models do allow long-range edges [10], these were not the original focus of the

model and there is no universally-agreed standard; by contrast, the α parameter of GIRGs fits

our needs well.

1.2 Key performance indicators (KPIs)

To compare the performance of the four uptake scenarios as well as the strictness of quarantin-

ing, we study three KPIs as a function of the parameters.

• Size: The size of the epidemic, meaning the total number of individuals ever infected during

the whole course of the epidemic.

• HMax: The (approximated) maximum hospital load. In our study, we define the hospital

load at any time to be 5% of the number of agents in infected states (symptomatic or asymp-

tomatic) individuals. Of course, the 5% is just a scaling, and changing this factor does not

change the shape of the curve. HMax is then the maximum of this hospital load, over the

course of the epidemic.

• Quar: The average number of days spend in quarantine per person, over the course of the

epidemic. We obtain this quantity as the accumulated number of days spent in quarantine

by the population, divided by the total population size.

1.3 Experiment 1: Application-uptake scenarios

An important aspect of our study is a comparison of the efficacy of four different CTA-uptake

scenarios. Suppose that p% of the population use and also comply with a CTA, in the sense of

reporting symptoms and also going into self-quarantine when instructed to do so. We com-

pare the effectiveness of the CTA in terms of reducing the total size of the epidemic (which we
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denote Size) and the maximum hospital load HMax, when this p% uptake is achieved in four

different ways:

(i). randomly chosen: p% of the population uses the CTA, and this p% is chosen uniformly

at random,

(ii). via basic recommendation: a set of “initial users” is chosen uniformly at random. Each

initial user recommends the CTA to a single uniformly-chosen neighbour who then also

uses it,

(iii). via ring recommendation: each initial user recommends the CTA to its neighbours,

each of them will use the app with probability 1/2 independently of the rest,

(iv). via degree targetting: the p% of the population with the highest number of connections

use the CTA.

In terms of controlling the epidemic, one would expect that it is desirable if the p% most

influential members of the population use the CTA, rather than a randomly-chosen p%. How-

ever, targetting the application in this way incurs cost (it is necessary to determine which mem-

bers of the population have the most influence, and to persuade them to use the application).

The recommender scenarios provide a less-costly, easier-to-implement solution. Each time a

(randomly-chosen) member of the population begins using the CTA, this user is asked to per-

suade either a single, randomly-chosen contact or all of its contacts to also use the CTA. Infor-

mally, these contacts are friends or acquaintances. In our network model, they correspond to

neighbours in the network. See Section 1.1 and Definition 4 for details. In the case where all

contacts are asked to use the CTA, our model assumes that roughly half of these contacts do

begin using the CTA. This ring recommendation method has some connections with a certain

vaccination protocol, called ring vaccination, hence the name. Ring vaccination has been suc-

cessful in the past to eradicate small pox [11] and has also been used against Ebola [12]. Such

recommender scenarios have previously been shown to be effective in the context of vaccines

[13] on synthetic models. Note that, to achieve the same uptake percentage p%, the initial per-

centage of users for the recommender-based scenarios is smaller than p%, see Fig 1.

Basic recommendation also has connections to a vaccination protocol called acquaintance

vaccination which typically outperforms random vaccination in network models [14, 15]. The

main difference between the two scenarios is that in acquaintance vaccination, only the neigh-

bours of the randomly-chosen set of “initial users” receive the vaccine rather than the users

themselves. This makes sense in the context of trying to allocate a limited supply of vaccines,

but not in our context—it is reasonable to assume that anyone recommending the app to a

friend will also install it themselves.

Results. We varied the CTA-uptake percentage for the four uptake scenarios on six net-

works, each with 500, 000 individuals and average degree 13 (average degree 13 roughly cor-

responds to empirical findings concerning the number of contacts per individual [16]),

using the network models from Section 1.1. In each case, we studied the effect of the CTA-

uptake percentage and the uptake scenario (randomly chosen, degree-targetted, basic recom-

mender or ring recommender) on the three KPIs from Section 1.2. We explain our results

using the GIRGs from Section 1.1 with τ 2 {2.3, 3.3} and α = {1.3, 2.3}. The last two networks

mentioned in Section 1.1, modelled by the configuration model, are merely for comparison

and are included in our later figures.

1.3.1 Hospital load and epidemic size: Recommenders perform very well, ring recom-

mender best. The main message indicated by our simulations (row 2 of Fig 2) is that intro-

ducing recommender scenarios strongly increases the efficacy of a CTA in terms of reducing
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hospital load: Having achieved uptake p% via any recommender scenario is significantly more

desirable (in terms of reducing the maximum hospital load) than having achieved p% uptake

by randomly chosen members of the population. Furthermore, the degree-targetted scenario

works best, and the ring-recommender scenario is almost as good as this. Adding the sub-

scripts rand, deg, basic, and ring to indicate the uptake scenarios, we find typically that

HMaxdegðpÞ < HMaxringðpÞ < HMaxbasicðpÞ < HMaxrandðpÞ: ð1Þ

It is worth explaining at this point what we mean by “typically” and in what sense Eq (1) is

intended. Obviously, it is not strictly true—for example if the uptake percentage p% is 0% or

100%, then all uptake scenarios are equivalent. Furthermore, our results are numerical, so will

have some inaccuracies. As can be seen from the 2nd column of row 2 of the figure, if the CTA

works well enough to suppress the epidemic then the various uptake scenarios are roughly

equivalent, and cannot be compared. What we mean by “typically” is that, as is apparent from

row 2, when the CTA uptake does matter, our data strongly suggests that the hospital max is

smallest under the degree-based scenario, next smallest under the ring scenario, and largest

(by some measure!) under the random scenario.

The same inequalities typically hold true for the size of the epidemic (first row of Fig 2):

SizedegðpÞ < SizeringðpÞ < SizebasicðpÞ < SizerandðpÞ: ð2Þ

For a different depiction of this phenomenon at p = 5% see Fig 3, where the course of the epi-

demic is plotted against time. The epidemic curve on the left represents the total number of

infected individuals (during the course of the epidemic). The epidemic curve on the right rep-

resents the number of individuals that are currently infected. The figure demonstrates how the

random-uptake scenario is outperformed by the other uptake scenarios.

The reason that recommender scenarios always perform better than the random uptake sce-

nario is explained by the so-called friendship-paradox [17]: a friend of a random user is likely

to have a higher number of contacts than the random user itself, so a recommender scenario

intrinsically finds users with high numbers of connections. This effect is more pronounced

when the node-degrees are highly varying (τ = 2.3) and it is even more pronounced in the

ring-recommendation scenario. The reason for this is that ring recommendation introduces

Fig 1. The initial app uptake pinit% in relation to the final app uptake p% on four networks and the different uptake scenarios. The curves for random uptake

degree-targetted uptake coincide and are straight lines, since it holds that p% = pinit%, while for recommender scenarios p%>pinit%. Increasing p% increases the

probability that a node is recommended by multiple persons, explaining the concave curves corresponding to the recommender scenarios.

https://doi.org/10.1371/journal.pone.0250435.g001
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highly connected clusters of CTA users, and it is hard for the epidemic to thrive in such an

environment: the CTA clusters block its spreading.

1.3.2 Improving CTA efficacy by slightly increasing uptake rates. We study the shape

of the curves SizeS(p) and HMaxS(p) as p varies and S 2 {rand, basic, ring, deg}. Intuitively, we

examine what happens when we slightly increase the CTA-uptake percentage, especially in the

(at least in Europe) more realistic low-uptake regimes (< 50%).

