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Abstract
Background: Recently, magnetic resonance imaging (MRI)‑based radiotherapy has become 
a favorite science field for treatment planning purposes. In this study, a simple algorithm was 
introduced to create synthetic computed tomography (sCT) of the head from MRI. Methods: A 
simple atlas‑based method was proposed to create sCT images based on the paired T1/T2‑weighted 
MRI and bone/brain window CT. Dataset included 10 patients with glioblastoma multiforme 
and 10 patients with other brain tumors. To generate a sCT image, first each MR from dataset 
was registered to the target‑MR, the resulting transformation was applied to the corresponding 
CT to create the set of deformed CTs. Then, deformed‑CTs were fused to generate a single sCT 
image. The sCT images were compared with the real CT images using geometric measures (mean 
absolute error [MAE] and dice similarity coefficient of bone [DSCbone]) and Hounsfield unit 
gamma‑index (ГHU) with criteria 100 HU/2 mm. Results: The evaluations carried out by MAE, 
DSCbone, and ГHU showed a good agreement between the synthetic and real CT images. The 
results represented the range of 78–93 HU and 0.80–0.89 for MAE and DSCbone, respectively. 
The ГHU also showed that approximately 91%–93% of pixels fulfilled the criteria 100 HU/2 mm 
for brain tumors. Conclusion: This method showed that MR sequence (T1w or T2w) should be 
selected depending on the type of tumor. In addition, the brain window synthetic CTs are in better 
agreement with real CT relative to bone window sCT images.
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Introduction
Nowadays, magnetic resonance imaging 
(MRI) is increasingly employed in modern 
radiotherapy (RT) treatment planning 
systems (TPS) which improve target and 
organ at risk (OAR) definition in the brain 
and other sites as compared to CT‑based 
delineations.[1,2] An accurate registration 
between MRI and CT images must be done 
to transfer the MRI delineations to the 
CTs. This is crucial to design a precise RT 
plan for cancer patients, especially for the 
head‑and‑neck treatment planning where 
sparing OAR is more critical.[3] The image 
registration in TPS introduces an error which 
results from the use of two‑multimodality 
imaging (CT and MRI) and the time 
difference between the scans.[4‑6] This error 
produces a systematic shift in the delineations 
which leads to target underdosage or the 
adjacent OARs overdosage.[7] Most recently, 
MRI‑only based RT has been introduced 

which can eliminate the systematic 
registration errors with the use of a 
single‑image modality.[8‑10] In this approach, 
various methods apply to create synthetic 
CT (sCT) images using MR images; 
consequently CT images are not taken from 
the patients.[11] Using the sCT images have 
other advantages such as patient protection 
against ionizing radiation and reducing costs 
and clinical workload.[9]

Commonly, voxel‑based, atlas‑based, and 
hybrid methods are used to generate sCT 
images. In the voxel‑ based approach, a 
sCT image is generated from the individual 
voxel intensities in the MR scan.[12‑14] The 
disadvantage of the some voxel‑based 
methods is that, they need a specialized 
dual ultrashort echo time MRI sequence 
to make bone voxels separable from 
the air in the resulting MR images.[15‑17] 
Another approach is atlas‑based method, 
which estimates the sCT images using 
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conventional MRI sequences. In atlas‑based method, first 
target‑MR is registered with an atlas‑MR then the obtained 
displacement fields are applied to CT‑atlas and finally 
deformed‑CTs are fused to create a single sCT image.[18‑20]

In the atlas‑based methods, despite the time‑consuming and 
complexity of computation for creating of atlas database, 
the obtained sCT images suffer from registration errors and 
this is a serious matter.[21‑23] To overcome these problems, we 
used a simple algorithm to create the atlas dataset  and an 
intensity‑based deformable algorithm (Demons) to register 
the target MR to atlas MR to decrease registration error. 
The reason for the use of the Demons algorithm is because 
studies on the extraction and classification of brain tumors 
for CT and MRI images showed that the features based on 
intensity are better.

Methods
In the proposed method, the steps for creating a sCT are 
as follows: (1) Collect a paired MRI and CT dataset, 
(2) Register each MR image from dataset to the target 
MR, (3) Apply the displacement field to the corresponding 
CT image from dataset, and (4) Fuse the collection of 
deformed CT images into a single sCT. The details of each 
step are describe in the following parts.

