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Adipose tissue macrophage (ATM) has been appreciated for its critical

contribution to obesity-associated metabolic diseases in recent years. Here,

we discuss the regulation of ATM on both metabolic homeostatsis and

dysfunction. In particular, the macrophage polarization and recruitment as

well as the crosstalk between ATM and adipocyte in thermogenesis, obesity,

insulin resistance and adipose tissue fibrosis have been reviewed. A better

understanding of how ATM regulates adipose tissue remodeling may provide

novel therapeutic strategies against obesity and associated metabolic diseases.
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Introduction

Obesity is an accumulation of adipose tissue resulting from an energy imbalance,

which has been linked to numerous comorbid conditions including type 2 diabetes

mellitus, nonalcoholic fatty liver disease (NAFLD), atherosclerosis, cancers as well as

COVID-19 (1, 2). Adipose tissues, which include brown adipose tissue (BAT) and white

adipose tissue (WAT), play critical roles in the maintenance of energy homeostasis. WAT

store energy when nutrition is abundant, while BAT dissipate energy for heat production

through a mitochondrial uncoupled respiration.

Besides adipocytes, many types of immune cells reside in both BAT and WAT to

control adipose tissue homeostasis (3). Among these immune cells, macrophage is the

most abundant population, constituting 5%-10% cell numbers of the adipose tissue in the

lean state and increasing to 50% or more in the condition of extreme obesity both in

humans and in mice (4). Macrophage is derived from embryo or adult bone marrow-

derived circulating monocytes, which are essential in the maintenance of tissue

homeostasis and play a vital role in different pathologies. Macrophage is a

heterogeneous population of immune cells, such as Kupffer cell in liver, alveolar

macrophage in lung, microglia in brain among many others. They play tissue-specific
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functions in homeostatic and immune-related responses shaped

by different local microenvironment (5, 6).

Adipose tissue is an energy reservoir which contains lots of

lipids and acts as an important endocrine organ by secreting

numerous factors. These lipids and factors generate a specific

microenvironment that distinguishes adipose tissue from others

and distinguishes adipose tissue macrophage (ATM) from

macrophage in other tissues. There are two types of activated

macrophage in adipose tissue, named M1 macrophage and M2

macrophage. In the adipose tissue of lean mice, most

macrophages are M2 activated, which produce anti-

inflammatory cytokines including interleukin-10 (IL-10) and

TGF-b, contributing to resolution of inflammation and tissue

homeostasis. But in obese mice, the adipose tissue recruits many

M1 macrophages, which generate proinflammatory cytokines,

causing adipose tissue inflammation and metabolic dysfunction

(7, 8).

Here, we summarize the latest progresses of the metabolic

implications of ATMs. We describe the polarization and

recruitment of adipose tissue macrophages, and discuss their

functions both in health and metabolic diseases, including

thermogenesis, obesity, insulin resistance as well as adipose

tissue fibrosis.
Macrophage polarization

M1/M2 polarization of macrophage is a process by which

macrophages produce distinct functional phenotypes driven by

microenvironmental stimuli in specific conditions. There are

two types of macrophage polarization in adipose tissue, M1 and

M2 macrophages. M1 macrophages are generated when

st imulated wi th l ipopolysacchar ide (LPS) or Th1

proinflammatory cytokines such as IFN-g. Meanwhile, M2

macrophages are induced by Th2 cytokines such as IL-4 and

IL-13. M1 macrophages are usually characterized by enhanced

phagocytic activity and increased secretion of proinflammatory

cytokines (9). Phenotypically, M1 macrophages show enhanced

expression of main histocompatibility complex class II (MHC-

II), CD68, CD80 and CD86 both in mice and humans (10).

These characteristics are mainly promoted by IFN-g-mediated

Janus kinase-signal transducer and activator of transcription

(JAK-STAT) signaling or directly by pathogen associated

molecular patterns (PAMPs) such as LPS. Thus, M1

macrophages, along with other innate immune cells, provide

the first line of defense to fight against infectious pathogens and

promotes Th1 immune response. Several pathways have been

discoveried to regulate M1 activation. Transcription factor

interferon regulatory factor 5 (IRF5) has been reported as a

key player in the polarization of both human and mouse

macrophages towards a proinflammatory M1-like phenotype

by controlling expression of M1 markers, as well as Th1 and

Th17 responses (11). STAT1, which is activated by LPS/TLR4
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pathway, plays a critical role in M1 polarization (12, 13).

Suppressor of cytokine signaling 3 (SOCS3) activates nuclear

factor kappa-light-chain-enhancer of activated B cells (NF-kB)
pathway to produce NO, which promotes expression of M1

markers and inhibits IL-10 expression (14). M2 macrophages

have been initially identified during helminth infection, which

promotes a Th2-polarized response. They are usually

characterized by the expression of M2 markers including

arginase 1 (ARG1), chitinase 3-like 3 (also known as YM1),

FIZZ1 and CD206. Depending on the contexts and the

expression of phenotypic markers, M2 macrophages can be

subtyped into M2a, M2b, M2c and M2d ones (15, 16). M2a

macrophages play a role in the Th2 response during parasite

infections. They are typically induced by stimulation of IL-4 and

IL-13, which are produced by eosinophils. M2a macrophages are

characterized by high surface expression of CD206, ARG1, YM1,

FIZZ1 and TGF-b, and they can promote fibrosis and wound

healing. M2b macrophages show immune-regulated and anti-

inflammatory effects which induced by IL-1 and TLR agonists

such as LPS, expressing high levels of TNF superfamily, C-C

motif chemokine ligand 1 (CCL1) and IL-10.M2c macrophages

are induced in the presence of IL-10, TGF-b and glucocorticoids.

They are usually considered as deactivated or anti-inflammatory

macrophages, and involved in phagocytosis of apoptotic cells.

