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Abstract: A critical barrier to improving crop yield is the trade-off between seed weight (SW) and seed
number (SN), which has been commonly reported in several crops, including Brassica napus. Despite
the agronomic relevance of this issue, the molecular factors involved in the interaction between
SW and SN are largely unknown in crops. In this work, we performed a detailed transcriptomic
analysis of 48 seed samples obtained from two rapeseed spring genotypes subjected to different
source–sink (S–S) ratios in order to examine the relationship between SW and SN under different
field conditions. A multifactorial analysis of the RNA-seq data was used to identify a group of
1014 genes exclusively regulated by the S–S ratio. We found that a reduction in the S–S ratio during
seed filling induces the expression of genes involved in sucrose transport, seed weight, and stress
responses. Moreover, we identified five co-expression modules that are positively correlated with
SW and negatively correlated with SN. Interestingly, one of these modules was significantly enriched
in transcription factors (TFs). Furthermore, our network analysis predicted several NAC TFs as
major hubs underlying SW and SN compensation. Taken together, our study provides novel insights
into the molecular factors associated with the SW–SN relationship in rapeseed and identifies TFs as
potential targets when improving crop yield.

Keywords: Brassica napus; seed weight; seed number; gene co-expression; network analysis; tran-
scriptomics; source–sink

1. Introduction

Research on the physiological and molecular clues in controlling seed weight (SW)
has increased in recent years in model plants and staple food crops, driven by the challenge
of developing high-yield varieties in order to attain food security and quality seed traits
under sustainable production systems [1]. Therefore, gains in genetic yield potential are
urgently needed to meet growing demands [2]. Globally, rapeseed (Brassica napus L.) is
the third most important oilseed crop, after palm and soybean, used for oil production,
animal feed, and biofuel [3]. In oil crops, the rising demand for biofuels has resulted in
exponential growth, reaching an estimated global production of 612 million Mg across oil
crops in 2018 [4]. This growth has also been evident in rapeseed production since 1980,
reaching 75 million Mg in 2019 [5]. However, the stagnation of the yield in rapeseed has
been shown in countries such as the United Kingdom, Brazil, Finland, Sweden, and the
Czech Republic [6–8]. Therefore, new strategies aimed at increasing seed yield are urgently
needed. To this end, an integrated approach combining physiology and gene mining
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knowledge should allow us to uncover key associations that determine complex traits such
as yield.

Seed weight is a conservative plant trait across grain crops, showing high heritabil-
ity [6,9,10]. In addition to these features, the SW of rapeseed has also shown narrower
plasticity than other crops, such as cereals, e.g., wheat and barley [11], and oil crops, such
as sunflower [12,13]. However, it has been recently demonstrated that the SW of rapeseed
can fully compensate for decreases in seed number (SN) under source reduction at flow-
ering [14]. In this regard, other work has also shown the compensation, though partial,
for the SN decrease through increased SW around flowering [15,16]. This background
offers an outstanding opportunity to study the physiological and molecular bases of SW
regulation in rapeseed. Different genes have been reported to be involved in SW and
seed size determination, such as key genes involved in the regulation of cell size and cell
number of seeds, highlighting the ubiquitin–proteasome pathway [17]; phytohormone
biosynthesis/signaling [18,19]; transcriptional regulatory factors, such as APETALA2 and
MADS-box [20]; sugar signaling [21]. Recently, a detailed transcriptome analysis of two
Brassica rapa genotypes with contrasting seed sizes in seven stages of seed development
has been reported, identifying a group of cell cycle-related genes connected to variation
in seed size [22]. However, these studies have mostly focused on seed size or SW under
controlled conditions and, more importantly, without the evaluation of the key SN–SW
compensation shown by this crop.

Brassicas are the most closely related crops to the model plant species Arabidopsis
thaliana, one of the most extensively studied species in the world. The sequencing of the
genome of several Brassicas has provided a key opportunity to harness the rich knowledge
obtained in Arabidopsis and to transfer it to staple food crops [23].

The evidence that a reduction in SN can be fully or partially compensated by SW
support the high plasticity of rapeseed, previously reported [14–16]. Therefore, in order
to understand the SW plasticity in rapeseed, an integrated physiological and molecular
approach was carried out in this study using the experiments with spring rapeseed that
we previously reported [16]. In that work, we found that the source reduction from the
beginning of flowering to 15 days after flowering (DAF) by shading added a new scenario
to study the determinants of seed plasticity because the thousand seed weight (TSW) was
enhanced, ranging from 15 to 39% in response to the seed number (SN) decrease of between
37 and 49% [16]. Therefore, the reduction in SN was partially compensated for by SW,
supporting the high plasticity of SW under source reduction previously reported [14–16].
Finally, our study aimed to use bioinformatics analysis to identify the genes associated
with SN and SW compensation under field conditions, which may be helpful targets for
yield improvement in rapeseed and other crops, breaking the extensively reported trade-off
between the two major yield components. The feasibility of breaking this trade-off has
been recently demonstrated in wheat [24].

