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Suicide is a complex public health challenge associated worldwide with one death every
40 s. Research advances in the neuropathology of suicidal behaviors (SB) have defined
discrete brain changes which may hold the key to suicide prevention. Physiological
differences in microglia, the resident immune cells of the brain, are present in post-
mortem tissue samples of individuals who died by suicide. Furthermore, microglia are
mechanistically implicated in the outcomes of important risk factors for SB, including
early-life adversity, stressful life events, and psychiatric disorders. SB risk factors result in
inflammatory and oxidative stress activities which could converge to microglial synaptic
remodeling affecting susceptibility or resistance to SB. To push further this perspective,
in this Review we summarize current areas of opportunity that could untangle the
functional participation of microglia in the context of suicide. Our discussion centers
around microglial state diversity in respect to morphology, gene and protein expression,
as well as function, depending on various factors, namely brain region, age, and sex.

Keywords: microglia, suicide, stress, epigenetics, inflammation, oxidative stress, neuronal support, synaptic
plasticity

INTRODUCTION

Suicide is a complex behavior resulting from intricate, multi-dimensional interactions between
various social, cultural, biological, psychological, and environmental factors (Turecki et al., 2019).
Worldwide, suicide is the second and third leading cause of premature death in individuals
between 15–29 and 15–44 years of age, respectively (Bachmann, 2018). While the prevalence
may vary according to the country, suicide deaths are more common in males, whereas suicide
attempts are more frequent in females (Bachmann, 2018). Elevated suicide rates in males could
be connected to a preferential use of more lethal methods compared to females, in addition to
important differences in socialization between sexes (Tsirigotis et al., 2011). For instance, traditional
masculine role norms include self-reliance which may negatively impact their capacity to seek help
(Seidler et al., 2021). Beyond age and sex, another crucial risk factor for suicide is the presence
of psychiatric disorders such as MDD and SCZ (see Table 1 for full definitions of abbreviations),
which are associated with at least 43.2 and 9.2% of suicide deaths, respectively, in North America
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(Arsenault-Lapierre et al., 2004). Although the categorization of
SB is subject to debate (Goodfellow et al., 2019), in this Review
we use this term to refer to suicide, suicide attempts and
preparatory acts (Nock, 2014), while suicidal ideation is used to
specify active or passive thoughts about ending one’s own life
(Turecki et al., 2019).

In the hope of identifying novel therapeutic targets to prevent
SB, research has looked for changes in the CNS that could
hint at the biological alterations responsible for SB and their
risk factors. Studies of human brain samples from individuals
who died by suicide have revealed direct changes in microglial
numbers, morphology, as well as gene and protein expression
(see Supplementary Table 1), although their mechanisms of
action remain unknown (Suzuki et al., 2019; Baharikhoob
and Kolla, 2020). Microglia are the resident immune cells
of the CNS (Šimončičová et al., 2022). They perform classic
immune roles involving debris clearance (Lampron et al., 2015),
phagocytosis of infected or apoptotic cells (Sierra et al., 2010;
Györffy et al., 2018) and production of immune mediators
(Aloisi, 2001). Their function, however, goes beyond immunity
(Šimončičová et al., 2022). Notably, microglia contribute to the
development, maintenance, and plasticity of the CNS. These
cells modulate the survival of newborn neurons and stimulate
the formation of dendritic spines via neurotrophic support
(Sierra et al., 2010; Parkhurst et al., 2013). In addition to
contributing to synapse formation (Miyamoto et al., 2016),
microglia participate in synaptic remodeling through the
stripping of pre- and post-synaptic elements (Trapp et al.,
2007), pruning of synapses via partial (Weinhard et al., 2018)
or full phagocytosis (Linnartz et al., 2012; Schafer et al.,
2012; Györffy et al., 2018), and remodeling of the extracellular
matrix (Nguyen et al., 2020). Furthermore, microglia assist
astrocytic cellular maturation and responses to immune insults
(Vainchtein and Molofsky, 2020). Similarly, microglia are needed
for the maturation of oligodendrocyte progenitors (Hagemeyer
et al., 2017), myelination of axons (Hughes and Appel, 2020),
vascular formation and remodeling, as well as homeostatic BBB
permeability regulation (Joost et al., 2019). By fine-tuning CNS
connectivity and cellular signaling, microglia influence behaviors
involved in learning, memory, and sociability both in health
and disease (Tay et al., 2018; Bordeleau et al., 2019; Tremblay,
2021).