M2c macrophages secret large amounts of IL-10 and TGF-b, and
express multiple markers including CD163, CD206, RAGE and

other scavenger receptors. M2d macrophages, also known as

tumor-associated macrophages (TAMs), are induced by the TLR

antagonists, and they release IL-10, TGF-band vascular

endothelial growth factors (VEGF) to contribute to tumor

angiogenesis (17–21) (Figure 1). Transcription factors such as

Krueppel-like factor 4 (KLF4), STAT6 and peroxisome

proliferator-activated receptor-g (PPARg) are all involved in

the polarization of M2 macrophages (22–24). Besides, recent

studies identified PI3K/AKT signaling as another critical

mediator in mouse M2 macrophage polarization, which is

independent of the well-established JAK1/STAT6 pathway

(25). IL-4 stimulates the phosphorylation of IRS-2 that leads

to the recruitment and activation of PI3K/AKT pathway (26).

Interestingly, different AKT isoforms seem to play different roles

in macrophage polarization, with Akt1 isoform deficiency

leading to an M1 activation while Akt2 isoform ablation

causing an M2 phenotype (27).

In obese adipose tissue, ATMs tend to polarize to M1

macrophages, which are mainly regulated by adipocytes.

Adipocytes exert effects on ATM phenotypes via a variety of

mechanisms. Obese adipocytes secrete many proinflammatory

cytokines, including monocyte chemoattractant protein 1

(MCP-1/CCL2), which recruit macrophages and induce their

polarization to proinflammatory M1 type. Besides cytokines,

ATM polarization is affected by lipids and glucose which are

much more abundant in the obese condition. Macrophages

treated by very low-density lipoproteins (VLDLs) and short
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chain fatty acids increase a secretion of proinflammatory

cytokines (28). Free fatty acids (FFAs), which is increased in

the serum of obese animals, can induce TLR4 signaling

activation in murine ATMs and polarize ATM to M1 (29–31).

High levels of glucose directly promotes macrophage M1

activation via the Rho-associated protein kinase (ROCK)/c-Jun

amino-terminal kinase (JNK) and ROCK/extracellular signal-

regulated kinase (ERK) pathways (32, 33). Besides, miR-155,

which is secreted by adipocyte-derived microvesicles (ADM),

regulates M1 macrophage polarization (34). Moreover, DPP4, a

dipeptidyl protease expressed and released by hapatocytes, can

activate ERK1/2 and NF-kB signaling to induce MCP-1 and IL-6

expression in ATMs that promotes adipose t issue

inflammation (35).

Lean adipocytes normally secrete adiponectin that stimulates

M2 ATM polarization (36). PPAR-d, a nuclear hormone

receptor, plays an important role in the activation of M2

macrophage, and alleviates diet-induced insulin resistance

(37). PPAR-d is induced by cellular lipids when apoptotic cells

are engulfed by macrophages and further regulates the clearance

of these apoptotic cells (38). Helminth infection significantly

promotes Th2 responses and M2 macrophage polarization,

which alleviate obesity. Adoptive transfer of M2 macrophages

treated by helminth to recipient mice significantly improve high-

fat diet (HFD)-induced obesity (39). Furthermore, PPAR-g has
been reported to polarize human monocytes to M2 macrophages

in vitro (40), while deletion of PPAR-g in myeloid cells inhibits
Frontiers in Immunology 03
M2 macrophage activation and accelerates diet-induced obesity

and insulin resistance in mice (41).

A number of regulators govern the polarization of M1 or M2

macrophage and the switch between M1 and M2 activation.

TLR4 is the key component in LPS-mediated M1 polarization,

and TLR4 deficiency inhibits HFD-induced recruitment of

proinflammatory M1 macrophages and induces M2

macrophage polarization (42). 11b-HSD1, a reductase

reactivating glucocorticoids, was reported to promote the

switch from M2 to M1 macrophages in human obesity (43). In

addition, inositol-requiring enzyme 1a (IRE1a) wasalso

reported to be a key factor controlling ATM polarization and

energy balance in mice. Deficiency of IRE1a promotes M2

macrophage polarization, and transcriptomic profiling revealed

that expression of IRF4 and KLF4 can be inhibited by IRE1a,
both of which are critical players controlling M2 polarization

(44). MicroRNA has rencently been implicated in the regulation

of macrophage M1/M2 polarization as well as insulin resistance.

miR-495 promotes M1 macrophage activation by targeting and

inhibiting the expression of Fto (45). However, another study

reported that Fto silencing significantly suppressed both M1 and

M2 polarization, through inhibiting the expression of STAT1

and of STAT6 and PPAR-g respectively (46). FTO gene has been

considered as the strongest genetic effector in human polygenic

obesity, in which IRX3 may participate by mediating this effect.

Recently, using cell-specific knockout mouse models, we

demonstrated that macrophage IRX3 regulates body weight
FIGURE 1

The heterogeneity and characterizations of M2 macrophages. M2 macrophages can be subgrouped into M2a, M2b, M2c and M2d depending on
different microenvironmental stimuli. Specific stimuli include, but are not limited to, IL-4 or IL-13 for M2a, LPS or IL-1 receptor ligands for M2b,
IL-10 or TGF-b for M2c and IL-6 or Toll-like receptor agonists (TLRa) for M2d. Different subtypes express distinct markers, including intracellular
proteins and secreted cytokines.
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through acting as a transcriptional factor to control the

expression of proinflammatory cytokines (47). Mechanistically,

we found that IRX3 promotes M1 but not M2 gene expression

when it is phosphorylated and activated by JNK1/2 in

macrophages (47).
ATM recruitment

Healthy adipose tissue predominantly contains anti-

inflammatory M2 macrophages that originate from yolk sac,

with a little contribution of circulating monocytes (48). An

extreme increase in adipocyte size is accompanied by an

inadequate supply of oxygen due to expanding adipose tissue,

causing an increased frequency of adipocyte death and following

macrophage recruitment (49, 50). Over 90% of macrophages

recruited to adipose tissue are arranged around dead adipocytes,

which form a structure called “crown-like structure (CLS)”, both

in obese animals and humans (49, 51). These recruited

macrophages exert their phagocytotic function to clear dead

adipocytes. Deficiency of mannose-binding lectin (MBL), which

can bind apoptotic cells and promote engulfment by phagocytes,

inhibits the clearance of apoptotic cells in adipose tissue (52).