2. Results
2.1. Multivariate Analysis of RNA-Seq Data Uncovers the Main Factors Affecting Seed
Transcriptomes in Rapeseed under Field Conditions

In order to gain new insights into the molecular factors underlying SW plasticity in
rapeseed under field conditions, we performed a detailed transcriptomic analysis of seed
samples obtained from two spring genotypes (Lumen and Solar) subjected to different
S–S ratios [16]. We extracted total RNA from seeds at two different times during seed
filling to capture early and late responses to S–S ratio treatments (7 and 14 days after
flowering, respectively). We obtained 1240 million reads from 48 samples comprising
both genotypes, two S–S ratios from two sowing date treatments with three replicates. On
average, each sample had 26 million reads, of which 73% were mapped to the Brassica
napus reference transcriptome using kallisto software [25] (Figure S1). To interpret this
large transcriptomics dataset, we designed a multivariate linear model testing whether
the expression of a given gene could be explained by the seed response to the S–S ratio
(SS), genotype (G), developmental time (T), sowing date (SD), and the interaction of these
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factors. We fit all expressed genes with this full linear model using sleuth [26] (Figure 1A),
and we found that the expression of 78.7% of the regulated genes (27,353 of 34,764 genes,
Table S1) could be best explained by a single term. This indicates a low synergistic effect of
the factors analyzed (Figure 1A). The only remarkable synergistic effect was found among
G, T, and SD (4741 genes, Figure 1A and Table S1). In contrast, the response to the S–S ratio
occurred independently from the sowing date (Figure 1A).

Then, we intersected all the significantly regulated genes uncovered by multivariate
analysis to find the genes exclusively regulated by each factor. In addition, we filtered out
all genes that were regulated by sowing date to reduce the environmental effect on the
main factors. In this manner, we identified 9227, 6698, and 1014 genes exclusively regulated
by T, G, and SS, respectively (Figure 1B and Table S1). The number of genes affected by
two or more factors was low except for the cases of SS and T, which were higher than SS
alone (Figure 1B).
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The experimental factor with a higher impact on the rapeseed transcriptome of seeds 
was developmental time. A detailed analysis of these genes is relevant because it provides 
information about the biological processes that are regulated during seed filling under 
field conditions. To identify genes preferentially expressed at the initial and middle stages 
of seed development, we performed a hierarchical clustering analysis of the genes exclu-
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Figure 1. Multivariate analysis of the RNA-seq data obtained from seeds of two rapeseed hybrids grown under different
source–sink ratios. (A) Multifactorial analysis showing how many genes were regulated by the S–S ratio (SS), genotype (G),
developmental time (T), sowing date (SD), and the interaction of these factors (q-value < 0.01). An average of 26 million
reads per sample were pseudo-aligned to the Brassica napus reference transcriptome using kallisto [25] and a fully mapped
dataset was multivariate analyzed with the sleuth R package [26]. (B) An intersection analysis between genes regulated by
the S–S ratio (SS), genotype (G), and developmental time (T). Genes significantly affected by SD or factors interactions were
discarded from this analysis, which was performed using the SuperExactTest R package [27]. The black points indicate
which factors affect the expression levels of the genes shown in the bar diagram.

2.2. Genes Regulated by Development Time under Field Conditions Are Highly Enriched in
Biological Processes Related to Seed Filling

The experimental factor with a higher impact on the rapeseed transcriptome of seeds
was developmental time. A detailed analysis of these genes is relevant because it provides
information about the biological processes that are regulated during seed filling under field
conditions. To identify genes preferentially expressed at the initial and middle stages of
seed development, we performed a hierarchical clustering analysis of the genes exclusively
regulated by time using the Pearson’s correlation to measure the similarity among genes. In
this manner, two clusters with similar sizes were identified (Figure 2). Cluster 1 is composed
by 4173 genes for which the expression was higher at 7 DAF. This temporal expression
pattern was consistent between genotypes, S–S ratio treatments, and sowing dates. To
provide an overview of the biological pathways related to the genes of cluster 1, we
performed a Gene Ontology (GO) overrepresentation analysis using BiNGO software [28].
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We found that ribosomal assembly, histone modification, response to cadmium ion, and
ovule development were the most enriched biological processes (Figure 2 and Table S2).
Genes encoding for ribosomal proteins of the L10 and L34 families were expressed in higher
levels at 7 DAF compared with at 14 DAF (Figure S2A). In addition, this set of genes was
significantly enriched (q-value < 0.01) in cell division-related GO terms including “DNA
unwinding involved in replication”, “regulation of DNA metabolic process”, and “cell
division” (Figure 2 and Table S2). In summary, the functional overview of these genes
suggests that protein biosynthesis and cell division are biologically active functions during
the early stages of seed development.