As microglia are intimately tuned to their microenvironment,
the periphery and other environmental influences, these cells
are likely responsive to the different SB risk factors (Turecki
et al., 2014; Réus et al., 2015; Mondelli et al., 2017; Tay et al.,
2018). Suicide risk factors add up across the lifespan and can
be categorized according to their temporal distance to the SB’s
onset (Turecki et al., 2019). They include distal factors such
as ELA and genetic history; developmental factors linked to
personality traits or cognitive deficits; and proximal factors
comprising stressful life events and psychiatric disorders, such as
MDD or SCZ (Turecki et al., 2019). Each one of these factors is
further dependent on the individuals’ societal, demographic and
economic circumstances (Bachmann, 2018; Turecki et al., 2019).
Notably, the biological consequences of microglial responses to
SB risk factors are as diverse and complex as suicide etiology

itself (Underwood and Arango, 2011). Hence, in this Review,
we focus on putative microglial pathways that can help explain
why distal and proximal stress may translate into SB risk,
taking into account the previous findings and the context under
investigation, such as age, sex, and CNS region. In particular,
we outline the outcomes connected to inflammation, oxidative
stress and trophic balance (see Figure 1), increasingly associated
with MDD, SCZ and SB risk (Suzuki et al., 2019; Baharikhoob
and Kolla, 2020). We hope our considerations can open venues
of future investigation that will uncover targets able to support
suicide prevention.

SUICIDAL BEHAVIORS ARE
ASSOCIATED WITH INCREASED
PERIPHERAL AND CENTRAL
INFLAMMATORY MOLECULES

Stress is a physiological response to a variety of biological and
psychological challenges (Lucassen et al., 2014). The physiological
and cognitive outcomes of stress vary between susceptible and
resistant individuals, influenced by their genetic, epigenetic, and
behavioral characteristics, together with the duration and type of
stressor (Russo et al., 2012; Dantzer et al., 2018). In vulnerable
groups, stress is notably marked by unfavorable inflammatory
responses (Ménard et al., 2017), which could help explain
why distal or proximal stress increases SB risk (Suzuki et al.,
2019; Baharikhoob and Kolla, 2020). Meta-analyses often find
enhanced circulating protein levels of CRP and pro-inflammatory
cytokines, such as IL6 and TNF, as well as reduced circulating
protein levels of anti-inflammatory IL2 in individuals with SB
(Serafini et al., 2020). Clinical studies indicate a relationship
between enhanced plasma protein levels of IL6 and CRP with
traits of aggression and impulsivity (Brodsky et al., 2001; Coccaro,
2006; Coccaro et al., 2014), frequently comorbid with psychiatric
disorders and SB (Brundin et al., 2017). Moreover, IFNα therapy,
regularly used to treat tumor malignancy and chronic viral
hepatitis, is commonly associated with the development of SB
(Brundin et al., 2017; Serafini et al., 2020). Despite the link
between peripheral inflammation and SB (Figure 1), conflicting
changes in brain expression of cytokines such as TNF, IL1β, IL6,
and IL10 were reported across post-mortem studies of individuals
who died by suicide (Supplementary Table 1; Torres-Platas et al.,
2014b; Clark et al., 2016; Schiavone et al., 2016; Wang et al., 2018;
Snijders et al., 2020). Furthermore, according to gene ontology
analysis, the DLPFC, AMY, and TLM of individuals with MDD
who died by suicide can present lower expression of gene sets
related to microglial immune functions such as “chemokine
receptor binding” and “cellular response to LPS” compared to
age- and sex-matched individuals with MDD deceased from
other causes or healthy controls (Pantazatos et al., 2017; Glavan
et al., 2021). Such differences could be reconciled by the largely
distinct brain regions studied, such as the VLPFC, ACC, and
TLM, which likely present diverse baseline inter-individual
immune activity, and therefore, a different susceptibility to
peripheral inflammation (Hodes et al., 2014; Wood et al., 2015).
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TABLE 1 | Full list of abbreviations and corresponding definitions.