Our first finding (see the second row of Fig 2) is that random uptake decreases HMax

roughly linearly in the uptake percentage p%. Here we don’t mean that the plotted yellow

curves in the second row (which are numerical approximations to Hmaxrand(p)) are precisely

Fig 2. The KPIs (Size, HMax, Quar) as a function of the CTA-uptake percentage p% for the four CTA-uptake scenarios can be found in the rows. The population

is modelled using four 500,000 node GIRG networks where τ = 2.3 has more super-spreaders and τ = 3.3 has fewer super-spreaders, α = 1.3 is less geometric and α =

2.3 is more geometric, arranged in the four columns. The x-axis shows the uptake percentage p% varying from 0 to 100% at step size 5%. Simulations are done for the

21 values of p% corresponding to these steps. The y-axis shows the corresponding value of the KPI. The four uptake scenarios correspond to the four curves on each

figure. For each parameter value, the plotted result is the median over 10 runs. The shaded region around the plot covers the results of all 10 simulations. The epidemic

is started by infecting 100 individuals, chosen uniformly at random. Simulation is halted when there are no more exposed or infected vertices. For completeness (the

reader does not need to know this at this point, but it will be useful for comparison later) the simulations use β = 0.05 and q = 0.6. β is the rate of infection. It is defined

in Section 2, and this value corresponds to a low rate of infection, for example due to social distancing measures. The parameter q denotes the severity of the

quarantine measures. It is studied later, in Experiment 2.

https://doi.org/10.1371/journal.pone.0250435.g002
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linear—instead we mean that the rate at which the hospital maximum decreases is roughly con-

stant, as the uptake percentage p% increases. This rate of decrease depends on the underlying

network (the four columns). It also depends on the rate of the infection, β, which is fixed in

this section. In our experiments we later vary β (see Fig 4). For higher values of β it appears

that HMax decreases concavely as the uptake percentage p% increases, meaning that HMax

decreases more quickly for larger percentages p%.

A similar phenomenon holds for the epidemic size Sizerand(p) (see the first row of Fig 2)

when τ = 2.3 so there are many super-spreaders in the network, while the curve is more con-

cave when τ = 3.3 (fewer super-spreaders). See also Fig 5, where the infection rate β is varied.

Note that Size(0) and Hmax(0) do not depend on the uptake scenario, since no individual is

using the CTA when p = 0.

We explain why the approximately linear decline is intuitively surprising, where it appears.

For an infection to be prevented via the CTA, both the infector and the infected individual

have to use the CTA, and the chance of this by random uptake is (p/100)2� p/100. Thus one’s

first guess would be that HMaxrand(p) and Sizerand(p) would be concave in p, not linear, over

all infectiousness parameters. Yet, we have sees that the curve is concave only in scenarios with

high infectiousness and in contact networks with strong underlying geometry (see Figs 4 and

5, where the infectiousness parameter (β) is varied). The conclusion is that, even with random

uptake, the CTA works better than might be expected, decreasing Size and Hmax roughly line-

arly for a large range of parameter values (of infectiousness, and of the underlying network),

rather than concavely.

The recommender scenarios react even better to small increases in the uptake percentage

(for small values of p). Our experiments show (see the first row of Fig 2) that all recommender

scenarios (and especially the ring-recommender scenario) react more strongly (than the ran-

dom-uptake scenario) to a slight increase in the uptake percentage p%. That is, the epidemic

size curves decrease at a faster rate under basic and ring recommendation, as compared to

under the random uptake scenario. Roughly, we find that for p%<50% and a small positive

Fig 3. Simulations of an epidemic on a 500,000 node GIRG network with few super-spreaders (τ = 3.3) and less geometry (α = 1.3), with uptake percentage p% =

55%. The x-axis shows the time steps over which the epidemic is simulated. The y-axis of the left figure shows the number of removed individuals over the course of

the epidemic. The y-axis of the right figure shows the number of hospitalised individuals over time (in the same simulation). The plotted curves correspond to the

median over 20 runs (in the four scenarios); the shaded area covers the 25th-75th percentile of these runs over time. The left figure shows that the random uptake

scenario is outperformed by all other scenarios and has a steeper incline, leading to a situation where more people get infected. The right figure shows that the number

of hospitalised individuals is also higher under the random uptake scenario. This figure corresponds to the p = 55% value in the first two rows of the leftmost column of

Fig 2. Similarly to the situation regarding that figure, the epidemic is started by infecting 100 individuals, chosen uniformly at random. Simulation is halted when there

are no more exposed or infected vertices. For completeness the simulations use β = 0.05 and q = 0.6.

https://doi.org/10.1371/journal.pone.0250435.g003
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Fig 4. The maximum hospital load as a function of the uptake percentage p%. The population is modelled using

four 500,000-node GIRG networks where τ = 2.3 has more super-spreaders and τ = 3.3 has fewer super-spreaders, α =

1.3 is less geometric and α = 2.3 is more geometric, arranged in the four rows. For comparison, there are two rows for

500,000-node configuration models with τ = 2.3 and τ = 3.3. The x-axis shows the uptake percentage p% varying from

0 to 100% at step size 5%. Simulations are done for the 21 values of p% corresponding to these steps. The y-axis shows

the corresponding value Hmax(p). Different columns indicate varying infection probabilities β. The HMax data in
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number dp,

SizeringðpÞ � Sizeringðpþ dpÞ � SizerandðpÞ � Sizerandðpþ dpÞ > 0;

SizebasicðpÞ � Sizebasicðpþ dpÞ � SizerandðpÞ � Sizerandðpþ dpÞ > 0;
ð3Þ

meaning that (apart from perhaps for τ = 3.3, α = 1.3), the total size of the epidemic as a func-

tion of p decreases substantially more steeply for ring-recommender and basic-recommender

uptake than for the random uptake. While this is true for both τ = 2.3 and τ = 3.3, in the situa-

tion where there are many super-spreaders (τ = 2.3), the curves seem in addition to be convex

(meaning that the rate of decay is highest when the uptake percentage is small).

For the maximum hospital load Hmax, the effect is similar, but stronger (see row 2 of Fig

2). Here the HMax curve is a convex curve for all recommender scenarios.

In summary, we find that for many underlying contact networks, the functions Sizering(p),

Sizebasic(p), HMaxring(p), and HMaxbasic(p) are convex, having a steep decline when p%<50%,

while Sizerand(p) and Hmaxrand(p) are linear or concave functions. This is illustrated further

in Figs 4 and 5 where the level of infectiousness is varied: the phenomenon is robust in the

“supercritical” regime where there is a large outbreak, apart from in graphs with few super-

spreaders in situations with very high infection rates. In this latter case the curves might coin-

cide or are more concave.

1.3.3 Geometry helps the CTA. A less obvious observation that we make is that (consid-

ering networks with the same average number of connections per node), the more geometric

the underlying contact network is, the better the performance of the CTA in terms of reducing

the size of the epidemic and the maximum hospital load, across the four uptake scenarios. In

other words, lack of long-range connections helps CTAs. This agrees with existing work on

classical contact tracing [18, 19], despite the increased heterogeneity introduced by random

app uptake; see [20] for a detailed survey.

Moreover, the positive effect of recommending becomes more exaggerated in geometric

networks, see Fig 6. Emphasising in notation by adding a superscript ‘geo’ and ‘ageo’ to

emphasise whether the underlying network has strong geometry (α = 2.3) or less geometry

(α = 1.3), we typically find that (for fixed τ and reasonable uptake percentages)

SizegeorandðpÞ � SizegeobasicðpÞ � SizeageorandðpÞ � SizeageobasicðpÞ;

SizegeorandðpÞ � SizegeoringðpÞ � SizeageorandðpÞ � Sizeageoring ðpÞ:
ð4Þ

This is illustrated on Fig 6, where the epidemic size difference (corresponding to the number

of infections that are prevented by the recommendation) is plotted. Observe that the dashed

red curve, corresponding to the epidemic size difference in geometric networks stays above

the blue curve, corresponding to the epidemic size difference in ageometric networks. We

emphasise that both curves are positive, i.e., recommendation performs better than random

uptake in both geometric and ageometric networks.

The intuitive explanation for Eq (4) is the same as what we gave in Section 1.3.1: recom-

mending has two main effects. The first effect is finding the super-spreaders via the friendship-

paradox effect. The second effect of recommending is only present in geometric networks:

Fig 2 corresponds to the β = 0.05 column. As in Fig 2, The four uptake scenarios correspond to the four curves on each

figure. For each parameter value, the plotted result is the median over 10 runs. The shaded region around the plot

covers the results of all 10 simulations. The epidemic is started by infecting 100 individuals, chosen uniformly at

random. Simulation is halted when there are no more exposed or infected vertices. The quarantine severity q is 0.6.

https://doi.org/10.1371/journal.pone.0250435.g004
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Fig 5. Epidemic size as a function of the uptake percentage p%. The population is modelled using four 500,000-node

GIRG networks where τ = 2.3 has more super-spreaders and τ = 3.3 has fewer super-spreaders, α = 1.3 is less geometric

and α = 2.3 is more geometric, arranged in the four rows. For comparison, there are two rows for 500,000-node

configuration models with τ = 2.3 and τ = 3.3. The x-axis shows the uptake percentage p% varying from 0 to 100% at

step size 5%. Simulations are done for the 21 values of p% corresponding to these steps. The y-axis shows the

corresponding value Size(p). Different columns indicate varying infection probabilities β. The epidemic size data in
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recommending also forms geometric barriers of CTA-users around a central node. These bar-

riers are hard for the infection to pass through.