Image acquisition

In this study, 10 patients with Glioblastoma multiforme 
(GBM) and 10 patients with other brain tumors were selected 
from a collection of patients having previously undergone 
radiotherapy randomly. The MR images were acquired with 
a 1.5 T Siemens MAGNETOM Essenza including gradient 
echo T1‑weighted (TR: 1900, TE: 5.1, FOV: 256 × 256, 
flip angle: 15) and T2‑weighted (TR: 500, TE: 109, FOV: 
256 × 256, flip angle: 15) with 1 mm × 1 mm × 1 mm voxel 
size and without contrast agent. In addition, the CT images 
which included brain and bone window, were collected with 
a Siemens SOMATOM Sensation 64 CT scanner (120 kv, 
150 mAs and FOV: 256 × 256) with in‑plane resolution of 
0.5 mm × 0.5 mm and 1 mm slice thickness.

Creation paired magnetic resonance imaging and 
computed tomography dataset

To create paired MRI and CT dataset, it was necessary 
to carry out some preprocessing steps on CT and MR 

images. Gaussian filter was applied to eliminate the noise 
which acts as a destructive factor influencing the accuracy 
of registration. To separate the head from background, 
images were made binary, and then dilation and erosion 
morphological operations were applied by discs with 
a radius of 4 and 6 pixels, respectively. Ultimately, by 
multiplying to original image, the final image obtained 
without a background.

After preprocessing, CT and MR images were resampled 
and then CT‑MR image pairs were registered using the 
Affine transformation model. This technique was applied 
to correct geometric distortions such as translation, scaling, 
similarity transformation, reflection, rotation, shear, and 
compositions of them. To register CT and MR images, 
the moving image (CT), the fixed image MRI and some 
parameters (optimizer, metric and iterations) were specified. 
The transformation matrix that maps points in moving 
image to corresponding points in fixed image was applied 
to the moving image to align it with the fixed image.

All of the above‑mentioned processes were done by 
MATLAB 2015a software developed by MathWorks.

Generation synthetic computed tomography

To generate a sCT image, each MRI slices from dataset 
was registered to the target‑MRI slices. The resulting 
transformations were applied to the corresponding CT from 
dataset for creating the set of deformed CT (CTD) images. 
Then, CTD images were fused to generate a single sCT 
[Figure 1].

An efficient nonparametric diffeomorphic image 
registration algorithm based on demons algorithm was used 
as presented by Vercauteren et al.[24] to register target‑MR 
and MR form dataset. The Demons algorithm is a popular 
algorithm for nonrigid image registration because of its 
linear computational complexity and ease of implementation 
in MATLAB software. It approximately solves the large 
geometric differences problem by successively estimating 
force vectors that correspond to the vibrational derivative 
of the dissimilarity measure and smoothing.[24]

The Demons algorithm estimates the displacement field 
by aligning the target MR with the MR data set images. 
If the target‑MR image size is m × n, the output of the 
Demons is two matrices m × n, in which the first matrix 

Figure 1: Steps of creating synthetic computed tomography: registering each magnetic resonance image form dataset to the target‑magnetic resonance 
(1) calculating of displacement fields (2), applying the same transformation to the corresponding computed tomography form dataset (3), generating 
deformed CTs (4),  and Fusing the collection of deformed CTs into a single synthetic computed tomography (5)
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represents displacement values along x‑axis and the 
second matrix represents displacement values along the 
y‑axis. The displacement values are in pixel. The obtained 
displacement fields were applied to the corresponding CT 
from dataset images by the nearest‑neighbor interpolation 
method and deformed CTs (CTDs) ‑were created. Finally, 
the CTD images were fused to produce a single sCT in 
which the pixel value at each point of the sCT image 
was the median pixels of the deformed CT images at the 
corresponding point. The following algorithm was applied 
for fusion:
• (m, n) = size (CTDl);
• i = 1:m
• j = 1:n
• sCT (i, j) =median (CTD1 [i, j], CTD2 [i, j],…, CTD9 [i, j]);

Where CTDl is the deformed CT image and the index of l is 
the patient’s number.

Evaluation

To evaluate the generated sCT image, a comparison was 
made with the real CT using geometric measures and 
Hounsfield unit gamma‑index.