Abbreviation Definition

8-OHdG 8-hydroxy-2′-deoxyguanosine

ACC Anterior cingulate cortex

AD Alzheimer’s disease

aMCC Anterior midcingulate cortex

AMY Amygdala

ATP Adenosine triphosphate

BAM Border-associated macrophages

BBB Blood-brain barrier

BDNF Brain-derived neurotrophic factor

BLA Basolateral amygdala

BrdU Bromodeoxyuridine

C1q Complement C1q

CA Cornu ammonis

CCL2, MCP-1 C-C motif chemokine ligand 2

CCR2 C-C chemokine receptor 2

CD11b Integrin subunit alpha M

CD163 CD163 molecule

CD45 Tyrosine phosphatase receptor type C

CD68 CD68 molecule

CLDN5 Claudin 5

CNS Central nervous system

CRP C-reactive protein

CRS Chronic restraint stress

CSDS Chronic social defeat stress

CSF Cerebrospinal fluid

CSF1R Colony-stimulating factor 1 receptor

CUMS Chronic unpredictable mild stress

CUS Chronic unpredictable stress

CX3CL1 C-X3-C motif chemokine ligand 1

CX3CR1 C-X3-C motif chemokine receptor 1

dACC Dorsal ACC

DCX Doublecortin

DG Dentate gyrus

DLPFC Dorsolateral prefrontal cortex

DLS Dorsolateral striatum

DM Dark microglia

DPFWM Dorsal prefrontal white matter

DRN Dorsal raphe nucleus

ELA Early-life adversity

ESI Early-life social isolation

ESS Early-life social stress

fMRI Functional magnetic resonance imaging

FOSB FBJ osteosarcoma oncogene B

GABA Cortical gamma-aminobutyric acid

GC Glucocorticoids

HEXB Hexosaminidase

HIP Hippocampus

HLA-DR Major histocompatibility complex, class II, DR

HPA Hypothalamus–pituitary–adrenal

HYP Hypothalamus

IBA1 Ionized calcium-binding adapter molecule 1

IDO Indoleamine 2,3-dioxygenase

IFN Interferon

(Continued)

TABLE 1 | (Continued)