On the other hand, the expression levels of genes from cluster 2 were increased at
14 DAF. The most enriched biological processes were related to vacuole organization and
Golgi vesicle-mediated transport (Figure S2B). In addition, we detected other significantly
enriched GO terms related to lipid metabolism, such as the “acetyl-CoA biosynthetic pro-
cess” or the “positive regulation of fatty acid biosynthetic process”. These results suggest
that genes related to lipid biosynthesis and storage protein trafficking are preferentially
expressed during the mid-stages of seed development.
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Figure 2. Genes exclusively regulated by developmental time are associated with seed filling. A heatmap showing the two
major expression patterns of genes exclusively regulated by developmental time. Hierarchical clustering was performed
based on Pearson correlation distances and average linkage using Morpheus software [29]. Each column of the heatmap
represents the average expression of three biological replicates. The gene expression values for each gene were normalized
by Z-score transformation. The top 5 enriched GO terms of the biological process domain are represented on the right side
of each cluster. GO term enrichment analysis was performed by a hypergeometric test using BiNGO software [28]. FDR-
corrected p-values are indicated for each GO term in brackets. SD = sowing date, DAF = days after flowering, C = control,
0–15 = source to sink treatments performed from the beginning of flowering to 15 DAF.
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2.3. Reduction in the Source–Sink Ratio at Flowering Induces the Expression of Genes Involved in
Stress Response and Seed Weight

Manipulations of the S–S ratio at the beginning of seed filling is a well-known ex-
perimental factor that impacts the seed yield components in rapeseed [14–16,30]. We
previously showed that the shading treatment during seed filling reduces SN and SW
in rapeseed [14,16]. To obtain information about the molecular factors underlying the
negative effect of reducing the S–S ratio on SN and the positive impact on SW, we analyzed
the expression patterns and functional annotations of 1014 genes exclusively affected by
the shading treatment in more detail. Hierarchical clustering analysis showed that 90.4%
of these genes (917 out 1014 genes) were induced by shading and that only 97 genes were
downregulated by this treatment (Cluster 2 and Figure 3A). A Gene Ontology enrichment
analysis reveals that several biological functions related to stress response, including the
ABA signaling pathway were induced by the S–S ratio (Figure 3A and Table S2). Moreover,
we found sucrose transport between the most overrepresented biological processes, which
includes genes associated with seed weight such as bidirectional sugar transporters such
as SWEET 11 and SWEET 12. We selected three genes of the GO term “sucrose trans-
port” to show the regulatory effect of shading treatment on the expression of these genes
(Figure 3B). Interestingly, we found that genes regulated by the S–S ratio significantly
intersect (p-value < 0.05) a list of well-known genes involved in SN and SW determina-
tion [31], which include SWEET genes, receptor-like protein kinase FERONIA (FER), or the
RING-type protein with E3 ubiquitin ligase activity (DA2) [32] (Figure 3C).

2.4. Gene Co-Expression Network Analysis Uncovers Novel Gene Modules Related to Seed Yield
and Quality under Field Conditions

In order to identify the key molecular drivers underlying important agronomic traits,
such as SN, SW, or oil concentration, we performed a weighted gene co-expression net-
work analysis (WGCNA) [33] with all of the expressed genes at two different develop-
mental times for rapeseed seeds and the physiological traits obtained from the same
experiment [16] (Table S3). WGCNA allows for the identification of modules of highly
co-expressed genes and relates the modules to external sample traits [33]. We excluded
genes for which the mRNA levels were consistently low (less than 5 tpm in more than 90%
of the samples) from this gene co-expression network analysis. In addition, we filtered
out 25% of the genes with the lowest coefficients of variation at each developmental time
since non-varying genes are less likely to have biologically relevant differences. In total,
25,963 and 27,025 genes meet these criteria at 7 and 14 DAF, respectively. After perform-
ing the WGCNA analysis with these genes, we obtained a gene co-expression network
composed of 27 different modules at 7 DAF (Figure 4 and Table S4) and a second network
with 17 different modules at 14 DAF (Figure 5 and Table S4). Therefore, the number of
modules detected at 14 DAF was remarkably lower than that during the early stage of
seed development (7 DAF), suggesting that the transcriptome complexity is higher during
initial stages of the seed filling period.