On the empirical side, we mention that a way to introduce more geometry into the underly-

ing contact network is via travel restrictions. Two of the authors previously studied the effect

of such intervention on epidemic curves in [21], which found that already in simple scenarios

where there are no CTAs, travel restrictions are indeed most effective in reducing the height of

the (first) peak.

1.3.4 How costly is quarantine? A common belief is that using a CTA might cause a high

quarantine load on the population. However, row 3 of Fig 2 demonstrates that, at least in the

case of fewer super-spreaders (τ = 3.3) the average number of days that an individual has to

quarantine does not rise very steeply with the CTA-uptake percentage p%. Note that the date

for the case with more superspreaders (τ = 2.3) has very high variance, so we do not draw con-

clusions abou this case. Note also that the conclusions are relevant in situations where social-

distancing measures make the underlying infection rate not too high, this corresponds to the

choice of β = 0.05 here. Though it is beyond the scope of this study, note that quarantine time

can be reduced by providing prompt testing to people who are notified to quarantine by the

CTA.

Here we note a surprising feature that applies to underlying networks with relatively few

super-spreaders (τ = 3.3) in Fig 2. In this case, Quar(p) is roughly unimodal, meaning that

when the uptake percentage p% is small, the amount of quarantine time per person increases

as p increases. However, roughly, the amount of quarantine is maximised for some p?%<

100%, and decreases above p?.

Fig 2 corresponds to the β = 0.05 column. As in Fig 2, The four uptake scenarios correspond to the four curves on each

figure. For each parameter value, the plotted result is the median over 10 runs. The shaded region around the plot

covers the results of all 10 simulations. The epidemic is started by infecting 100 individuals, chosen uniformly at

random. Simulation is halted when there are no more exposed or infected vertices. The quarantine severity q is 0.6.

https://doi.org/10.1371/journal.pone.0250435.g005

Fig 6. The reduction in epidemic size achieved by CTAs with user recommendation improves when the network has stronger geometry (for all values of p%<

85%). Subfigures (A) and (C): The red dashed curve shows Size geo
randðpÞ � Size geo

basicðpÞ, while the blue continuous curve shows Size ageo
randðpÞ � Size ageo

basicðpÞ as a function

of the uptake percentage p%. In subfigures (B), and (D), the red dashed curve shows Size geo
randðpÞ � Size geo

ringðpÞ, while the blue continuous curve shows Size ageo
randðpÞ �

Size ageo
ring ðpÞ as a function of the uptake percentage p%. Observe that the red dashed curves are (typically) above the blue curves. In subfigures (A) and (B) the

underlying network contains many super-spreaders, while in subfigures (C) and (D) the network contains fewer: observe that the presence of fewer super-spreaders

makes the red dashed curve, the epidemic size difference in geometric networks between recommender and random uptake, more spiky. The simulation details are the

same as those in Fig 2. The same four 500,000 nodes GIRGs are used. The x-axis shows the uptake percentage p% varying from 0 to 100% at step size 5%. Simulations

are done for the 21 values of p% corresponding to these steps. For each parameter value, the plotted result is the median over 10 runs. The epidemic is started by

infecting 100 individuals, chosen uniformly at random. Simulation is halted when there are no more exposed or infected vertices. The simulations use β = 0.05 and

q = 0.6.

https://doi.org/10.1371/journal.pone.0250435.g006
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This means that using CTAs only increases the average quarantine time below uptake p?

but not above it. We mention that p? depends on the uptake scenario, and comes earlier with

recommendation scenarios than with random uptake. On the last row of Fig 7 the same phe-

nomenon is observed for various levels of infectiousness of the disease: this rough unimodality

in Quar(p) is robust for these underlying networks. It disappears, however, for networks

where either there are more super-spreaders (so the data is too noisy to draw conclusions) or

the geometry is less apparent (Fig 7).

The conclusion is that, in this particular setting, using CTAs at high uptake rates is effective

not only for reducing the epidemic size and maximum hospital load of the epidemic but also

in reducing the average quarantine length.

1.3.5 Other parameter values. The experiments in Fig 2 assumed an epidemic model (see

Section 2) with a low rate of infection β = 0.05. This means that each infectious node infects

each of its susceptible neighbours with probability β at every time step (e.g., every day). Low

rates of infection can be achieved by social-distancing measures. The results that we have men-

tioned so far are robust over other infection rates. See Figs 4, 5 and 7 where the rate of infection

is varied, for maximum hospital load, epidemic size, and quarantine load.

1.4 Experiment 2: Varying the strictness of quarantine measures

It has been observed that the severity of symptoms varies with the individual [22–25]. In our

model, we assume that there is an underlying probability distribution that determines whether

an individual would be symptomatic, in the case that this individual is infected, and also that

there is an underlying probability distribution determining the severity of these symptoms.

Policy makers may then impose quarantine or home isolation on individuals that have symp-

toms above a certain severity-threshold; setting the threshold is a political/economic decision.

In our model, the strictness of quarantine measures is represented by a value q 2 [0, 1]. This

quantity q is the fraction of individuals whose symptoms would be so severe that they would

go into home-quarantine if infected. Strict quarantine measures correspond to large values of

q—in the extreme, taking q = 1 means that all infected individuals would go into home-quar-

antine. Recall that we work under the assumption that either a single virus is present in the

population (so all relevant symptoms are caused by this virus) or testing is immediate and

available to those who exceed the symptom severity threshold. This assumption is important

for the results in this section.

For any given epidemic, there is an underlying probability qsymp, which is the proportion of

infected individuals that experiences any symptoms upon infection (mathematically, the prob-

ability of showing symptoms upon infection). Implementing a quarantine-strictness q> qsymp

would require a program of mass testing. The implementation of such a testing program is

beyond the scope of this paper, however we make two remarks:

(1) For many epidemics, the value of qsymp is fairly high (for COVID-19, the literature is

varied, [26] finds a qsymp� 0.3 over all population, varying in age, [27, 28] find it� 0.6 and�

0.7, respectively, while [29] finds it as high as� 0.85).

(2) our results indicate that setting quarantine-strictness even below qsymp can still be effec-

tive for decreasing the epidemic size and maximum hospital load.

The social benefits of quarantining measures are nuanced. While quarantining clearly helps

to reduce the size of the epidemic (Size) and the maximum hospital load (HMax), it also

comes at the high societal cost of reduced work capacity. As a policy maker, one might like to

balance the reduction in Size and Hmax against Quar, the average number of days spent in

quarantine per person, over the course of the epidemic. In Experiment 1 we took the fixed

PLOS ONE Increasing efficacy of contact-tracing applications by user referrals and stricter quarantining

PLOS ONE | https://doi.org/10.1371/journal.pone.0250435 May 19, 2021 13 / 36

https://doi.org/10.1371/journal.pone.0250435


Fig 7. The average number of days in quarantine per person as a function of the uptake percentage p%. The

population is modelled using four 500,000-node GIRG networks where τ = 2.3 has more super-spreaders and τ = 3.3

has fewer super-spreaders, α = 1.3 is less geometric and α = 2.3 is more geometric, arranged in the four rows. For

comparison, there are two rows for 500,000-node configuration models with τ = 2.3 and τ = 3.3. The x-axis shows the

uptake percentage p% varying from 0 to 100% at step size 5%. Simulations are done for the 21 values of p%

corresponding to these steps. The y-axis shows the corresponding value Quar(p). Different columns indicate varying
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value q = 0.6. In Experiment 2, we study how the setting of the quarantine-strictness q affects

all of these KPIs. In this experiment, we vary the quarantining strength q and the CTA-uptake

percentage p% for the four CTA-uptake scenarios. Our results are summarised in Fig 8, that

we elaborate below.