Abbreviation Definition

IL Interleukin

IL1R1 Interleukin 1 receptor type 1

Ki67 Nuclear protein Ki67

LPS Lipopolysaccharide

MAC387 S100 calcium binding protein A9

MDD Major depressive disorder

MFG Medial frontal gyrus

MIA Maternal immune activation

MTN Mediodorsal thalamic nucleus

NA Nucleus accumbens

NFκB Nuclear factor of kappa light polypeptide gene enhancer in B cells

NMDAR N-methyl-D-aspartic acid receptor

NOX2 Nicotinamide adenine dinucleotide phosphate oxidase

P2RY12 P2Y purinoceptor 12

PET Positron emission tomography

PFC Prefrontal cortex

PMI Post-mortem interval

QUIN Quinolinic acid

ROS Reactive oxygen species

SALL1 Spalt like transcription factor 1

SB Suicidal behaviors

SCZ Schizophrenia

STG Superior temporal gyrus

SZ Subventricular zone

TBR2 Eomes

TDO Tryptophan 2,3-dioxygenase

TLM Thalamus

TLR Toll-like receptor

TMEM119 Transmembrane protein 119

TNF Tumor necrosis factor

TREM2 Triggering receptor expressed on myeloid cells 2

TSPO Translocator protein

VLPFC Ventrolateral prefrontal cortex

VPFWM Ventral prefrontal white matter

Risk of Suicidal Behaviors After Stress
May Involve the Inflammatory Activity of
Microglia
Although more studies are warranted, there is in vivo indication
that increased microglial inflammatory activity is present in
individuals with SB. TSPO is an outer mitochondrial membrane
protein expressed by microglia, macrophages, astrocytes,
endothelial and ependymal cells in the brain, which shows a
marked upregulation during CNS inflammation, as detected
by PET imaging (Nutma et al., 2019; Pannell et al., 2020).
Enhanced TSPO binding is observed, notably among the
PFC, ACC, and insula, in medication-free patients with MDD
actively experiencing a moderate-to-severe major MDD episode
(Setiawan et al., 2015). Similarly, significantly greater TSPO
binding is found in the ACC and insula of patients with MDD
experiencing suicidal ideation compared to patients without
suicidal thoughts (Holmes et al., 2018; Supplementary Table 1).
In addition to in vivo studies, increased mRNA Tspo expression
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was detected in the DLPFC but not ACC of individuals with
MDD irrespective of the cause of death, compared to age and
PMI-matched controls (Zhang L. et al., 2021). Moreover, elevated
protein expression, but not mRNA levels (Zhang L. et al., 2021),
of HLA-DR were measured in various post-mortem areas,
including the ACC, MTN, DLPFC, and DPFWM (Steiner et al.,
2006, 2008; Torres-Platas et al., 2014b). HLA-DR is expressed by
microglia, peripheral macrophages and BAM in the CNS (Steiner
et al., 2006, 2008; Swanson et al., 2020; Prinz et al., 2021). In
the periphery, HLA-DR is associated with antigen-presentation,
however, within the CNS, although frequently upregulated in
pathological contexts, its function remains unknown (Wolf
et al., 2018). HLA-DR can be upregulated along CCL2 protein
expression in white matter of male and female individuals with
multiple sclerosis lesions (Peferoen et al., 2015). Therefore, a
direct association of HLA-DR and pro-inflammatory microglial
activity could be misleading (Walker and Lue, 2015). Prospective
studies are encouraged to better characterize the immune
response of microglia upon SB. Notably, the possible outcomes
of the inflammatory activity of microglia are diverse and
far-reaching in the CNS, as we outline next.

Stress-Induced Inflammation Could Engage
Microglial Disruption of the Blood-Brain Barrier
Bidirectional interactions between the peripheral immune
system and microglia are facilitated by cytokines crossing
the BBB, primarily composed of endothelial cells, sealed
together by tight junctions, covered by pericytes, astrocytic
endfeet, and microglial processes (Bisht et al., 2016; Joost
et al., 2019). A disrupted BBB can increase the influx of
inflammatory molecules and cells to the CNS (Figure 1).
Studies looking at CSF or serum concentrations of proteins
typically found in the CNS, for instance, CSF hyaluronic
acid (Ventorp et al., 2016) and albumin CSF/serum ratio
(Bayard-Burfield et al., 1996), revealed that the BBB is
compromised in individuals with SB and suicide ideation
(Falcone et al., 2010; Torres-Platas et al., 2014b). Suggestive of
decreased BBB integrity, mRNA downregulation of the tight
junction protein Cldn5 is present in the NA of individuals
with MDD who died by suicide (Menard et al., 2017;
Dudek et al., 2020). Compared to resistant and healthy
controls, male mice susceptible to CSDS exhibited increased
cortical leakage of intravenously injected dyes (Lehmann
et al., 2018). Microglia isolated from the susceptible mice
selectively expressed transcripts involved with extracellular
matrix breakdown, inflammatory response, cytokine production,
ROS and metabolic processes, which highly correlated with the
transcriptomic changes associated with aging (Lehmann et al.,
2018). Microglial stress susceptibility could be connected to
the BBB disruption, requiring future investigation, particularly
in older individuals, where this effect might be exacerbated
and contribute to increasing SB risk. Indeed, robust data from
animal models supports that aging is linked to microglial pro-
inflammatory and oxidative stress activities, reduction in CNS
surveillance, as well as appearance of microglial states, such
as primed microglia (see section “Microglial Priming Is a
Hallmark of Early-Life Adversity and May Contribute to Stress

Susceptibility”), connected to synaptic dysfunction (Tay et al.,
2018; Stratoulias et al., 2019). Correspondingly, although SB,
in general, are more common at younger ages, suicide deaths
rates are higher in older individuals in almost all countries
(Conejero et al., 2018).