In the 7 DAF network, we found that 11 out of 27 modules had a significant correlation
(p-value < 0.01) with at least one physiological trait (Figure 4A). Nonsignificant correlated
modules with physiological traits were discarded for further analyses. The turquoise,
blue, yellow, and red modules were the biggest modules, with more than 500 genes each
(Figure 4B). Interestingly, the yellow and red modules were significantly correlated with
SN and TSW, whereas the turquoise and blue modules were correlated with seed and
protein content.
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Figure 3. Reduction in the source–sink ratio during seed filling induces the expression of genes involved in sucrose transport,
seed weight, and stress response. (A) A heatmap showing the two major expression patterns of genes exclusively regulated
by shading treatment. Hierarchical clustering was performed based on Pearson correlation distances and average linkage
using Morpheus software [29]. Each column of the heatmap represents the average expression of three biological replicates.
The gene expression values for each gene were normalized by Z-score transformation. The significant and nonredundant
GO terms (adjusted p-value < 0.05) of the biological process domain are represented on the right side of each cluster. GO
term enrichment analysis was performed by a hypergeometric test using BiNGO software [28]. FDR-adjusted p-values
are indicated for each GO term in brackets. (B) Expression profiles of three representative genes belongs to the GO term
“sucrose transport”. The dots represent the average log2 fold change between the shading and control samples obtained
from normalized RNA-seq data, whereas bars indicate the standard error of the mean (SEM) of three replicates. The
Arabidopsis ortholog of each rapeseed gene is indicated in brackets. (C) Expression profiles of three representative genes
for which the orthologs in Arabidopsis are involved in seed weight regulation. The dots represent the average log2 fold of
change between shading and control samples obtained from normalized RNA-seq data, whereas bars indicate the standard
error of the mean (SEM) of three replicates. The Arabidopsis ortholog of each rapeseed gene is indicated in brackets.
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significantly regulated by each factor.
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An inverse relationship between SN and TSW was observed in the first case. The same
inverse relationship was obtained for the second case. The GO enrichment analysis revealed
that all of the modules correlated with physiological traits contained overrepresented
biological processes (q-value < 0.01) except for the case of the salmon and cyan modules
(Figure 4B). An intersection analysis showed that more than 80% of genes from the turquoise
and blue modules were significantly regulated by genotype according to the multivariate
analysis (Figure 4C). The yellow module was the only co-expression module that showed
a high percentage of genes regulated by the S–S ratio treatment (>80%), whereas several
small modules, such as green-yellow, cyan, or light green, were enriched in genes regulated
by developmental time and sowing date (Figure 4C).

In the case of the gene co-expression network constructed from the dataset of 14 DAF,
we identified 12 out of 17 modules showing significant correlation (p < 0.01) with at least one
physiological trait (Figure 5A). The GO enrichment analysis showed that eleven modules
were enriched (q-value < 0.01) in GO terms related to specific biological functions. The
average size of these modules was 1148 genes, which is 1.6-fold higher than that in the early
developmental time network. In fact, the number of modules with more than 500 genes
was twice that in the previous time network (8 vs. 4) (Figure 5B). The gene co-expression
modules of larger sizes (turquoise and blue) was significantly correlated with seed protein
and oil concentration. Similar to the previous gene co-expression network, these modules
were also enriched in genes regulated by genotype (Figure 5C).

2.5. Identification of Regulatory Factors Associated with the Compensation of SW and SN
Decreases by Source–Sink Restriction at Flowering