infection probabilities β. The Quar data in Fig 2 corresponds to the β = 0.05 column. As in Fig 2, The four uptake

scenarios correspond to the four curves on each figure. For each parameter value, the plotted result is the median over

10 runs. The shaded region around the plot covers the results of all 10 simulations. The epidemic is started by infecting

100 individuals, chosen uniformly at random. Simulation is halted when there are no more exposed or infected

vertices. The quarantine severity q is 0.6.

https://doi.org/10.1371/journal.pone.0250435.g007

Fig 8. Influence of the quarantine strictness q for various uptake percentages p% and the four uptake scenarios: The KPIs are plotted against q, the quarantine

strictness. We work here with a fixed underlying network, a 500,000 node GIRG with τ = 3.3 (fewer super-spreaders) and α = 2.3 (more geometric). Each column

represents a given uptake scenario (random, basic-recommender and ring-recommender, and degree-targetted). The x-axis shows the quarantine strictness q varying

from 0 to 1 at step size 0.05. Simulations are done for the 21 values of q corresponding to these steps. There is an additional simulation point at 0.02 (in order to avoid

division by 0 in the computation for HMax and still have a point close to 0). The y-axis shows the corresponding value of the KPI. The curves on each figure

correspond to the different uptake percentages, as labelled. For each parameter value, the plotted result is the median over 5 runs. The shaded region around the plot

covers the results of all 5 simulations. The epidemic is started by infecting 100 individuals, chosen uniformly at random. Simulation is halted when there are no more

exposed or infected vertices. The infection rate is β = 0.05.

https://doi.org/10.1371/journal.pone.0250435.g008

PLOS ONE Increasing efficacy of contact-tracing applications by user referrals and stricter quarantining

PLOS ONE | https://doi.org/10.1371/journal.pone.0250435 May 19, 2021 15 / 36

https://doi.org/10.1371/journal.pone.0250435.g007
https://doi.org/10.1371/journal.pone.0250435.g008
https://doi.org/10.1371/journal.pone.0250435


1.4.1 Reducing epidemic size & hospital load by stricter quarantining. Increasing the

quarantine-strictness q (i.e., requiring individuals to quarantine even with mild symptoms)

reduces the number of individuals who are able to spread the virus, and hence reduces the epi-

demic size and maximum hospital load of the epidemic. This is a very natural observation,

valid across all parameter settings and underlying contact networks. The top row of Fig 8

shows how the size of the epidemic decreases, for various CTA-uptake percentages p%, as the

quarantine-strictness q increases. We observe that for q1 > q2, for any fixed p and uptake sce-

nario S � {rand, basic, ring, deg},

SizeS;pðq1Þ � SizeS;pðq2Þ;

HMaxS;pðq1Þ � HMaxS;pðq2Þ:
ð5Þ

However, the rate of decrease varies across uptake scenarios. Figs 9 and 10 show that in the

case with fewer super-spreaders (τ = 3.3) typically

Sizedeg;pðqÞ < Sizering;pðqÞ < Sizebasic;pðqÞ < Sizerand;pðqÞ;

HMaxdeg;pðqÞ < HMaxring;pðqÞ < HMaxbasic;pðqÞ < HMaxrand;pðqÞ;
ð6Þ

by plotting the various uptake scenarios on the same diagram. To some extent, Eq (6) also

holds with more super-spreaders (τ = 2.3) but the curves for the recommendation scenarios

are close, or overlapping, in these cases (See Figs 11 and 12).

Fig 9. Experiment 2 on a geometric network with not too many super-spreaders: Influence of the quarantine strictness q for various uptake percentages p% and

the four uptake scenarios at infection rate β = 0.05. The underlying network is a 500,000-node GIRG with τ = 3.3 (fewer super-spreaders) and α = 2.3 (more

geometric). Each column represents an uptake percentage. The x-axis shows the quarantine strictness q varying from 0 to 1 at step size 0.05. Simulations are done for

the 21 values of q corresponding to these steps. There is an additional simulation point at 0.02 (in order to avoid division by 0 in the computation for HMax and still

have a point close to 0). The y-axis shows the corresponding value of the KPI. The curves in each figure correspond to the different uptake scenarios, as labelled. For

each parameter value, the plotted result is the median over 5 runs. The shaded region around the plot covers the results of all 5 simulations. The epidemic is started by

infecting 100 individuals, chosen uniformly at random. Simulation is halted when there are no more exposed or infected vertices.

https://doi.org/10.1371/journal.pone.0250435.g009
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Going back to Fig 8, we find that the Size and HMax curves are steepest under degree-tar-

getted uptake, ring recommendation is second best, while basic recommendation still per-

forms better (declines more steeply) than random uptake. This is similar to what we have

already observed in Section 1.3.

Fig 13 is qualitatively similar to Fig 8 and considers an underlying network that is less geo-

metric. For network with more super-spreaders (Figs 14 and 15), these effects are even more

exaggerated. It is interesting to observe that the curves of SizeS(p), HMaxS(p) for S 2 {basic,

ring, deg} drop so significantly compared to Sizerand(0), HMqxrand(0), respectively, that it

appears to be a discontinuity at 0. While we believe these are due to finite size effects, the

observation that recommending helps significantly already at very low uptake rates remains

valid.

1.4.2 Improving CTA efficacy by slightly increasing quarantine strength. We next

study the shape of the curves SizeS,p(q) and HMaxS,p(q) for fixed p as q varies and S 2 {rand,

basic, ring, deg}. Intuitively, we examine what happens when we slightly increase the quaran-

tine strength q, especially in the mild-quarantine scenario where q< 0.5. We first note (From

Fig 8) that without a CTA present (p = 0%), Hmax decreases roughly linearly as a function of

q. Whenever a CTA is present, (p%> 0%) Hmax becomes a steeply decreasing convex function

of q for low q.

The take-home message is: a somewhat stricter quarantine rule can already lower the maxi-

mum hospital load and thus “flatten the curve” very well in the presence of a CTA. A similar

Fig 10. Experiment 2 on a less geometric network with not too many super-spreaders: Influence of the quarantine strictness q for various uptake percentages p%

and the four uptake scenarios at infection rate β = 0.05. The underlying network is a 500,000-node GIRG with τ = 3.3 (fewer super-spreaders) and α = 1.3 (less

geometric). Each column represents an uptake percentage. The x-axis shows the quarantine strictness q varying from 0 to 1 at step size 0.05. Simulations are done for

the 21 values of q corresponding to these steps. There is an additional simulation point at 0.02 (in order to avoid division by 0 in the computation for HMax and still

have a point close to 0). The y-axis shows the corresponding value of the KPI. The curves in each figure correspond to the different uptake scenarios, as labelled. For

each parameter value, the plotted result is the median over 5 runs. The shaded region around the plot covers the results of all 5 simulations. The epidemic is started by

infecting 100 individuals, chosen uniformly at random. Simulation is halted when there are no more exposed or infected vertices.

https://doi.org/10.1371/journal.pone.0250435.g010
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observation is valid for Sizep(q): the curve is concave for p% = 0%, while it becomes linear or

convex when p increases.

When the value of q is small (so the quarantine measures are not strict), Fig 8 also shows

that another way to flatten the curve is to increase the uptake percentage: the rate at which Size

and Hmax decrease is much higher for large CTA-uptake percentages: our numerical simula-

tions indicate that (for the values of p that we have tested) when p1 > p2 and dq is a small posi-

tive number,

Sizep1
ðqÞ � Sizep1

ðqþ dqÞ � Sizep2
ðqÞ � Sizep2

ðqþ dqÞ;

HMaxp1
ðqÞ � HMaxp1

ðqþ dqÞ � HMaxp2
ðqÞ � HMaxp2

ðqþ dqÞ:

Thus a high(er) CTA uptake rate makes it possible to impose less strict quarantine measures

and yet keep the epidemic size and hospital load under control.

We mention that these findings are robust across underlying networks: while Fig 8 shows

the KPIs on a fairly geometric network with not too many and not too large super-spreaders,

Fig 13 shows the same KPIs for a different class of networks; where many long-range edges are

present. The two scenarios are qualitatively similar. For network with more super-spreaders

(Figs 14 and 15), these effects are even more exaggerated. It is interesting to observe that the

curves of SizeS,p(q), HMaxS,p(q) for S 2 {basic, ring, deg} drop so significantly compared to

SizeS,0(0), HMaxS,0(0), respectively, that it appears to be a discontinuity at 0 in q: seemingly,

Fig 11. Experiment 2 on a geometric network with many super-spreaders: Influence of the quarantine strictness q for various uptake percentages p% and the

four uptake scenarios at infection rate β = 0.05. The underlying network is a 500,000-node GIRG with τ = 2.3 (more super-spreaders) and α = 2.3 (more geometric).