Meanwhile, macrophages in CLS store and buffer excess lipids

released from dead adipocytes, which are named lipid-laden

macrophages (53). The number of CLS is highly positively

correlated with adipose tissue inflammation and metabolic

disorders of obese subjects (54, 55). Proinflammatory

adipokines including MCP-1 and TNF, as well as saturated

fatty acids secreted by obese adipocytes, can recruit and

activate ATMs (56). Activated macrophages release

proinflammatory chemokines including MCP-1 to recruit

more monocytes from blood into adipose tissues by binding to

its receptor C-C chemokine receptor type 2 (CCR2) (37). After

infiltrating into the adipose tissue, monocytes differentiate to

macrophages and interact with adipocytes in a paracrine

manner, further increasing the secretion of proinflammatory

cytokines (57). This interaction between adipocytes and

macrophages establishes a vicious spiral in obese adipose

tissue and persistently recruits more and more macrophages

from circulation (55). Besides, obesity promotes the expression

of chemokine receptors in adipose tissues from both mice and

humans, which further enhance the vicious spiral (58, 59).

Many cytokines and their receptors participate in the

recruitment of monocytes/macrophages. As previously

mentioned, MCP-1-CCR2 is reported as the most important

cascade in macrophage recruitment. MCP-1 in adipocytes

promotes ATM recruitment and insulin resistance in mice

(57), while HFD-induced macrophage accumulation in adipose

tissue was extensively reduced in MCP-1 KO mice (60), which

indicates a critical role of MCP-1 in the trafficking of

macrophages. In addition to adipose tissue, the MCP-1-CCR2

circuit plays an important role in recruiting monocyte in many
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other tissues, such as in liver, heart and lung (61–64). Moreover,

MCP-1 has been reported to induce local proliferation of

macrophages, which is another important mechanism

underlying obesity-elicited macrophage accumulation (65).

Besides MCP-1, CCR2 can also be activated by other ligands,

including CCL7 (MCP-2) (66), CCL8 (MCP-3) (67), CCL13

(MCP-4) (68), and CCL12 (MCP-5) (69), many of which are

expressed in obese adipose tissue and affect monocyte/

macrophage recruitment (58). On the other hand, CCR5

expression is highly upregulated in obesity and FACS analysis

further illustrated that WAT from obese mice have significant

accumulation of CCR5 positive macrophages. Consistently,

CCR5 deficient improves obesity-induced insulin resistance in

mice (70). CCL3 and CCL5 have been reported as ligands of

CCR5 (71). Inhibition of CCL3 reduces macrophage infiltration

and activation by downregulating CCR5 (72). CCL5 recruits

macrophages mainly by promoting cell adhesion and

transmigration of monocyte vascular endothelial cells (73).

CX3CL1-CX3CR1 axis also precipitates in macrophage

infiltration and inflammation in both atherosclerosis and

rheumatologic disorders (74, 75). It has been suggested that

adipocytes express CX3CL1 that can activate the CX3CR1

signaling in macrophages (76).Cx3cr1-deficient mice fed HFD

displayed significantly declined monocytes and produced less

proinflammatory cytokines in the WAT (77). However, another

study reported that Cx3cr1-dificient mice showed a reduction of

M2-polarized macrophage migration, and exacerbated adipose

tissue inflammation, insulin resistance and hepatic steatosis

when fed HFD (78). Serum amyloid A (SAA) promotes

monocyte recruitment by inducing the expression of the

adhesion antigens CD11b, intracellular adhesion molecule-1

(ICAM-1) and vascular adhesion molecule-1(VCAM-1)

through a NF-kB-dependent signaling (79, 80). Myeloid cell-

specific ablation of GPR105, which is activated by UDP and

UDP-linked glucose, prevents macrophage recruitment to liver

or adipose tissue in mice fed HFD (81). C-X-C motif chemokine

ligand 14 (CXCL14), which is required for the activation of

dendritic cells, is another chemoattractant participates in the

recruitment of macrophages into adipose tissue and insulin

resistance, although its receptor has not yet been identified

(82, 83). Using knockout mouse model, CXCL14 has recently

been reported to be produced by brown adipocytes upon

thermogenic activation and promotes the recruitment and

activation of M2 macrophages in BAT (84).

Collectively, there are several steps in the recruitment of

ATMs. Initially, Obesity-induced adipocyte death and adipose

tissue inflammation promote a secretion of CCL2 and other

chemokines, which bind to their receptors on monocytes

circulating in the blood. Then, activated monocytes adhere to

endothelial cells of blood vessel via upregulated adhesion

molecules including ICAM-1, VCAM-1 and integrin. After

integrin-dependent lateral migration, monocytes transmigrate

from blood vessel to target adipose tissue. Eventually, recruited
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monocytes differentiate into proinflammatory macrophages in

response to local microenvironmental stimuli (Figure 2) (85).
ATM in adaptive thermogenesis
and lipolysis