The 7 DAF co-expression network showed that three modules positively correlated
with SW and negatively with SN (yellow, light-green, and cyan; Figure 4). The light-green
and cyan modules were discarded after further analysis due to their low enrichment in
genes significantly regulated by S–S treatment and their low number of enriched GO terms
(Figure 4B). In contrast, the yellow co-expression module showed a high percentage of
significantly regulated genes in the S–S treatment (>80%, q-value < 0.01) and 16 signifi-
cant enriched biological functions (Figure 4, q-value < 0.01). Therefore, we selected this
module for further detailed analysis and to identify the candidate genes related to SW
compensation. This module was composed of 1023 genes that are associated with several
biological processes related to stress and phytohormone responses and signaling (Figure 6).
Interestingly, we found that the yellow module is significantly enriched in the molecular
function “transcription factor activity” with 96 genes (Figure 6C). The NAC family was the
most prevalent family of TFs in this module with 25 genes (Figure 6D). In order to identify
candidate TFs underlying SW increase, we used intramodular connectivity since the re-
lationship between connectivity and gene essentiality is well known [34]. Specifically, a
module membership (kME) threshold higher than 0.85 was selected as an indicator of high
intramodular connectivity to identify hub genes. In addition, candidate TFs were ranked
by their average gene significance (GS) with SN and SW traits. In this way, we identified
BnaC09g47170D (NAC082), BnaA07g38140D (CRF6), and BnaC01g44850D (NGAL2) at the
top TFs (Table S5). Interestingly, it has been demonstrated that NGAL2 regulates seed size
in Arabidopsis [35,36]. Moreover, we found two TFs (NAC041 and IDD1) with high in-
tramodular connectivity, which have been previously associated with cell wall biosynthesis
and seed development in Arabidopsis, respectively [37,38]. As shown in Figure 6E, the
mRNA levels of NAC082, NGAL2, NAC041, and IDD1 were positively correlated with SW
and negatively correlated with SN (p-value < 0.001), indicating that these TFs might be
involved in the control of the SW and SN relationship.
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Figure 6. The yellow co-expression module of 7 DAF network is associated with the relationship between SW and SN.
(A) Expression profiles of genes belonging to the yellow module. On each box, the central mark indicates the median, and
the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The whisker indicates the standard
deviation of the expression data of all genes belonging to the yellow co-expression module. (B) GO term enrichment
analysis of genes belonging to the yellow co-expression module performed by a hypergeometric test using the BiNGO
software and the biological process domain [28]. (C) Enriched GO terms of the Molecular Function (MF) domain. The
enrichment analysis was performed using the BiNGO software, as indicated above. (D) Distribution of the 96 transcription
factors of the yellow module according to family. The transcription factors were classified following PlantTFDB4.0 database
annotation [39]. (E) Relationships between the expression levels of the selected TFs and seed number (right) or seed weight
(left). TFs were selected by taking into account their high intramodular connectivity and gene significance with SN and
SW traits.
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In the case of the 14 DAF co-expression network, we found that the red and midnight
blue modules were significantly correlated with SW and SN (Figure 5A), although only
the red module is highly enriched in genes significantly regulated by the S–S treatment
(>80%, Figure 5C). Interestingly, the expression profile of this module is similar to that of
the yellow module of the 7 DAF co-expression network (Figure 7A); in fact, 53% of genes
from the red module are shared with the yellow one. However, the size of the red module
is about 40% lower than that of the yellow module of the 7 DAF co-expression network
(638 vs. 1023 genes), suggesting that genes involved in the SW response are preferentially
expressed at early stages of seed development. Accordingly, the total number of genes
significantly correlated with SW and SN is 1586 genes at 7 DAF, which is two-fold higher
than the case of 14 DAF network (739 genes). Overall, these results suggest that early stages
of seed development are better predictors of final SW and SN.
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(A) Expression profiles of genes belonging to the yellow module. On each box, the central mark indicates the median, and
the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. The whisker indicates the standard
deviation of the expression data of all genes belonging to the yellow co-expression module. (B) GO term enrichment
analysis of genes belonging to the yellow co-expression module performed by a hypergeometric test using the BiNGO
software and the biological process domain [28]. (C) Relationships between the expression levels of the selected TFs and
seed number (right) or seed weight (left). TFs were selected by taking into account their high intramodular connectivity and
gene significance with SN and SW traits.
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In addition, the GO term enrichment analysis reveals that “protein-chromophore
linkage”, “response to abscisic acid stimulus”, and “photosynthesis” were the most sig-
nificantly enriched biological functions associated with the red co-expression module
(Figure 7B). To identify TF candidates for this module, we applied the same criteria used
for the yellow module of 7 DAF. In this way, BnaA09g41470D (LRL1), BnaA05g24050D
(NAC3), BnaA03g05670D (bZIP3), and BnaC01g02120D (HB40) were identified as top TFs
in this module (Table S5). As shown in Figure 7C, several of these TFs (LRL1, bZIP3, and
NAC3) are significantly correlated with SW and SN at 14 DAF, suggesting that these TFs
might be SW and SN regulators in Brassica napus.

3. Discussion

Understanding the molecular mechanisms and genetic factors underlying complex
agronomic traits, such as SW and quality, is vital for precise plant breeding [40]. It has
been recently shown that transcript levels are useful for predicting complex traits such
as plant height, flowering time, and grain yield in maize [41]. In fact, this study shows
that transcriptome-based models have better prediction performance than genetic markers
in the case of flowering time, suggesting that transcriptome data can provide a link to
complex traits that cannot be readily captured at the sequence level [41].