Each column represents an uptake percentage. The x-axis shows the quarantine strictness q varying from 0 to 1 at step size 0.05. Simulations are done for the 21 values

of q corresponding to these steps. There is an additional simulation point at 0.02 (in order to avoid division by 0 in the computation for HMax and still have a point

close to 0). The y-axis shows the corresponding value of the KPI. The curves in each figure correspond to the different uptake scenarios, as labelled. For each parameter

value, the plotted result is the median over 5 runs. The shaded region around the plot covers the results of all 5 simulations. The epidemic is started by infecting 100

individuals, chosen uniformly at random. Simulation is halted when there are no more exposed or infected vertices.

https://doi.org/10.1371/journal.pone.0250435.g011
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e.g. for p = 20%

HMaxS;20ð0Þ < HMaxS;0ð0Þ:

While we believe these are due to finite size effects, the observation that recommending helps

significantly already at very low uptake rates remains valid.

1.4.3 Reducing quarantining by quarantining. Although it is valuable to increase quar-

antine-strictness in order to reduce Size and HMax, one may wonder whether stricter quaran-

tine measures require more social sacrifice. Our experiments demonstrate that the picture is

not this simple: Row 3 of Fig 8 shows that, for every positive CTA-uptake percentage p% and

every uptake scenario S 2 {rand, basic, ring, deg}, the curve QuarS,p(q) is roughly unimodal.

Thus, once q is sufficiently large (larger than some value q�S;p depending on the uptake scenario

S and the uptake percentage p%), increasing q actually decreases the average number of

days that people have to quarantine. One reason for this might be that the quarantining

decreases the spread of the epidemic (so other individuals don’t get infected and cause further

quarantining).

This observation is most useful if the CTA-uptake percentage p% is high enough that

q�S;p < qsymp, so that quarantine-strictness quantities q > q�S;p are easy to implement in reality.

Note that q?S;p also depends on the infectiousness of the disease. Stricter social distancing,

corresponding to lower reproduction number, leads to lower value of q?S;p. Thus, when social-

Fig 12. Experiment 2 on a less geometric network with many super-spreaders: Influence of the quarantine strictness q for various uptake percentages p% and

the four uptake scenarios at infection rate β = 0.05. The underlying network is a 500,000-node GIRG with τ = 2.3 (more super-spreaders) and α = 1.3 (less

geometric). Each column represents an uptake percentage. The x-axis shows the quarantine strictness q varying from 0 to 1 at step size 0.05. Simulations are done for

the 21 values of q corresponding to these steps. There is an additional simulation point at 0.02 (in order to avoid division by 0 in the computation for HMax and still

have a point close to 0). The y-axis shows the corresponding value of the KPI. The curves in each figure correspond to the different uptake scenarios, as labelled. For

each parameter value, the plotted result is the median over 5 runs. The shaded region around the plot covers the results of all 5 simulations. The epidemic is started by

infecting 100 individuals, chosen uniformly at random. Simulation is halted when there are no more exposed or infected vertices.

https://doi.org/10.1371/journal.pone.0250435.g012
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distancing measures are in place, it will be more possible to reduce the average time that people

quarantine by setting q > q�S;p.

1.4.4 Geometry helps. Fig 16 shows the effect of geometry on the epidemic size and maxi-

mum hospital load as a function of the quarantine strictness function q, for two levels of infec-

tiousness (high and low). Observe that networks with more geometry (α = 2.3) have lower

epidemic size and lower maximum hospital load than networks with many long-range edges

and hence less geometry (α = 1.3), in this respect, the conclusion is similar to that in Experi-

ment 1, see Section 1.3.3.

Fig 13. Experiment 2 for a less geometric network: Influence of the quarantine strictness q for various uptake percentages p% and the four uptake scenarios: The

KPIs are plotted against q, the quarantine strictness. We work here with a fixed underlying network, a 500,000 node GIRG with τ = 3.3 and α = 1.3. Each column

represents a given uptake scenario (random, basic-recommender and ring-recommender, and degree-targetted). The x-axis shows the quarantine strictness q varying

from 0 to 1 at step size 0.05. Simulations are done for the 21 values of q corresponding to these steps. There is an additional simulation point at 0.02 (in order to avoid

division by 0 in the computation for HMax and still have a point close to 0). The y-axis shows the corresponding value of the KPI. The curves on each figure

correspond to the different uptake percentages, as labelled. For each parameter value, the plotted result is the median over 5 runs. The shaded region around the plot

covers the results of all 5 simulations. The epidemic is started by infecting 100 individuals, chosen uniformly at random. Simulation is halted when there are no more

exposed or infected vertices. The infection rate is β = 0.05.

https://doi.org/10.1371/journal.pone.0250435.g013
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Fig 17 shows that in case there are many super-spreaders in the network (τ = 2.3), these

form a well-connected core so that the value of α becomes less significant: in this case geome-

try is not well described by this parameter. See more on this in Section 3.1 below.

1.4.5 Other parameter values. The experiments in Fig 8 assumed an epidemic model

(see Fig 2) with a low rate of infection β = 0.05. As we noted earlier, low rates of infection

can be achieved by social-distancing measures. Fig 16 repeats the experiment for other val-

ues of β.

Fig 14. Experiment 2 on a less geometric network with many super-spreaders: Influence of the quarantine strictness q for various uptake percentages p% and

the four uptake scenarios: The KPIs are plotted against q, the quarantine strictness. We work here with a fixed underlying network, a 500,000 node GIRG with τ =

2.3 and α = 1.3. In this case, the parameter α does not have a significant effect since long-range edges are present because of the super-spreaders: the figures are very

similar to those in Fig 15. Each column represents a given uptake scenario (random, basic-recommender and ring-recommender, and degree-targetted). The x-axis

shows the quarantine strictness q varying from 0 to 1 at step size 0.05. Simulations are done for the 21 values of q corresponding to these steps. There is an additional

simulation point at 0.02 (in order to avoid division by 0 in the computation for HMax and still have a point close to 0). The y-axis shows the corresponding value of the

KPI. The curves on each figure correspond to the different uptake percentages, as labelled. For each parameter value, the plotted result is the median over 5 runs. The

shaded region around the plot covers the results of all 5 simulations. The epidemic is started by infecting 100 individuals, chosen uniformly at random. Simulation is

halted when there are no more exposed or infected vertices. The infection rate is β = 0.05.

https://doi.org/10.1371/journal.pone.0250435.g014
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1.5 Remark: Social distancing and basic reproduction number

As one would expect, social-distancing measures, which reduce the probability that any partic-

ular interaction leads to an infection, increase the effectiveness of CTAs. This is observed in

our experiments—for example, monotonicity in β can be observed by comparing the columns

in Figs 4 and 5.

2 The epidemic model

The epidemic model that we use is a refinement of the agent-based version of the discrete-time

SEIR model. The spreading process changes at discrete time steps, t = {0, 1, 2, . . .}, each time

Fig 15. Experiment 2 on a more geometric network with many super-spreaders: Influence of the quarantine strictness q for various uptake percentages p% and

the four uptake scenarios: The KPIs are plotted against q, the quarantine strictness. We work here with a fixed underlying network, a 500,000 node GIRG with τ =

2.3 and α = 2.3. Observe the similarity with Fig 14. Each column represents a given uptake scenario (random, basic-recommender and ring-recommender, and degree-

targetted). Fig 13 below is qualitatively similar and considers an underlying network that is less geometric. The x-axis shows the quarantine strictness q varying from 0

to 1 at step size 0.05. Simulations are done for the 21 values of q corresponding to these steps. There is an additional simulation point at 0.02 (in order to avoid division

by 0 in the computation for HMax and still have a point close to 0). The y-axis shows the corresponding value of the KPI. The curves on each figure correspond to the

different uptake percentages, as labelled. For each parameter value, the plotted result is the median over 5 runs. The shaded region around the plot covers the results of

all 5 simulations. The epidemic is started by infecting 100 individuals, chosen uniformly at random. Simulation is halted when there are no more exposed or infected

vertices. The infection rate is β = 0.05.

https://doi.org/10.1371/journal.pone.0250435.g015
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step corresponds to, say, a day. We fix the network G in advance. We think of nodes in the net-

work as individuals, and denote the set of nodes by V. The neighbours of a node u are nodes

with a direct connection (also called link, or edge) to u. A connection may correspond to a

friendship or an acquaintance, or simply a contact event.