Brown adipocyte and beige adipocyte, which highly express

mitochondrial uncoupling protein 1 (UCP1), are responsible for

adaptive thermogenesis and protect against metabolic diseases in

mice and humans. FFAs, which are produced as a result of

lipolysis, serve both as direct activators of UCP1 and fuel sources

for thermogenesis (86). Thermogenesis and lipolysis of adipose

tissues and browning of WAT are dynamic processes, in which

both M1 and M2 macrophages play critical roles.
M2 macrophages in adaptive
thermogenesis and lipolysis

M2 macrophage has been demonstrated as an activator to

promote fat thermogenesis and lipolysis through different

mechanisms. In 2011, cold-induced BAT thermogenesis and

WAT lipolysis were first linked to macrophage M2 recruitment

and activation (87). Using myeloid cell-specific ILR4a-deficient
and IL4 administration mouse models, M2 macrophage has been

revealed to be required and sufficient for BAT and beige fat

thermogenesis and lipolysis (87, 88). Mechanistically, cold

exposure induces the expression of tyrosine hydroxylase (TH)

and resultant catecholamine production in M2 macrophages to
Frontiers in Immunology 05
sustain thermogenesis and lipolysis, although whether M2

macrophages expresse a significant amount of TH is under

debate (87–90). Another study reported a similar recruitment

and pro-thermogenic effects of M2 macrophage in cold-induced

browning of subcutaneous white adipose tissue (scWAT) in mice,

further supporting a critical role of M2 macrophage in adaptive

thermogenesis (88, 90). Moreover, CD44+ M2 macrophage is

recruited by CL316.243 (CL)-mediated adipocyte death to

produce high level of 9-hydroxyoctadecadienoic acid (9-HODE)

and 13-HODE, two known PPARg ligands, which promote

differentiation of platelet-derived growth factor receptor alpha

(PDGFRa+) progenitors to beige adipocytes (91). Besides,

macrophage-derived osteopontin (OPN) triggers a recruitment

of PDGFRa+ progenitors, which contribute to beige adipogenesis

(92). In addition to the above paracrine manner, M2 macrophage

has also been reported to promote beige adipogenesis in a direct-

contact manner both in humans and mice (93). More recently, it

has been reported that brown adipocyte ejectes damaged

mitochondria via extracellular vesicles, whose removal by M2

macrophage ensures optimal BAT thermogenesis in mice (94).

Started from the M2 macrophage, multiple studies have explored

the importance of other anti-inflammatory cytokines in the

regulation of adipose thermogenesis and lipolysis.IL-4, IL-13

and IL-33, as key members in type 2 cytokines, all have been

demonstrated to promote thermogenesis and lipolysis (88, 95).

Different from other type 2 cytokines, ablation of IL-10 elicits

thermogenesis and browning of scWAT and protects against diet-

induced obesity. ATAC-seq, ChIP-seq, and RNA-seq analyses

revealed that IL-10 affects chromatin structure and CCAAT/

enhancer binding protein-b (C/EBPb) and activating
FIGURE 2

ATM recruitment. Obesity promotes adipocyte death as well as adipose tissue inflammation, which firstly trigger a large number of chemokines
secretion, including CCL2. Upon activation, monocytes and vascular endothelial cells produce various cellular adhesion molecules, mainly
integrin, ICAM-1 and VCAM-1. Through rolling and adhesion process, monocytes bind to adhesion molecules on vascular endothelial cells and
transmigrate from blood vessel to target adipose tissue. Eventually, recruited monocytes differentiate into proinflammatory macrophages in
response to local microenvironmental stimuli.
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transcription factor 2 (ATF2) occupancy at the promoters of

thermogenic genes (96).
M1 macrophages in adaptive
thermogenesis and lipolysis

In contrast to M2 macrophage, M1 macrophage and its

secreted proinflammatory cytokines usually exert negative effects

on thermogenesis and lipolysis. Prolonged treatment with TNF

cytokine inhibits the sensitivity of adipocytes to b-adrenergic
stimulation, and thus inhibits Ucp1 gene expression,

thermogenesis and lipolysis (97, 98). TNF-activated inhibitor

of nuclear factor kappa-B kinase subunit epsilon (IKKϵ) and

TANK-binding kinase 1 (TBK1) desensitize lipolytic signaling

by phosphorylating and activating phosphodiesterase 3B

(PDE3B) , which decreases cAMP leve l s (98 , 99) .

Overexpression of IKKϵ blunts b-adrenoreceptor-stimulated

Ucp1 expression in adipocytes, while an inhibitor of IKKϵ and

TBK1 restores catecholamine sensitivity and reversed the effects

of HFD feeding on thermogenesis and weight gain (98, 100). IL-

1b inhibits b-adrenoreceptor-stimulated Ucp1 expression which

was significantly abrogated by the inhibition of ERK (101, 102).

Genetic ablation of Jnk1, a major intracellular mediator of

inflammatory signaling, enhances Ucp1 expression and

thermogenesis in adipose tissues (103). Through singly or in

combination treatments of beige adipocytes in vitro with

different proinflammatory cytokines, we found that TNF and

IL-1b moderately inhibited adrenergic signaling separately,

while a mixture of four cytokines (IL-1a, IL-1b, IL-6 and

TNF) achieved a dramatic inhibition of thermogenesis and

lipolysis (47). Besides proinflammatory cytokines, adipocytes

express TLRs and key components of their downstream

signaling pathway. LPS or palmitic acid-stimulated TLR4

signaling abolished cAMP-induced upregulation of Ucp1 and

thermogenesis through activating NF-kB and MAPK pathways

(104, 105). Consistently, TLR3 and TLR4, upstream of interferon

regulatory factor 3 (IRF3) signalling, induce insulin resistance

and thermogenesis in adipocytes (106). IRF3-deficient mice

exhibit systemic inflammation and enhanced browning of

scWAT when fed HFD (107). Inflammation-imposed

inhibition of beige adipogenesis and thermogenesis are also

mediated by a direct adhesion of inflammatory macrophages

to adipocytes. Specifically, a4 integrin-mediated adhesion of

inflammatory M1 macrophages to VCAM-1, which is

expressed by adipocytes, inhibits thermogenesis in an ERK-

dependent manner. Genetic or pharmacologic inhibition of a4
integrin resulted in an increase of beige adipogenesis and UCP1

expression of the scWAT (93).