Alternatively, microglial resistance to stress could be
associated with the protection of the BBB. Microglia were
suggested to infiltrate the BBB toward the periphery and
rescue its permeability via CLDN5 protein expression early on
during systemic inflammation caused by daily LPS injections
in adult male mice (Haruwaka et al., 2019). This protective
role, however, changed at later time points, whereby microglia
expressed higher levels of CD68 protein, a phagolysosomal
activity marker present in human microglia/macrophages
and associated with inflammation (Walker and Lue, 2015;
Haruwaka et al., 2019). Elevated CD68 occurred along with
an increased number of microglial inclusions of aquaporin
4, notably expressed in blood vessels and astrocytic endfeet,
suggesting their phagocytosis (Haruwaka et al., 2019).
Accordingly, CSDS in adult male mice increases the number
of brain CD68-high cells, as revealed by flow cytometry
(Lehmann et al., 2016). No significant differences in mRNA
Cd68 expression and CD68 immunostaining, however, were
observed in the dACC and DPFWM or VPFWM, respectively,
of individuals who died by suicide compared to PMI- (Torres-
Platas et al., 2014b), sex-, psychiatric diagnosis- (Schnieder
et al., 2014), and age-matched controls (Supplementary
Table 1). Contrastingly, increased mRNA Cd68 expression
was detected in the DLPFC but not ACC of individuals
with MDD who died by suicide, compared to age and PMI-
matched controls (Zhang L. et al., 2021). Despite strong
associations between stress, inflammation and phagocytosis,
prospective studies are needed to understand if microglia play
a detrimental or beneficial role in BBB integrity specifically in
the context of SB.

Additional Mechanisms Can Impair the Blood-Brain Barrier
After Stress-Induced Inflammation
Additional pathways mediated by stress susceptibility and
increased inflammation can result in an impaired BBB
permeability and elevated SB risk. Conditional knockdown
of CLDN5 in NA blood vessels was enough to induce MDD-like
behaviors and increase BBB permeability in CSDS-susceptible
adult male mice (Menard et al., 2017). Moreover, it caused
significant protein increase of IL6 NA levels, albeit not changing
the density of NA CX3CR1-positive cells, largely microglia,
but possibly representing peripheral macrophages and BAMs
(Lehmann et al., 2016; Menard et al., 2017; Prinz et al., 2021). In a
follow-up study, epigenetic regulation of CLDN5, detected also in
samples of individuals with MDD who died by suicide, as well as
changes in TNF/NFκB signaling, were connected to the observed
susceptibility and resilience to stress in adult male mice (Dudek
et al., 2020). Correspondingly, the NFκB inhibitor alpha was
among the top ten genes implicated in the DLPFC individuals
with MDD who died by suicide, compared to individuals with
MDD who died of other causes and healthy controls (Zeng et al.,
2020; Supplementary Table 1). Future studies are warranted
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FIGURE 1 | Microglia participate in pathways altered upon suicidal behaviors. (1) As a result of stress-susceptibility, inflammation in the periphery (a) can contribute
to blood-brain barrier (BBB) disruption (b) and infiltration of peripheral cells or border-associated macrophages (BAM) (c) to the central nervous system (CNS)
parenchyma. Stress-induced inflammatory (d) and oxidative stress (e) molecules, such as cytokines, reactive oxygen species or adenosine triphosphate, work in a
positive feedback loop that could affect microglial synaptic plasticity regulation (f), and increase suicidal behaviors (SB) risk. (2) SB risk factors, including distal
early-life adversity (ELA) and proximal major depressive disorder (MDD), are associated with microglial priming, in which elevated expression of genes related to
phagocytosis, cellular proliferation, and vesicular release result in exacerbated inflammatory responses upon exposure to subsequent challenges, as well as to
impaired synaptic development and function. (3) The regional diversity of microglia possibly participates in determining susceptibility to inflammation induced by SB
risk factors. Region-specific differences in gene or protein expression of ionized calcium-binding adapter molecule 1 (IBA1), major histocompatibility complex class II,
DR (HLA-DR), CX3C chemokine receptor 1 (CX3CR1), transmembrane protein 119 (TMEM119), as well as in density are observed in post-mortem CNS samples
from individuals who died by suicide. (4) Similarly, distinct CNS areas likely have different oxidative stress responses to inflammation. Oxidative stress induced by
inflammation is thought to affect mitochondrial and tryptophan metabolism, which may lead to an increased activity of microglial indoleamine 2,3-dioxygenase 1
(IDO), an enzyme that breaks tryptophan (TRP) down into kynurenine (KYN). Increased KYN to TRP ratio could decrease serotonin (SER) and gamma-aminobutyric
acid (GABA) signaling, whilst elevating glutamate (GLU) excitotoxity in individuals with SB. Altogether, the multiple synaptic plasticity-related pathways implicate
microglia in SB, warranting further investigation.