As we explained in the context of Experiment 2, the model has a parameter q 2 [0, 1] corre-

sponding to quarantine-strictness. The quantity q is the fraction of individuals whose symp-

toms would be so severe that they would go into home-quarantine if infected. As we already

explained, determining the value of q is a social/economic decision. The model reflects this

decision as follows: For each node, independently, and in advance of the epidemic simulation,

it is determined randomly, with probability q, whether the individual corresponding to this

Fig 16. The effect of geometry and level of infectiousness on Experiment 2: The different curves correspond to different CTA uptake-rates (p%), all in the

random-uptake scenario in a 500,000-node GIRG with few super-spreaders (τ = 3.3). The four columns represent different scenarios—the first column has β = 0.2

(a high infection rate, perhaps caused by less social distancing) and α = 1.3 (a less geometric network). The second column also has β = 0.2, but with more geometry (α
= 2.3). The final two columns represent scenarios with a lower underlying infection rate (β = 0.05), with varying levels of geometry. The three rows correspond to the

three KPIs. The x-axis shows the quarantine strictness q varying from 0 to 1 at step size 0.05. Simulations are done for the 21 values of q corresponding to these steps.

There is an additional simulation point at 0.02 (in order to avoid division by 0 in the computation for HMax and still have a point close to 0). For each parameter value,

the plotted result is the median over 5 runs. The shaded region around the plot covers the results of all 5 simulations. The epidemic is started by infecting 100

individuals, chosen uniformly at random. Simulation is halted when there are no more exposed or infected vertices.

https://doi.org/10.1371/journal.pone.0250435.g016
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node will, upon infection, develop symptoms exceeding the socially-determined symptom

severity threshold, and then go into home-quarantine. The set of nodes which will do so is

called Vsev and the set of nodes which will not is called Vmild. During the epidemic, nodes in

Vsev that become infected will go into home-quarantine. One may worry about uncooperative

individuals who do not self-isolate, despite having sufficiently severe symptoms. We do not

need to adjust to model to account for these, since the quarantine-strictness q can be viewed as

the fraction of individuals that (1) would develop sufficiently-severe symptoms, and (2) would

be willing to self-isolate. Note that the actual distribution of the symptom-strength in the pop-

ulation is irrelevant to the problems that we study; the only relevant parameter is the final

Fig 17. The effect of geometry and level of infectiousness on Experiment 2: The different curves correspond to different CTA uptake-rates (p%), all in the

random-uptake scenario in a 500,000-node GIRG with many super-spreaders (τ = 2.3). The four columns represent different scenarios—the first column has β =

0.2 (a high infection rate, perhaps caused by less social distancing) and α = 1.3. The second column also has β = 0.2, but with a higher α, implying fewer (but not

significantly fewer) long-range edges. Observe that the effect of increasing α is not very significant, corresponding to the explanation in Section 1.4.4. The final two

columns represent scenarios with a lower underlying infection rate (β = 0.05), with varying levels of geometry. The three rows correspond to the three KPIs. The x-axis

shows the quarantine strictness q varying from 0 to 1 at step size 0.05. Simulations are done for the 21 values of q corresponding to these steps. There is an additional

simulation point at 0.02 (in order to avoid division by 0 in the computation for HMax and still have a point close to 0). For each parameter value, the plotted result is

the median over 5 runs. The shaded region around the plot covers the results of all 5 simulations. The epidemic is started by infecting 100 individuals, chosen

uniformly at random. Simulation is halted when there are no more exposed or infected vertices.

https://doi.org/10.1371/journal.pone.0250435.g017

PLOS ONE Increasing efficacy of contact-tracing applications by user referrals and stricter quarantining

PLOS ONE | https://doi.org/10.1371/journal.pone.0250435 May 19, 2021 24 / 36

https://doi.org/10.1371/journal.pone.0250435.g017
https://doi.org/10.1371/journal.pone.0250435


proportion q. The assumption that we do we make, however, is that each individual has an

independent symptom-strength variable, making Vsev a random set of nodes.

Definition 1 (SEISeR model) Determine the node sets Vsev and Vmild. Nodes in Vsev can be in
five possible states: susceptible (S), exposed (E), infectious but not yet showing severe symptoms
(I), infectious and showing severe symptoms (Se), or removed (R), while nodes in Vmild can only
be in state (S), (E), (I) or (R). At t = 0, a subset of nodes E0 � V is put in state (E), all other nodes
are in state (S) (susceptible). The discrete time dynamics between the states are described as fol-
lows (see also Fig 18):

• Infecting: Each infectious node (in state (I)), infects each of its susceptible neighbours within
the network with probability β at every time step. Infections to different neighbours happen
independently. These neighbour nodes enter state (E), exposed to the virus.

• Exposed! Infectious (not (yet) severely symptomatic) When exposed to the virus, each
node becomes infectious (transitions to state (I)) with probability γ at every time step, indepen-
dently of other nodes.

• Infectious! Severely Symptomatic When a node in Vsev is in state (I), (infectious but does
not show severe symptoms yet), it transitions to state (Se) with probability γsev = 1/2.5 at each
time step.

• Infectious! Removed When a node in Vmild is in state (I), infectious but does not show
severe symptoms, it heals and transitions to state (R) with probability ηmild = 1/7 at each time
step.

• Severe Symptomatic! Removed When a node is showing severe symptoms, it heals with
probability ηsev = 1/4.5 at every time step, independently of other nodes. Upon healing, the
node enters state R (removed).

We emphasise that in our model, severely symptomatic nodes do not infect anymore. We

assume that they self-quarantine until being removed. In reality, some infectious individuals

may choose not to self-quarantine, but we have already incorporated this into the model Recall

that Vsev contains only nodes that would develop sufficiently severe symptoms, and would go

into home-quarantine.

To keep the parameter space tractable, we set γ = 1/3, ηmild = 1/7, γsev = 1/2.5, and ηsev = 1/

4.5. Thus, in the model, after being exposed to the virus, it takes on average 3 days to become

infectious and a further 7 days to heal completely for each individual. Nodes in Vsev infect for

an average of 2.5 days before showing symptoms and moving to isolation (that lasts until their

perfect healing) while nodes in Vmild are infectious for an average of 7 days before removal.

Fig 18. An illustration of the dynamical change of states. On the first transition arrow, nI denotes the number of neighbours in state (I) of a

susceptible node. Only nodes in Vsev transition to state (Se). By setting 1/ηmild = 1/γsev + 1/ηsev the average duration of having the virus in an

individual’s system is 1/ηmild for each node. Only nodes in the red circle can infect, while nodes in the blue circle stay in home isolation.

https://doi.org/10.1371/journal.pone.0250435.g018
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These values are based on empirical findings e.g. in [1, 30–32], where we emphasise that our

results are robust in these parameters. Experiment 2 varies the value of q, which is the expecta-

tion of jVsevj=jVj.
Next, we describe our model for the CTA. First we give the details of the four CTA-uptake

scenarios from Section 1.3 then we define the necessary modifications to the dynamics of the

SEISeR model above to incorporate the presence of a CTA.

Definition 2 (Random, basic-recommender, ring-recommender, and degree-targetted

CTA uptake) Before the epidemic starts, we determine the sets Vu;Vnu of users and non-users of
the application. We denote by p ¼ 100jVuj=jVj the empirical uptake percentage. We say that the
user uptake is

• Random: When the nodes that use that application are chosen uniformly at random.

• Degree-targetted: When the p � jVj=100 nodes with the highest degree (number of connec-
tions) are targetted to use the CTA.

• Basic-Recommender: When an initial set of nodes is chosen uniformly at random. Each node
in this initial set uses the CTA, and also recommends it to one of its neighbour chosen uni-
formly at random, who will also use the CTA. The resulting number of users is p � jVj=100

• Ring-Recommender: When an initial set of nodes is chosen uniformly at random. Each node
in this initial set uses the CTA, and also recommends it to all of its neighbour, half of whom
(chosen uniformly at random) will also use the CTA. Again, the resulting number of users if
p � jVj=100.