ATM also regulates adipocyte thermogenesis and lipolysis

indirectly through other cells like sympathetic nerves. Fasting

and cold exposure increase the release of catecholamines from

sympathetic nerves, which bind to adipocyte adrenergic
Frontiers in Immunology 06
receptors and activate cAMP-PKA signaling to trigger lipolysis

and thermogenesis. Yochai Wolf et al. reported a homeostatic

role of macrophages in the control of brown adipose tissue

innervation in mice (108). They found that BAT resident

CX3CR1+ macrophages inhibit sympathetic innervation and

decrease the local level of catecholamine. Mecp2 deficiency in

CX3CR1+ macrophages decreased thermogenesis and led to

spontaneous obesity (108). Two recent reports identified a

subtype of macrophages in human and mouse WAT that take

up and degrade norepinephrine (NE), then inhibit adipocyte

lipolysis and thermogenesis. These macrophages are termed

either sympathetic neuron associated macrophages (SAMs) or

nerve-associated macrophages (NAMs). Different from

CX3CR1+ macrophage that inhibits sympathetic neuronal

innervation in BAT, SAMs/NAMs function in eWAT and

scWAT (109, 110) . Mechanist ical ly , NE-degrading

macrophages are activated via NLR family pyrin domain

containing 3 (NLRP3) inflammasome system in aged WAT.

NLRP3 activation upregulates the expression of growth

differentiation factor-3 (GDF3) and GDF3-dependent

expression of monoamine oxidase A (MAOA) that degrade

NE. Macrophages that lack NRLP3 or GDF3 decreased

adipose NE removal and increased lipolysis upon aging. The

MAOA inhibitor treatment of aged mice restored fasting-

induced lipolysis and increased expression of UCP1 (110).

Moreover, activin receptor-like kinase 7 (ALK7) signaling,

which is activated by GDF3, contributes to diet-induced

catecholamine resistance in adipose tissue. Fat-specific Alk7

knock-out enhances adipose b-adrenergic signaling, lipolysis

and thermogenesis, resulting in reduced fat mass and

resistance to HFD-induced obesity (111). SAMs in mouse

WAT can specifically express the NE transporter SLC6A2.

Genetic ablation of Slc6a2 in SAMs increases thermogenesis

and weight loss in obese mice (109). CX3CR1+ macrophages

produce IL-27 to activate p38 MAPK-PGC-1a pathway in

adipocytes and promote thermogenesis of BAT and scWAT

(112). However, it is unknown whether these SAMs/NAMs can

be categorized as M1 or M2.
ATM in insulin resistance
and diabetes

Type 2 diabetes is associated with obesity and occurs as a

consequence of insulin resistance, which emerges when three

major insulin-sensitive tissues (skeletal muscle, liver, and

adipose tissue) can not respond well to insulin and can not

effectively take up glucose from blood. Insulin is a peptide

hormone secreted by pancreatic b cells, which plays a crucial

role in carbohydrate metabolism, lipid anabolic regulation, cell

growth and proliferation (113). Blood glucose induces b-cells to
produce and secrete insulin, which stimulates glucose uptake in

different types of cells, including adipocyte, muscle cell, liver cell
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and others, thereby decreasing blood glucose level. The effects of

insulin on whole-body metabolism result from its binding to

insulin receptor (IR), leading to autophosphorylation of specific

tyrosine residues of IR and subsequently phosphorylation of

proteins known as insulin receptor substrates (IRS). PI3K, a key

component of IRS downstream, mediates insulin signaling

mainly by activating PKB/AKT and PKC signaling

pathways (114).
TNF

Adipose tissue macrophage modulates insulin action

through different mechanisms, with M1 macrophage

promoting insulin resistance while M2 macrophage enhancing

insulin sensitivity (115, 116). The major difference between M1

and M2 is the expression of proinflammatory cytokines. In

1990s, the first study reported the inflammatory origin of

obesity and diabetes. They found that adipose tissue from

different obese rodents and humans has an enhanced secretion

of proinflammatory cytokines, mainly TNF, which was linked to

insulin resistance (117, 118). TNF‐deficient obese mice are

protected from obesity‐induced insulin resistance in muscle

and adipose tissues (119). The important role of TNF is

further evidenced by TNF neutralization, which improves an

increased peripheral glucose uptake and insulin sensitivity in

obese mice (117). These studies showed that blocking a single

cytokine can restore insulin sensitivity, and macrophage was

further identified as the major cell source of TNF and other

proinflammatory molecules in obesity (4). Binding of TNF to its

receptors results in the activation of JNK and causes

phosphorylation of IRS1 at serine 307, which impairs IR-

mediated tyrosine phosphorylation of IRS1 and downstream

signaling (120).
IL-1b

IL-1b is another important proinflammatory cytokine that is

produced by ATM (121). IL-1b exerts its biological effects by

binding directly to IL-1Ra and activates the IKK/NF-kB
pathway (122). It was reported that adipose tissue appears to

be a major source of IL-1R antagonist production, which

prompted an interest in the role of IL-1b in obesity-induced

diabetes and insulin resistance (123). IL-1b, released by ATM,

alters insulin sensitivity of adipose tissue by inhibiting insulin

signaling, so it decreases insulin-stimulated glucose uptake and

lipogenesis in both murine and human adipocytes (124, 125). In

vitro studies revealed that IL-1b treatment of adipocytes disturbs

insulin signaling via downregulation of IRS1 expression, leading

to a reduction of translocation of insulin-stimulated glucose

transporter type 4 (GLUT-4), an essential process for glucose

uptake (124, 125). Consistently, insulin resistance of human
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adipocytes imposed by macrophage-derived conditioned

medium can be reversed by neutralizing IL-1b (124).
IL-6

Many studies have established a positive correlation between

IL‐6 and insulin resistance (126). Adipose tissue‐derived IL‐6

enters circulation and exerts systemic regulation on insulin

action. Up to 35% of systemic IL‐6 originates from adipose

tissue under basal condition, secreted by both adipocytes and

macrophages (4, 127). IL-6 has been described to impair insulin

signaling, primarily through inhibiting insulin-stimulated

tyrosine phosphorylation of IRS in adipose tissue (128).