to evaluate if and how microglia-dependent and -independent
mechanisms of BBB disruption increase SB risk after stress.

Lifestyle Factors Such as Sleep Impact Microglial and
Blood-Brain Barrier Function
BBB permeability appears to be similarly compromised by
lifestyle factors, for instance, sleep. Chronic sleep restriction
in adult male mice decreased mRNA expression of tight
junction proteins, such as Cldn5, and increased cortical and
subcortical uptake of intravenously injected dies, indicating
lower BBB integrity (He et al., 2014). Circadian rhythms,
which notably control sleep-wake patterns and are frequently
disturbed in psychiatric disorders (Wulff et al., 2010), play a
role in BBB regulation as well. According to studies in flies
and mice, as well as in human in vitro models, BBB efflux
mechanisms are stronger during the active or awake phases

(Zhang et al., 2018; Zhang S. L. et al., 2021). Therefore, the
BBB is not only physically restrictive, but also temporally
restrictive (Cuddapah et al., 2019), indicating additional
factors that can have a modulatory effect on the connection
between peripheral and central immune systems. A multi-
dimensional interaction between sleep, circadian rhythms,
microglia and synaptic plasticity is suggested in the literature
(Picard et al., 2021). Evidence from adult male rats support
that circadian rhythms control the removal of synapses through
complement opsonization (Choudhury et al., 2020). A meta-
analysis looking at 42 studies published between 1982 and
2019 found a statistically significant but weak influence of
sleep disturbances on SB (Harris et al., 2020). Despite the
small effect, probably arising from inter-individual variability,
lifestyle factors such as sleep are important elements to consider
in the complex synergy of microglial features that convey
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susceptibility to psychiatric disorders (Picard et al., 2021) and SB
(Glavan et al., 2021).

Microglia Possibly Recruit Non-resident
Central Nervous System Immune Cells
Upon Stress Susceptibility
The CNS is populated by resident immune cells, microglia,
but can be infiltrated by peripheral immune populations and
BAM, such as macrophages from the choroid plexus, meninges
and perivascular space (Prinz et al., 2021). Previous research
in male adult mice has illustrated how infiltrating neutrophils
are linked to inflammatory processes and MDD-like behavior
(Aguilar-Valles et al., 2014), whereas monocytes in the CNS
display signaling related to resolution and repair, as well as
anxiety-like behavior (McKim et al., 2018; Liu et al., 2019).
Studies on male mice exposed to CSDS found an increased
recruitment of peripheral monocytes into the CNS in association
with heightened anxiety- and MDD-like behaviors (Brevet et al.,
2010; Wohleb et al., 2011, 2013, 2016; Weber et al., 2019; Yin
et al., 2019; Picard et al., 2021). It is suggested, however, that
infiltration results from wounding during CSDS. Additionally, in
the study by Menard et al. (2017) CSDS caused an accumulation
of peripheral CCR2-positive monocytes within blood vessels of
the NA, without parenchymal infiltration.

Microglia are important for the recruitment of peripheral cells
to the CNS. CSF1R inhibition, which reduces microglial numbers,
prevented monocyte recruitment to the brain of adult male
mice exposed to CSDS and abrogated anxiety-like symptoms,
in a signaling cascade requiring microglial CCL2 and monocyte
IL1β protein expression (McKim et al., 2018; Weber et al.,
2019). According to studies in adult male mice, IL1R1, the IL1β

receptor, is needed for monocyte recruitment to the ependymal
and ventricular walls and for neutrophil infiltration through
endothelial cells (Liu et al., 2019). IL1R1 expression in both routes
of infiltration was linked to adaptations of microglia morphology
(e.g., increased soma size in the DG) and protein expression (e.g.,
upregulated CD45) (Liu et al., 2019). By contrast, no difference in
Il1r1 mRNA expression was found in the dACC of individuals
with MDD who died by suicide compared to age- and PMI-
matched healthy controls (Torres-Platas et al., 2014b). While it
remains unclear if similar IL1R1 mechanisms are active in SB,
overall, these results indicate that the infiltration of immune
cell populations likely results in a functional crosstalk with
microglia that could be further investigated in the context of
stress susceptibility and SB risk (Figure 1).