We observe that degree-targetted uptake is an unrealistic scenario to consider, since it

requires a complete knowledge of the contact network. However, studying the performance of

this hypothetical scenario gives a baseline comparisonfor determining the potential perfor-

mance of a given uptake percentage. We also emphasise that in the basic-recommendation

and ring-recommendation uptake scenarios, the performance of the final uptake percentage

p% ¼ 100 � jVuj=jVj% is compared to the performance of other uptake scenarios with the

same p%. In other words, the basis for comparison is not the proportion of the initially chosen

set. Instead, it is the final uptake percentage. See Fig 1 for the relation between the initial and

final uptake percentage for the four networks.

Next, we describe the necessary modifications to the SEISeR model in the presence of a

CTA. Informally, a CTA user, upon either being tested positive or simply showing sufficient

symptoms, will notify its contacts to stay in quarantine for a duration of T days (T = 14 in

most countries), regardless of whether these contacts themselves show symptoms.

Definition 3 (SEISeR with a contact-tracing application (CTA)). In addition to the original
states (S), (E), (I), (Se) and (R) of the SEISeR model, there are five new states (NS), (NE), (NI),
(NSe) and (NR), corresponding to “notified” versions of the original states—we refer to these as
“N-states” and we refer to the original states as “o-states”. Only CTA-users (nodes in Vu) will
ever enter the N-states. They enter the N-states when they receive a notification, via the CTA.
They stay in the N-states until T = 14 days have elapsed since the last notification received.
While in N-states, they self-quarantine, so cannot spread infection.

The transitions between the N-states are exactly the same as the transitions between the origi-
nal versions of these states, except that there is no transition from (NS) to (NE), because the noti-
fied nodes in state (NS) will be quarantining, so will not become exposed. See the black arrows
denoting transitions in Fig 19.

All nodes start in o-states, exactly as in the SEISeR model. After each time step t, nodes move
between the o-states and the N-states as follows:
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• Notification: If a node in Vu starts to show sufficient symptoms at time t (i.e., either it transi-
tions from (I) to (Se) at time t or it transitions from (NI) to (NSe) at time t) then it sends a noti-
fication to all of its network-neighbours that are in Vu.

• Moving to N-states: If a node in an o-state receives a notification, it moves to its corresponding
N-state (following the corresponding red arrow in Fig 19).

• Moving to O-states: If a node is in an N-state and it has not received a notification for T = 14
time steps, then it moves to its corresponding o-state (following the corresponding blue arrow in
Fig 19).

2.1 Justification of modelling choices and robustness

We make a few comments to justify our modelling choices. Nodes in the N-states and in state

(Se) are assumed to be self-quarantining, so they cannot spread infection. These are the blue

nodes in Fig 19). Only nodes in state (I) (coloured red) can spread infection.

Fig 19. An illustration of the dynamical state changes in the presence of a contract-tracing application. The black arrows represent the transitions of the

SEISeR model and the corresponding transitions in the notified versions of the states. After each time step, nodes move between the O-states (S), (E), (I), (Se) and

(R) and the N-states (NS), (NE), (NI), (NSe) and (NR). Moves to N-states (depicted by red arrows) follow from CTA notifications. CTA users (nodes in Vu)

receive such notifications when neighbouring CTA users show sufficient symptoms, thus transitioning from (I) to (Se) or from (NI) to (NSe). Nodes in blue states

are required to self-quarantine so cannot spread infection. Moves to O-states (depicted by blue arrows) occur when a node has received no new notifications for

T = 14 days.

https://doi.org/10.1371/journal.pone.0250435.g019
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2.1.1 Sending notifications. The reason that nodes entering state (NSe) send notifications

(even though they are already self-quarantining) is that they may have spread infection before

entering the N-states (and starting to quarantine): their neighbours may be in exposed or

infectious states when receiving the notification. In fact, while this model does not include test-

ing, such a scenario also happens in real life when an individual, already part of a contact trac-

ing chain, receives a positive test. In this case, the rest of the contacts of this individual need to

be notified as well.

2.1.2 Removed nodes in quarantine. The underlying SEISeR model assumes that individ-

uals can only be infected once (so “removed” nodes do not become susceptible again). Despite

this, in light of possible re-infection, many countries (e.g. the Netherlands, where two of the

authors are located) do ask individuals who are notified to self-isolate, even if they have already

have Covid-19. While transitioning from (R) to (NR) has no effect on the course of the epi-

demic, it does have an effect on the total population’s effective workforce (which we also

study). Indeed, the self-isolating blue nodes represent a social cost, since all of these nodes are

self-isolating, and cannot go to work. A node who is say, exposed when it receives a notifica-

tion via a CTA may go through all the phases (NE), (NI), (NSe), (NR) before the T days are

over. In this case it cannot become simply removed and go back to work immediately, but has

to wait out the T days and then transition to state (R). For the same reason we make a distinc-

tion between nodes in (Se) and (NSe): nodes in (Se) may leave home isolation immediately

after healing, while nodes in (NSe) have to wait for the necessary total T days even after healing

to be able to leave isolation.

2.1.3 Multiple notifications extend the quarantine time. We make a further comment

on why we choose to extend the quarantine by T days after an additional notification is sent to

a node already in an N-state. The reason for this is again based on real life experience: since

not all contacts and hence notifications lead to infection, a second notification should not be

ignored. Whether individuals are actually willing to comply with such rules belongs to beha-

vioural science and is out of the scope of the current study. We assume an idealised scenario

where each node in Vu complies with the rules. Varying the size of Vu captures the effect of less

compliance as well.

2.1.4 Robustness of choices. To conclude the justification, we emphasise that we conduct

a qualitative and comparative study. The model is sufficiently robust that the conclusions of

our study also apply under small changes to the model. For example, if an uptake scenario per-

forms better than another with regard to this particular model, it will also perform better in a

model with slight changes, e.g. a model that does not extend the time of home isolation when a

second notification is received, or a model that does not require already-removed nodes to go

into quarantine.

We note that since each infectious node infects each of its susceptible neighbours with

probability β at each time step, this model is a reactive process in the sense of [33]. Next we

describe the underlying contact network of the agent-based epidemic.

3 Agent-based population model: Spatial scale free network

models

To be able to carry out our study, we represent the underlying contact network of individuals

(nodes, or agents) as a network. Based on the universality results in [21], our primary choice

for the underlying contact network is a mixture of pure geometric and purely random network

models, called Geometric Inhomogeneous Random Graphs, which possess geometric features

and can match the statistical properties of real human contact networks, such as degree distri-

butions and clustering, as well as long-range connections. For baseline comparison, we also
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study the case when the underlying network is a “mean-field network”, ignoring the spatial

component. For this scenario we use the configuration model, which can mimic the local statis-

tical properties of real human contact networks, such as degree distributions.

3.1 Geometric inhomogeneous random graphs

We model populations embedded in geometric space using Geometric Inhomogeneous Ran-

dom Graphs (GIRGs). Recently, several spatial random graph models were developed to

mimic properties of real networks features: hyperbolic random graphs [34–36], scale-free per-

colation [37], and GIRGs [4, 38, 39]. The qualitative behaviour of these models is the same, in

fact, they can be unified into a general model containing all three models as special cases. For

sake of simplicity we decided to work with GIRGs.

The advantage of these spatial models are that they can mimic several aspects of real contact

networks: individuals are embedded in space, just like in real life, allowing for local community

structures to be present in the contact network. This results in strong clustering [39, 40].

Beyond mimicking the degree distribution of real networks (e.g. high variability) GIRGs also

incorporate connections (edges) bridging spatial distance on all scales, short as well as long-

range edges. The model is very flexible, and for properly chosen parameter settings it is scale-
free in two respects: both in spatial distance that edges cover, and in node-degree variability

[39].

Contact- or activity networks of humans have been found to show similar behaviour,

including heavy-tailed degree distributions, strong clustering, and community structures [41–

45], as well as heavy-tailed distance-distribution for edges, see references in [46]. For epidemic

spread specifically, lighter tailed degree distributions such as negative binomial have been

observed e.g. in [1, 31]. GIRGs also allow for the incorporation of such distributions, by setting

light-tailed fitness distributions.