In rapeseed, several transcriptomic studies have been carried out to identify candidate
genes associated with seed oil content [42–46]. In contrast, very few studies have focused
on the identification of genes associated with SW in Brassica napus [31,47]. Moreover, a
comprehensive analysis that integrates transcriptome and physiological data under field
conditions is still lacking, and even more scarce is information on the compensatory re-
sponse of SW to a SN decrease. A critical issue for improving crop yield is the compensatory
effect between SW and SN that has been observed in Brassica napus [14,16]. Despite the
agronomic relevance of this issue, the molecular factors involved in the interaction between
SW and SN are largely unknown in crops. In this study, we combined transcriptome
sequencing with agronomic traits to obtain candidate genes associated with SW and SN
under field conditions.

3.1. Identification of Genes Related to Seed Weight Plasticity in Rapeseed

A multifactorial analysis of RNA-seq data revealed that most of the significantly
regulated genes (q-value < 0.01) were only affected by one experimental factor, with
developmental time and genotype being the most influential factors on the Brassica napus
seed transcriptome under field conditions. Regarding the genes exclusively regulated
by time, we found several significantly enriched biological processes related to protein
biosynthesis and lipid metabolism at 7 DAF and 14 DAF, respectively. These results
are consistent with previous findings, showing that oil biosynthesis is initiated at about
14 DAF in rapeseed [45,48] while protein accumulation begins earlier [49]. These results
indicate that our pipeline of multifactorial RNA-seq analysis captures relevant biological
information regardless of environmental noise under field conditions.

We have previously shown that shading treatment negatively affects SN and pos-
itively affects SW, allowing for key compensation in seed yield [16]. In order to gain
further insights into this compensation, we analyzed the expression patterns and functional
identity of genes that were consistently regulated by the S–S treatment across genotype,
developmental time, and sowing dates. Most of the genes exclusively regulated by the S–S
treatment (928 out 1027) were induced by this factor. Interestingly, sucrose transport is one
of the most significant enriched GO terms associated with genes regulated by the S–S treat-
ment. Specifically, we identified two members of the SWEET family that were consistently
induced by the shading treatment (Figure 3B). Previous functional studies demonstrated
that SWEET proteins are key components of sugar translocation to seeds [50–52]. Mutation
of AtSWEET11/12/15 in Arabidopsis thaliana severely affects seed development, including
reduced seed weight, and reduced starch and lipid content [53]. A similar effect has been
reported in rice, where the knockout of OsSWEET11 and 15 genes results in a complete loss
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of endosperm development [51,54]. Moreover, recent sequencing data from over 800 soy-
bean genotypes revealed that a gene from the SWEET family (GmSWEET10a) has been
selected and conferred simultaneous increases in soybean seed size and oil content [52].

Another remarkable example of a gene associated with seed weight and induced by
S–S treatment is BnaA01g19380D, an ortholog of Arabidopsis DA2. This gene encodes a
ubiquitin ligase that interacts with the ubiquitin receptor DA1 to synergistically regulate
seed size in Arabidopsis [32]. Moreover, it has been demonstrated that the downregulation
of an ortholog of DA1 in Brassica napus, BnDA1, resulted in a 21% increase in seed weight
and 13% increase in seed yield per plant under field conditions [55]. A similar phenotype
has been described in maize and wheat [56,57], indicating that the biological function
of this gene is conserved in angiosperm plants. Moreover, it has been proposed that
ZmDA1 improves the sugar imports into the sink organ and starch synthesis in maize
kernels [56]. Therefore, it is possible that DA2 could also be involved in the regulation of
sugar translocation in response to changes in the S–S ratio.

3.2. Transcription Factors Associated with SW and SN Response under Field Conditions

Our study aimed to use bioinformatics analysis to identify genes related to agronomic
traits with a special focus on SW–SN regulation, which might be a helpful target in yield
improvement and yield stability in rapeseed and other crops. Specifically, we performed a
WGCNA analysis from 48 RNA-seq samples obtained from seeds at 7 DAF and 14 DAF to
identify gene co-expression modules significantly correlated with SW and SN (Figures 4
and 5, respectively). Interestingly, the yellow module of the 7 DAF network contains most
of the genes significantly correlated with SW and SN. The most enriched molecular function
was “transcription factor activity”, indicating that this co-expression module is associated
with the regulation of gene expression. NAC was the most abundant TF family of this
module, with 25 members. NAC TFs are involved in diverse signaling and developmental
events, including stress responses, senescence, and seed development [58,59]. Interestingly,
NAC TFs have been described as controlling for several clues in seed development [59]. For
instance, it has been recently shown that OsNAC25 and OsNAC26 bind to the promoters
of important genes involved in the control of seed size in rice such as GW2, GW5, and
DR11 [60]. Moreover, three NAC TFs (OsNAC020, OsNAC023, and OsNAC026) have been
associated with SW in rice since their expression profiles during seed development vary
among different accessions with contrasting seed size [61]. Taken together, these results
suggest that NAC TFs might be relevant regulatory factors of the SW–SN relationship.