Modest increase of basal glucose transporter GLUT1 was

observed in 3T3‐L1 adipocytes when incubated with IL‐6

(129), while the expression of Glut4 and Irs1 genes was

inhibited by chronic IL‐6 treatment (128, 130). Besides, IL‐6

induces the expression of SOCS3, which is a negative regulator of

insulin signaling in adipocytes (131).
NF-kB

ATM-released proinflammatory cytokines activate different

signaling pathways in adipocytes to modulate insulin action. NF-

kB is a master inflammatory transcriptional factor involved in a

variety of physiological and pathological processes such as

inflammation and innate and adaptive immune responses. The

activation of NF-kB signaling can increase the expression of

several proinflammatory genes, which exacerbate insulin

resistance progression (132, 133). IKKb specific deficiency in

adipocytes completely prevents FFA-induced IL-6 and TNF

expression, and improves glucose tolerance and insulin

sensitivity (134, 135). Mechanistically, IKKb activation

promotes IRS1 serine phosphorylation through activation of

the TSC1/TSC2/mTORC1/S6 kinase-1 pathway, which impairs

IR-mediated tyrosine phosphorylation of IRS1 (136). In

addition, activation of the IKKb/NF-kB pathway increases the

expression of protein-tyrosine phosphatase 1B (PTP1B), a

tyrosine phosphatase that catalyzes dephosphorylation of

tyrosine residues of IRS1, further inhibiting insulin signaling

in adipose tissue (137).
JNK

JNK might be the most investigated stress kinase in obesity-

related insulin resistance. The activity of JNK in increased upon

exposure to inflammatory stimuli which include cytokines,

FFAs, and then phosphorylates transcription factor activator

protein-1 (AP-1) (120). Like IKKb, JNK inhibits insulin
frontiersin.org

https://doi.org/10.3389/fimmu.2022.977485
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yao et al. 10.3389/fimmu.2022.977485
s igna l ing through an inhib i tory ser ine- threonine

phosphorylation of IRS1, thereby decreases PI3K/AKT

signaling (138, 139). It should be noticed that JNK seems

more implicated in the direct regulation of IRS serine

phosphorylation than IKKb (140). JNK activity could be

induced in adipose tissue of obese mice compared to lean

mice. Adipose tissue-specific JNK1-deficient mice are

protected against the development of insulin resistance under

HFD feeding. Interestingly, this protective effect is not systemic

as JNK1 deficiency in adipocytes only restore liver but not

muscle insulin sensitivity (141). Besides JNK1, JNK2 isoform

is also involved in insulin resistance but to a lesser extent (142).

Moreover, using a myeloid cell-specific JNK1/2 double knock-

out mouse model, another study demonstrated that macrophage

JNK1/2 are required for the establishment of obesity-induced

adipose tisse inflammation and insulin resistance through

promoting macrophage M1 activation (143).
ERK1/2

ERK1/2 is activated in adipose tissue of obese mice or human

(144). Multiple cellular studies have reported that activated

ERK1/2 in diabetes induces IRS1 serine phosphorylation,

which inhibits IRS1 tyrosine phosphorylation. In addition this

serine phosphorylation decreases the interaction between IRS1

and PI3K and inhibits the association between IRS1 and insulin

receptor, further diminishing the metabolic effects of insulin

(140). ERK1-deficient mice are protected against diet-induced

obesity and insulin resistance by inhibiting adipogenesis and

promoting energy expenditure (145). Besides, ERK activation

promotes insulin resistance indirectly, mainlythrough a

stimulation of adipocyte lipolysis and FFA release, and mice
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deficient in the signaling adapter p62 (an ERK inhibitor) show

similar phenotypes (Figure 3) (146, 147).

The regulation of insulin sensitivity by ATMs is also

mediated by miRNAs, which are contained and transferred by

ATM-derived exosome (148). Treatment with obese ATM-

derived exosome leads to insulin resistance, whereas lean

ATM-derived exosome increases insulin sensitivity in obese

mice. Mechanistically, miR-155 is among the differentially

expressed miRNAs in obese ATM-derived exosome, and it

causes systemic insulin resistance and glucose intolerance (148).

In addition to M1 and M2 macrophages, other macrophage

populations that regulate insulin resistance have been reported

recently, including neuropilin-1 (NRP1)+ macrophages and

TREM2+ lipid-associated macrophage (LAM) (149, 150).

NRP1+ macrophages accumulate in adipose tissue and protect

against obesity and metabolic syndrome. Conditional deletion of

NRP1 in macrophages compromised lipid uptake and led to

insulin resistance (149). Using single-cell RNA sequencing, one

study identified a subset of TREM2+ lipid-associated

macrophages (LAMs) that prominently arise under obesity

condition both in humans and mice. TREM2 deficient mice

showed inhibited recruitment of macrophages to CLS and led to

adipocyte hypertrophy as well as insulin resistance (150).