Geometric measures

Probably the simplest and the most commonly criteria 
to evaluate syntactic CT is the geometric mean absolute 
error (MAE), defined as:

MAE
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Where N (=m × n) is the total number of pixels inside 
the body outline of the real CT and sCT images and 
HU represents Hounsfield unit values of the CT and 
sCT at corresponding pixel jth. The Dice similarity 
coefficient (DSC) is a simple and useful measure to 
estimate spatial overlap which can be applied to study of 
reproducibility and accuracy in the created sCT images. 
DSC is defined for bone as:
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Where Vbone
sCT  and Vbone

CT  are volumetric bone structures 
in binary image for the sCT and the real CT images, 
respectively. DSC will result in a value between 0 and 1, 
which implies no and complete overlap, respectively.

Hounsfield unit Gamma Index (Γ HU )

CT and consequently sCT images are of low 
resolution and less sensitive to spatial differences. 
Therefore; we applied an error measure as γ‑index 
for HU which first proposed by Sjölund et al.[18] They 
adapted the conventional gamma‑index, used for dose 
distribution comparison, to determine the HU deviation 
(∆H = 100 HU) for all pixels. Accordingly, ГHU (i, k) for 
pixel (i, k) is calculated as:
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Where HUsCT (i, k) and HUCT (v, w) are the Hounsfield 
units at coordinate x (i, k) and x (v, w), respectively. All 
calculations were done using MATLAB 2015a.

Results
The sCT images were generated based on T1 and T2 weighted 
in two modes of bone and brain window. For a particular slice 
of the patient tomographic images [Figure 2], bone outline in 
the real CT and sCT images and real and sCT slices subtraction 
were displayed. As can be seen visually, the bone outline in 
sCT based on T1‑weighted MRI is more accommodate to 
real‑CT, which may be due to the higher bone signal strength 
of T1 compared to T2 sequence [Figure 2b]. The subtraction of 
the corresponding CT and sCT represents the more difference 
between brain window real CT and sCT [Figure 2c]. This is 
probably because of the greater contrast of the soft tissues in 
MR than CT images.

A comparison of sCTs with the real CT images were 
done using geometric measures (MAE and DSC of bone 
[DSCbone]) and ГHU with criteria 100 HU/2 mm summarized 
in Table 1. The HU gamma analysis in Table 1 includes the 
average of the ГHU and the percentage of the pixels with 
ГHU greater than 1 (e.g., mismatch percentage).

To evaluate further the validity of this method in GBM 
samples, tumor area was extracted in two groups CT and 
sCT and then MAE and ГHU were compared. The average 
MAE and ГHU were obtained as 18 ± 5.2 HU and 0.11 ± 0.08 
for brain window sCTs based on T1 and 14 ± 2.1 HU and 
0.09 ± 0.03 sCTs based on T2, respectively (not included 
here). As expected, this assessment gives results similar to 
Table 1.

Discussion
In this study, a simple and fast method was introduced to 
create sCT from MR images using atlas‑based method. We 
used the general software (MATLAB) which is simple and 
relatively fast approach. For example, to create a sCT, it 
takes about 3 min on a Core i5 PC system which is less 
than the time reported by atlas‑based studies which takes 
about 25, 16, and 38 min.[11,19,25] In this study to create 
MR‑CT pairs, the simple processes were performed such as 
noise filtration, background separation, image resampling, 
and registration while the atlas data set is produced by 
complex and time‑consuming algorithms.[20] In addition, an 
efficient nonparametric diffeomorphic image registration 
algorithm‑based Demons algorithm was used which has 
lower target registration error than the original Demons 
algorithm.[24]
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The distinction between our method and Atlas‑based 
method was explained using T1 or T2‑weighted images 
in the brain region while the corresponding method often 
employed just T1‑weighted as MR target.[26] According to 
Table. 1 for brain tumors except GBM, the best results 
(minimum MAE and maximum DSCbone) occurred when 
using T1‑weighted MRI data set. For GBM samples, the 
sCTs generated by T2‑weighted showed better results in 
both the bone and brain widow than T1 target. This may be 

related to the ability of the T2‑weighted images to display 
GBM and it is usually accompanied with edema that has 
a stronger signal in a T2 sequence. In general, T1‑based 
sCTs represent a greater bone DSC due to the stronger 
bone signal with respect to T2 for all samples.