The following definition from [21] is general, and in its last sentence we specify it for a

GIRG. The underlying space can be the earth’s surface, or R2
, the two-dimensional Euclidean

space. We denote by x^y the minimum of two numbers x, y.

Definition 4 (Geometric Inhomogeneous Random Graph (GIRG)) Fix N� 1 the number
of nodes. Assign to each node u 2 {1, 2, . . ., n} a fitness wu> 0, and a spatial location F(u). Fix α
> 0. For any pair of nodes u, v with fixed wu, wv,F(u), F(v), connect them by an edge with prob-
ability

Probðu is connected to vÞ �
wuwv

distðFðuÞ;FðvÞÞ2

 !a

^ 1; ð7Þ

where dist is a distance function, i.e., it measures the distance between the locationsF(u) and
F(v). When F(u) is chosen uniformly in a box of volume N, we obtain a GIRG.

Mathematically, the distance function dist in Definition 4 is a metric on the underlying

space, (e.g., a metric such as k�k2). In the definition, the formula is given for a two-dimensional

model. In higher dimensions, the exponent 2α in the denominator would change to dim�α,

with dim being the dimension of the model.

GIRGs have a natural interpretation: the fitnesses express the ability of nodes to have many

connections, F embeds them in space, and α is the long-range parameter: the smaller α is, the

more the model favours longer connections. The parameter space of GIRG is rich enough to

model many desired features observed in real networks:

(a). extreme variability of the number of neighbours (degrees),

(b). connections present on all length-scales,
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(c). small and ultra-small distances,

(d). strong clustering,

(e). local communities.

In real-life networks, an extreme variability of node degree is often observed, see [41, 44,

47]. Extreme node degree variability results in the presence of a few individuals with extreme

influence on spreading processes, the hubs or super-spreaders [44]. Mathematically, this

extreme degree variability can be expressed using the empirical distribution of node degrees,

that follows a power-law:

ProbðdegðuÞ � xÞ �
1

xt� 1
: ð8Þ

for some τ> 2. Setting a power-law fitness distribution for wu in a GIRG yields that the

degrees satisfy (8). As we shall see, the parameter α in (7) determines the presence of long-

range connections: as α gets smaller, it is more likely that there are long-range connections.

Thus, the two parameters of the model are τ and α.

The parameters τ and α determine the average graph distance between nodes in a GIRG

[37, 38, 48, 49]. Letting dG(u, v) denote the graph distance between u and v (the number of

connections on the shortest path between nodes u and v), the average distance is given by

DistðNÞ ¼
1

ðN
2
Þ

X

u;v

dGðu; vÞ ¼

Yðlog log NÞ when t 2 ð2; 3Þ; a > 1

Yððlog NÞzÞ when t > 3; a 2 ð1; 2Þ

Yð
ffiffiffiffi
N
p
Þ when t > 3; a > 2:

8
>>><

>>>:

ð9Þ

As [21] has found, these average distances give a good indication as to the speed at which epi-

demics can spread on a network, as well as an indication of the shape of the epidemic curve

[21].

Eq (9) demonstrates that increasing α decreases the number of long-range edges when τ>
3. To see this, note that when τ> 3, the node fitnesses wu (which satisfy the same power law as

(8)) are typically less than
ffiffiffiffi
N
p

so the ratio

Ru;v ≔
wuwv

distðFðuÞ;FðvÞÞ2

is typically less than 1. In this case, since Ru,v is raise to the power α in the connectivity proba-

bility (Eq (7)), increasing α decreases the probabilities of long-range edges. However, when

τ 2 (2, 3), node pairs with ratio Ru,v> 1 happen frequently enough, and for these pairs the con-

nection probability is unaffected by the change of α. So, networks with τ 2 (2, 3) has many

long-range edges irrespective of α.

Comparing (9) to the average distance in ageometric network models such as the configura-

tion model (see (10) below) and to the polynomial average distance in lattice models, we

observe that geometry and long-range connections play a role in GIRGs with τ> 3, and the

GIRG model interpolates between the small-world configuration model and the lattice.

Clustering in a network corresponds to the phenomenon known as “a friend of a friend is

also likely to be my friend”, and it manifests in the presence of triangles in the network. Com-

munities and clustering are naturally present in GIRGs, because the model favours connec-

tions between nodes that are close to each other in space. Thus, a GIRG incorporates all five

desired features.
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For the spread of information or infections in GIRGs and similar networks, it is known that

large-degree nodes and many triangles have opposing effects. On the one hand, nodes of large

degree (also called hubs, super-spreaders, or influencers) contribute to fast dissemination, and

foster explosive propagation of information or infections [50–53]. On the other hand, cluster-

ing and community structures provide natural barriers that slow down the process, while

long-range edges accelerate the spread [54–58]. (In other settings increased clustering may

have the opposite effect [59], and sometimes in similar settings the presence of superspreaders

may dominate to the point at which clustering has a negligible effect [60]).

3.2 The configuration model and other ageometric network models

Ageometric random network models are often used as null-models to compare network data

to purely random networks. Here we describe a commonly used model, the configuration

model This is a well-studied random-graph model, dating back to Bender and Canfield [61],

Bollobás [62] and Wormald [63], and introduced in network science by Molloy and Reed [64,

65]. The main advantage of this simple model is that it can mimic the degree distribution of

real-life networks.

Definition 5 (Configuration model) Fix N� 1 the number of nodes. Prescribe to each node
u 2 {1, 2, . . ., n} its node-degree deg(u)� 0, so that the total degree hN ≔ ∑u�N deg(u) is even.
To form a graph, to each node u we assign deg(u) half-edges. The half-edges are then paired uni-
formly at random to form edges. Self-loops and multiple edges are then erased from the resulting
multi-graph.

It is known that the erasure of self-loops and multiple edges does not affect the empirical

degree distribution of the model in any significant way [66].

In comparison to GIRGs, the configuration model can incorporate the desired properties

(a), (c) but not (b), (d) and (e). For (a), highly variable degree distributions can be incorporated

since the degree sequence is prescribed.

Small distances are an important feature of ageometric network models in general, aka the

small-world property. Heuristically, this means that two arbitrary nodes in the network can be

connected via very short paths, using only a few connections. Mathematically, when setting

power law degree distribution, the average distance in the model scales as [67, 68]

DistðNÞ ¼

(
Yðlog NÞ when t > 3

Yðlog log NÞ when t 2 ð2; 3Þ;
ð10Þ

The second row, showing doubly-logarithmic distances, is often called ultra-small world.

When τ> 3, the shape of the epidemic curve is shown to converge in the large network limit,

see [69–71].

While the configuration model and other ageometric models easily accommodate power-

law node degrees, and have the small-world property, they neither contain communities nor

clustering [40, 47].

Other popular ageometric models include the Chung-Lu and the similar Norros-Reittu

model [72–74], and preferential attachment models (also known as the Barabási-Albert

model) [75]. In the Chung-Lu and the Norros-Reittu model, only the expected degrees of

nodes are prescribed, rather than their exact degree, while in preferential attachment models,

the power law exponent can be tuned. Using similar parameter settings, these models behave

qualitatively similarly to the configuration model, although numerical values might differ, see

[47, 66, 76–78] for references. As a result, we choose the configuration model for baseline

comparison.
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In [21] we have compared the behaviour of a similar epidemic on the configuration model

and on GIRGs. There, we found the epidemic curves are similar for models with the same

degree distribution whenever this distribution has a power law with some τ 2 (2, 3). Further-

more, GIRGs with any parameter τ> 3 and long-range parameter α 2 (1, 2) are comparable

with a configuration model with similar degree distribution. This phenomenon is best

explained by comparing the average distance, i.e., (9) to (10): when τ 2 (2, 3), both models

have doubly-logarithmic distances and thus allow for very quick spread, while when τ> 3 and

α 2 (1, 2), poly-logarithmic distances in GIRGs are comparable to logarithmic distances in the

ageometric counterpart, hence the similarity of the curves.

While we expect the same universality to occur for the more complicated SEISeR model,

for baseline comparison, we also carry out some of our simulations on the configuration

model with power law degree distributions, as in (8).

4 Software

The software used for the simulations is available at [79]. Besides our own code, we used [80]

to run simulations in parallel, and [81] to sample the four GIRGs.
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