However, bone marrow transplantation experiments by

another group argued that hematopoietic-expressed TREM2 is

dispensable for obesity-induced metabolic dysfunction,

including insulin resistance (151).
ATM in fibrosis

Adipocytes are surrounded by a network of extracellular

matrix (ECM) proteins that not only serve as a structural
FIGURE 3

Inhibition of insulin signaling pathway by inflammatory signaling. Pro-inflammatory cytokines, including IL-1b, IL-6, and TNF, can activate
inflammatory signaling pathways through their receptors. Then activated MAPK and NF-kB signaling pathways inhibit insulin signaling by altering
the phosphorylation status of IRS-1, and further lead to a reduction of glucose uptake by adipocyte.
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support and protection but also regulate adipose tissue

homeostasis by responding to different signals (152). In other

words, ECM ensures adipose tissue to expand and maintain in a

healthy manner. However, the development of obesity promotes

an excessive accumulation of ECM proteins and elicits adipose

tissue fibrosis, which reduces tissue plasticity and results in

adipocyte dysfunction such as insulin resistance (153, 154).

Thus, fibrosis is considered as a hallmark of metabolically

dysfunctional adipose tissue.

During the development of obesity, rapid adipose tissue

expansion and adipocyte enlargement cause adipose tissue

hypoxia and lead to an activation of hypoxia-inducible factor

1-alpha (HIF1-a), which induces the production of ECM

proteins (155, 156). Hypoxia promotes expression of many

proinflammatory genes through HIF1-a induction. Low-grade

inflammation contributed by hypoxia in obesity further

deteriorates adipose tissue fibrosis (157).

In addition, adipocyte hypertrophy and adipose tissue

hypoxia are tightly associated with increased infiltration of

macrophages, which promote local ECM accumulation (154,

158). Proinflammatory M1 macrophages make up significant

proportion in fibrotic adipose tissue. Besides proinflammatory

cytokines, ATM produces many other cytokines, including TGF-

b1 and PDGF, which directly activate fibroblasts and increase

ECM accumulation (159). As a vicious spiral, macrophages

promote fibrogenesis by releasing chemokines that attract

fibroblasts and more proinflammatory cells (160). Besides,

macrophage inducible C-type (Mincle), which is induced in

macrophage by TLR4 activation, regulate ECM prodaction and

degredation, as well as fibroblast proliferation (161, 162).

Addit ional ly , saturated fatty acids (SFA)-mediated

inflammation is potentiated by TLR4 activation and

contributes to WAT fibrosis by fueling local inflammation

(31). Besides their role in promoting fibrogenesis ,

macrophages participate in ECM clearance through collagen

uptake and degradation. Collagen phagocytosis by macrophages

depends on mannose receptor 1 (MRC1) and urokinase

plasminogen activator receptor-associated protein (uPARAP/

endo180) (163). In adipose tissue, it has been widely accepted

that there is no single signaling or single cell type responsible for

ECM production. Adipose tissue collagens are contributed by

both preadipocytes and macrophages, and the fibrosis is

coordinated through intimate crosstalk between macrophages

and preadipocytes under different physiological and pathological

conditions (164). In vitro studies suggest that preadipocytes in

contact with proinflammatory macrophages can produce ECM

proteins, including collagen I and fibronectin (164). Meanwhile,

macrophage is found to be the master regulator of fibrosis

through producing TGF-b1 and PDGF, which have been
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proved to directly activate fibroblasts and control ECM

dynamics by regulating the balance between various matrix

metalloproteinases (MMPs) and their inhibitors (159).
ATM and adipokines

Adipose tissue secretes many kinds of hormones, called

adipokines, which exert their biological functions in an

autocrine, paracrine, and/or systemic manner and influence

many physiological/pathological processes, such as

thermogenesis, insulin resistance and fibrosis (165). The most

well-known adipokines are adiponectin and leptin, both of

which can exhibit either proinflammatory or anti-

inflammatory property, thereby contributing to adipose tissue

functions (165).
Adiponectin

Adiponectin, a 30-kDa adipokine exclusively secreted from

adipocytes, exists in cells and plasma (166, 167). As the most

aboundent peptide secreted by adipocytes, adiponectin shows

protective activity in multiple diseases such as inflammation,

obesity and insulin resistance (166, 168–170). Many evidences

proved that adiponectin acts as anti-inflammatory factor by

regulating the polarization of adipose tissue macrophages (36,

104). Recombinant adiponectin treatment results in an increased

expression of M2 markers and a decreased expression of M1

markers in adipose tissue, while macrophages from adiponectin

knock-out mice display increased M1 markers (36, 171).

Interestingly, adiponectin has also been reported as a

proinflammatory factor to increase TNF-a and IL-6 secretion

directly. The authors further suggested that the anti-

inflammatory property of adiponectin may be due to its

desensitized effects on cells for further proinflammatory

response, although the specific molecular mechanism is still

unknown (172, 173). Additionally, adiponectin has been

reported to induce adipose tissue M2 macrophage proliferation

both in vivo and in vitro, further promoting cold-induced

adipose tissue thermogenesis (174). Mechanistically,

adiponectin is recruited to the cell surface of M2 macrophages

via T-cadherin and promotes cell proliferation by activation of

AKT signaling (174). Besides, several intracellular signaling

pathways have been reported to mediate adiponectin action in

regulating macrophages. Adiponectin suppresses M1

macrophage proliferation via inhibiting NF-kB signaling (175).