Next, we used the intramodular connectivity and trait correlation to identify candidate
TFs from the yellow module of the 7 DAF network. An orthologue of Arabidopsis NAC082,
BnaC09g47170D, was the TF with the highest average correlation to SW–SN. NAC082
belongs to the NAC domain family and was characterized for the first time in the context of
xylem vessel differentiation after discovering that a master regulator of this developmental
process, VND7, interacts with NAC082 in Arabidopsis [62]. More recently, it has been
reported that NAC082 is a key regulator that connect the ribosomal defects induced by
stress and cell proliferation [63,64]. Specifically, these studies showed that several stresses
lead to an increase in NAC082 expression, which blocks tissue regeneration and delays seed
germination. Taking into account this previous evidence, the reduction in source–sink ratio
by shading treatments during seed filling triggers the expression of NAC082, which may
block cell proliferation at early stages of seed development and may lead to a reduction
in SN.

It is important to note that several key regulators of seed size are also present at the
top of our ranking of highly correlated TFs with SW–SN in the yellow module of the
7 DAF network. For instance, the orthologous gene of BnaC01g44850D in Arabidopsis,
NGAL2 (third gene in Table S5), has been shown to regulate seed size by restricting cell
proliferation in the integuments of ovules and by developing seeds [35]. The overexpression
of NGAL2 dramatically decreases the seed size of Arabidopsis wild-type plants, whereas
the disruption of this gene causes large seeds [35]. In fact, a gain-of-function mutant of the
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NGAL2 gene was identified as a suppressor of the large seed phenotype of DA1 [35], which
is a key ubiquitin receptor for seed size determination [65]. Another TF involved in seed
development identified in this co-expression module is IDD1 (orthologous to the rapeseed
BnaA09g52630D gene). The seeds of the Arabidopsis IDD1 over-expressor lines were larger
than those of wild-type plants due to an enlarged endosperm, higher seed weight in all the
stages before seed maturity, and a significant delay in seed development [37].

Taken together, our study provides new insights into the molecular factors that regu-
late the SW and SN interaction in rapeseed. We identified several new TFs that have not
been previously associated with SN and SW and were co-expressed with key regulators
of seed size, such as NGAL2. The characterization of these TFs may improve the under-
standing of the regulatory mechanisms underlying the interaction between SW and SN in
rapeseed and other crops, creating new pathways for crop yield improvements and yield
stability via SW compensation to environmental conditions affecting SN.

4. Materials and Methods
4.1. Field Experiment, Treatments, and Crop Management

The field experiment and conditions were described in detail by Verdejo and
Calderini [16]. Briefly, the field experiments on two sowing dates were carried out at
the Austral Farming Experimental Station in Valdivia, Chile (39◦47′ S, 73◦14′ W). In this
experiment, three sources of variation were evaluated in rapeseed: (i) genotype (two
adapted spring rapeseed hybrids: Lumen and Solar (chosen for their similar phenology
and adapted to southern Chile)), (ii) sowing date (optimal and late sowing dates), and
(iii) source–sink (S–S) ratios (control without manipulation and a reduced S–Sratio with
black nets intercepting 75% of solar radiation from the beginning of flowering (BBCH 61)
to 15 days after flowering (DAF)). The treatments were arranged in a split–split plot design
with three replicates, where the sowing date was assigned to main plots, the S–Sratio was
assigned to subplots, and the genotypes were assigned to sub-sub plots [16]. The rapeseed
plants were sown at a plant density of 55 plants m−2.

4.2. Phenology and Physiological Plant Sampling

Crop development was followed twice a week in both experiments according to the
BBCH phenological scale for rapeseed [66]. In order to determine the SN, TSW, and quality
traits as seed oil and protein concentration, the seed samples were harvested in one lineal
meter from the central rows of each plot at maturity (BBCH 89), when the seeds inside
the siliques were dark and hard. The seed number was measured after oven drying the
samples at 65 ◦C for 48 h using a seed counter (Pfeuffer GmbH, Kitzengen, Germany).
Then, seed yield was measured and TSW was estimated as the ratio between seed yield
and SN.

The oil concentration of seeds was determined by near infrared reflectometry (NIR)
(Foss Infratec 1241, Hilleroed, Denmark) and the nitrogen concentration of seeds was
measured using the Kjeldahl procedure [67]. The protein concentration of the seeds was
calculated with a conversion factor of 5.8 [68]. The concentrations of both oil and protein
are expressed on a dry matter basis.