For all brain tumors except GBM, minimum ГHU occurred 
for the brain window sCTs based on T1‑weighted MR 
imaging and only 9% ± 1.3% of the pixels did not pass 
gamma criteria. While in GBM samples, the average of 
ГHU and the percentage of the pixels with ГHU larger than 
1 dropped to 0.29% ± 0.16% and 7% ± 2%, respectively, 
which is related to brain window sCTs based on 
T2‑weighted.

By reviewing previous studies on atlas‑based methods, 
the range of the MAE and DSCbone for brain was 
displayed between 97 and 114 HU and 0.63–0.83, 
respectively.[18,19,24,25,27‑29] The average MAEs for the 
multimodal methods showed 118.7 ± 10.4 HU for the 
voxel‑based and 73.0 ± 6.4 HU for the patch‑based 
algorithm[30] and 99.69 ± 11.07 HU for the multiscale and 
dual‑contrast patch‑based method using a MR target.[31] 
The feasibility of using from T1w and T2w as target for 
generating sCT in the brain was investigated that Mean 
absolute error for the sCT was 124 ± 10 HU.[32] Our 

Table 1: The average value and standard deviation of the 
mean absolute error, Dice similarity coefficient of bone, 
Hounsfield Unit gamma‑index and percentage of pixels 
with Hounsfield Unit gamma‑index >1 are shown for 

10 patients with glioblastoma multiforme and 10 patient 
with other brain tumor

Synthetic CT MAE(HU) DSCbone ΓΓ HU
% 1ΓΓ HU >> *

For GBM
T1‑based 
(bone window)

85±14.7 0.85±0.06 0.52±0.33 17±8

T2‑based 
(bone window)

83±15.3 0.80±0.02 0.44±0.2 15±4

T1‑based 
(brain window)

80±10.8 0.83±0.05 0.37±0.21 10±6

T2‑based 
(brain window)

78±8.1 0.82±0.02 0.29±0.16 7±2

For other 
brain tumors

T1‑based 
(bone window)

83±12.4 0.89±0.03 0.59±0.19 13±7

T2‑based (bone 
window)

93±13 0.82±0.01 0.64±0.32 19±8

T1‑based (brain 
window)

80±9.7 0.85±0.04 0.36±0.18 9±1.3

T2‑based (brain 
window)

82±8.3 0.84±0.02 0.38±0.21 11±5

*Percentage of pixels with ГHU >1. CT – Computed tomography; 
GBM – Glioblastoma multiforme; MAE – Mean absolute error; 
DSCbone – Dice similarity coefficient of bone; HU – Hounsfield 
unit; ГHU – HU gamma‑index

Figure 2: (a) Axial slices for bone and brain window synthetic computed 
tomography based on T1 or T2 weighted and real computed tomography. 
(b) Bone outline.  (c) The subtraction of  the corresponding Real CT and 
synthetic CT

cba
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results also included 78–93 HU and 0.80–0.89 for MAE 
and DSCbone respectively, which is in agreement with the 
results of previous studies. Probably the higher precision 
of the produced synthetic‑CTs in this study than the other 
methods of deformable atlas based methods is due to the 
high efficiency of algorithms based on intensity such as 
demons.

From Table 1, the maximum DSC bone is related to 
bone window sCT based on T1 in all samples. This is 
probably due to the capability of the T1‑weighted images 
in transferring bone geometry more efficient than T2 
weighted.

In addition to quantities MAE and DSCbone, ГHU was used 
which is particularly suitable for high‑contrast objects 
with small displacements.[18] For GBM, ГHU showed 
smaller amount for T2‑based sCT. Therefore, it may 
be better to test all image types (T1/T2 and brain/bone 
window CT) for any kinds of brain tumors, separately. 
The results of ГHU are in good agreement with the MAE 
[Table 1], and in other words, confirm each other. For 
example, in cases where MAE is the maximum, ГHU is 
high and vice versa.

For future studies, we suggest to apply all MR image 
sequences such as T1w/T2w and brain/bone window CT to 
create a dataset for other tumors.

Conclusions
This study introduced a simple and fast method to generate 
sCT images using atlas‑based approach, which it could 
potentially be useful for the MR‑guided radiotherapy TPS. 
This study concluded that MR sequence (T1w or T2w) 
should be selected according to the tumor type for better s 
CT accuracy.
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