A mutual antagonistic action was observed between

adiponection and TNF/IL-6 expression. LPS-induced TNF/IL-
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6 is suppressed by adiponectin, and TNF/IL-6 conversely inhibit

adiponectin expression (176, 177). Besides, both oxidative stress

and ROS release inhibit adiponectin expression in obesity,

therefore forming a vicious circle that lowers adiponectin level

while increases proinflammatory cytokines and oxidative stress

in obese adipose tissue (56).
Leptin

Leptin, another pivotal adipokine, exerts its function

through modulating immunity and inflammation (178). Leptin

is a 16-kDa peptide hormone secreted mainly from adipose

tissue, and the most evident function of leptin is its control of

energy balance by inhibiting appetite through hypothalamus

(179, 180). However, leptin receptor (LEPR) is ubiquitously

expressed on the surface of many cells like immune cells,

suggesting pleiotropic actions of leptin (181, 182). High levels

of thymocyte apoptosis and reduced thymic cellularity were

observed in in obese mice with mutation in leptin (ob/ob mice)

or LEPR (db/db mice), which were reversed by peripheral

administration of recombinant leptin, revealing an important

role of lepin in immunity (183). Consistently, ob/ob mice show

impaired cellular and humoral immue activities, and they are

protected against inflammation in different models (184–186).

Besides acting on adaptive immunity, leptin regulates innate

immune cells such as macrophages, to promote inflammation.

Macrophages generated from ob/ob or db/db mice showed a
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decrease of phagocytosis and inflammatory cytokine production,

whereas exogenous leptin administration upregulated both of

them (178, 181). Several in vitro or ex vivo studies in wild-type

mice also support that leptin acts as a proinflammatory factor in

immune cel ls . They showed that exogenous leptin

administration upregulated both phagocytosis and production

of proinflammatory cytokines (4, 187–189). Leptin stimulates

production of proinflammatory cytokines through activation of

JAK2-STAT3 pathway in macropahges (189, 190). Moreover,

leptin-deficient mast cells polarize macrophages from M1 to M2

and thus protects mice from obesity (191). Leptin has

proinflammatory properties, and the expression of leptin in

adipose tissue as well as circulating leptin are promoted by

administration of proinflammatory stimuli (192, 193). Thus, it

appears that proinflammatory cytokines and leptin form a

vicious circle that promotes the development of chronic

inflammation and obesity.
Conclusions and perspective

Macrophage is the most abundant cell population and

believed to play a dominant role in the homeostasis of adipose

tissue and whole-body energy metabolism, whose dysregulation

significantly contributes to metabolic diseases (Figure 4).

Noticebaly, many other immune cells exist in adipose tissue as

well, including both innate and adaptive immune cells like

ILC2s, eosinophils, invariant natural killer T (iNKT) and T
FIGURE 4

Functional implications of ATMs in different metabolic diseases. M1 ATMs inhibit adipocyte lipolysis and thermogenesis, while M2 ATMs do the
opposites. When M1 activation of ATMs chronically exceeds M2 activation, metabolic diseases like obesity, insulin resistance and adipose tissue
fibrosis ensue and/or deteriorate.
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lymphocytes. They play critically important roles in the

maintenance of energy homeostasis and contribute to the

metabolic dysfunction, directly or indirectly through crosstalk

with macrophages (194). ILC2s recruit and activate eosinophils

through IL-5, and then eosinophil-secreted IL-4 and IL-13

promote macrophage M2 activation. Besides, ILC2s directly

secret IL-13, which induces a physiological expansion and

differentiation of beige adipocyte precursors, further

promoting adipose tissue thermogenesis (95). iNKT cells are a

type of innate immune cell, and their activation induces a

production of fibroblast growth factor 21 (FGF21) that

promotes thermogenic browning of WAT (195). Infiltration of

CD8+ T lymphocytes is an early event during the development of

obesity and contribute to macrophage accumulation. Adoptive

transfer of CD8+ T cells into CD8-deficient obese mice induces

M1 macrophage infiltration and promotes systemic insulin

resistance (196).

One goal of the mouse ATM investigation is to exploit its

specific characteristics and functions to treat human metabolic

diseases. Even though ATMs from human and mouse models

are highly similar in both gene expression pattern and function,

considerable differences exist (197, 198). Mouse models have

their own limitations and can not replicate the properties of

humans in many aspects, thus the validation of findings from

mouse models in humans is critical for their translation. But,

there are still many challenges for mouse-to-human validation

because of the technical limitations, including limited tools to

safely manipulate ATM in humans.

The great progress of ATM studies generates many further

questions that need to be addressed in the future. Firstly, it is

difficult to manipulate ATM specifically. Several genetically

modified animal models are used to investigate tissue-specific

macrophages, including Lyz2-Cre, Cx3cr1-Cre, CD11b-Cre and

F4/80-Cre, whereas all of them are ubiquitously expressed in

macrophages from different tissues but not specifically in ATM

(199). Besides, some of them are expressed in other types of cells.

For example, the widely used Lyz2-Cre is expressed in other

myelomonocytic cells, including most granulocytes, few CD11c+

dendritic cells (DCs), and a small percentage of non-

hematopoietic cells (200). Thus, more specific markers and

animal models need to be identified and established, which

will greatly facilitate our understanding on ATM in health and

metabolic diseases. Secondly, macrophage constitutes a plastic

and heterogeneous cell populations modulated by and interacted

with their microenvironment in different adipose tissues.

Distinct fat pads in different locations show different

molecular, cellular and anatomical features (201). Accordingly,

the physiological characteristics of ATM in these adipose tissues

may be quite diverse, which have not been well investigated yet.
Frontiers in Immunology 11
Thirdly, ATM was oversimplified to be divided into two groups,

M1 and M2 macrophages. However, this M1/M2 classification

has been questioned as a result of the identifications of many

distinct ATM subtypes, including CD9+ macrophage (202),

TREM2+ LAM (150) and SAM (109). Although single cell

RNA-sequencing provides an objective view on the identity

and function of ATM (150), more unbiased approaches and

new technologies should be used to identify and characterize all

the different ATM populations and their regulations on health

and metabolic diseases.
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