4.3. Seed Sampling and RNA Isolation

In spring rapeseed, SW plasticity is maximized by shading within a time window from
0 to 15 days after the start of flowering [16]. Therefore, in order to elucidate the relevant
modules or genes involved in SW determination, we chose two development stages to
perform RNA-seq from seeds: in the middle and at the end of the source–sink treatments.
The seed samples for the RNA-seq were collected from 5 plants per plot (25 siliques per
plant from the bottom of the main raceme) in two development stages: 7 and 14 after the
beginning of the shading treatment in three replicates across the different factors analyzed
(genotypes, S–S ratios, and sowing dates). The seed samples were fast frozen in liquid
nitrogen and then kept at −80 ◦C until they were processed. The seeds were gridded
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using liquid nitrogen and a cold mortar and pestle. Total RNA extraction was performed
using a method adapted for Brassica seeds [69] with 100 mg of each sample and using PCR
mini columns (NucleoSpin® Gel and PCR columns; Macherey-Nagel, Düren, Germany) in
accordance with previously described protocols [70].

4.4. RNA-Seq Analysis

The RNA samples were shipped in dry ice to Novogene facilities in Sacramento,
CA USA. RNA quality analysis, library construction, and sequencing were performed by
Novogene (Beijing, China). The samples were sequenced using a 2 × 150 bp kit on an
Illumina Novaseq 6000 aiming for 6 Gb per sample. The average Q20 per sample was
97.7%, and that for Q30 was 93.8%.

RNA-seq data analysis was performed as described by [71]. Briefly, sequenced reads
were pseudo-aligned to the publicly available Brassica napus transcriptome obtained from
Ensembl Plants using kallisto (v0.46) [25]. The transcript indices for kallisto were generated
from rapeseed annotation version AST_PRJEB5043_v1, which includes 101,040 cDNAs
(https://plants.ensembl.org/Brassica_napus/, accessed on 23 March 2021). A multivariate
linear model to test whether the expression of a given gene could be explained by the S–S
ratio, genotype, sowing date, or the interaction of these factors using the R package sleuth
(v.0.30.0) [26]. This R package was also used to obtain the normalized expression data in
transcripts per million (Table S6). In order to identify significantly regulated genes for each
factor, we applied a q-value threshold of 0.01. The intersection of the gene lists and their
statistical significance were assessed using the SuperExactTest R package [27].

4.5. Gene Co-Expression Network Construction

Co-expression networks were built for two separate sample sets (7 and 14 DAF) using
the method of weighted gene co-expression network analysis (WGCNA) [33]. For each
network, we filtered out genes for which the counts were consistently low, with less than
5 tpm in more than 90% of the samples. The count expression level of each gene was
normalized using the method implemented in sleuth [26]. The soft-power threshold was
chosen as the first power to exceed a scale-free topology fit index of 0.8 [72] for each
network. The soft powers that fulfil this criteria were 9 for the 7 DAF network and 8 for
the 14 DAF network. Then, the co-expression matrix was calculated using these power
values, with a minimal module size of 30 and a merge cut height of 0.2 without PAM
stage. Module–trait relationships were estimated using the association between the module
eigengenes and the agronomic traits. For each expression profile, the gene significance (GS)
was calculated as the absolute value of the association between the expression profile and
each agronomic trait.

4.6. Gene Ontology Enrichment Analysis

Gene ontology (GO) terms for all of the B. napus genes were assigned based on
A. thaliana orthologous genes according to Ensembl Plants in order to gain more informative
enrichment results. BiNGO was then used to identify the significantly enriched GO terms
(adjusted p-value < 0.05) using a hypergeometric test [28], and redundancy between GO
terms was reduced using REVIGO [73].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22094449/s1, Figure S1: Box plot showing the total number of reads and pseudo-aligned
reads in the B. napus transcriptome of all samples analyzed in this work. Figure S2: Expression
profiles of three representative genes of the GO term “ribosome large subunit assembly” (A) and
“Golgi organization” (B). Table S1: Genes significantly regulated by at least one factor with their
corresponding q-values and the list of genes exclusively regulated by each factor. Table S2: Enriched
GO terms for genes exclusively regulated by developmental time and S–S ratio. Table S3: Agronomics
traits of each sample used in WGCNA analysis. Table S4: List of genes of the 7 and 14 DAF networks
indicating their module membership. Table S5: Summary of the transcription factors of yellow and
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red modules of the 7 and 14 DAF network. Table S6: Normalized RNA-seq data in transcripts per
million (tpm) scale.
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