Conflicting Data Exists Around Immune Infiltration
and Suicidal Behaviors
Despite the link between stress and CNS immune infiltration,
previous post-mortem studies provide conflicting data on the
presence of IBA1-positive cells associated with/within vessels,
or on CD163-positive cell infiltration in the ACC, DPFWM
and VPFWM of individuals who died by suicide compared to
PMI- (Torres-Platas et al., 2014b), sex-, psychiatric diagnosis-
(Schnieder et al., 2014, 2019), and age-matched controls. CD163
is a marker related to phagocytosis that is expressed by

both human microglia and perivascular macrophages, although
mainly in the latter (Swanson et al., 2020). CD163 protein
expression was decreased in CD11b-positive microglia isolated
from individuals with MDD compared to healthy controls,
although without a specific effect on the one suicide death
included in the study (Snijders et al., 2020). Moreover, elevated
mRNA expression of Ccl2, alias Mcp-1, a chemokine involved
in the recruitment of peripheral cells, and Cd45 mRNA, usually
enriched in peripheral macrophage populations, was found in the
dACC of individuals with MDD who died by suicide compared
to age- and PMI-matched healthy controls (Torres-Platas et al.,
2014b). Contrastingly, it is important to consider that microglial
populations can express high levels of CD45 protein in male
mouse models of stroke and aging (Honarpisheh et al., 2020).
Furthermore, decreased Ccl2 transcripts were instead detected
in the VLPFC of individuals with MDD compared to healthy
controls, although lacking a suicide subgroup effect (Clark et al.,
2016). Numerous factors could underlie the variable peripheral
immune cell recruitment in SB, such as CNS regions, sexes,
age, as well as inter-individual differences in stress susceptibility
and resistance of the cohorts studied (Lehmann et al., 2018).
Additionally, elevated CD163 immunostaining in the DPFWM
was associated with a suicide-specific effect on microglial
migration to abluminal surfaces of vessels, instead of peripheral
immune cell infiltration (Schnieder et al., 2014, 2019). Previously
reported elevations in IBA1-positive cells adjacent to vessels in
the DPFWM of individuals who died by suicide compared to
age-, sex- and psychiatric diagnoses-matched controls were not
paralleled by changes in CD163-positive densities, indicating
they likely arose from resident microglial staining (Schnieder
et al., 2014, 2019). Increased association of microglia with
vessels was shown upon systemic inflammation caused by daily
LPS injections in male mice (Haruwaka et al., 2019) and a
similar phenomenon might be present in SB. The dynamic
interaction between microglia and blood vessels should be
accounted for in future research looking at peripheral immune
CNS invasion in SB.

Better Tools Are Required to Identify Specific Immune
Contributions in Suicidal Behaviors
Microglia, perivascular macrophages and subdural
leptomeningeal macrophages derive from yolk-sac
erythromyeloid progenitors matured into myeloid precursor
cells that seed the brain around E9.5 in mouse (Ginhoux et al.,
2010; Kierdorf et al., 2013). Peripheral infiltrating monocytes or
macrophages, by contrast, arise from erythromyeloid progenitors
that travel to the fetal liver and later transition to the bone
marrow starting around birth (Hoeffel et al., 2015; Stremmel
et al., 2018). Similar ontogeny contributes to the large overlap
in markers such as CX3CR1, CSF1R, CD11b, IBA1, HLA-DR,
CD163, CD68, CD45 between microglia, BAM, and peripheral
monocytes (Walker and Lue, 2015; Snijders et al., 2020; Swanson
et al., 2020; Prinz et al., 2021). Region-specific analyses using
largely microglia-specific markers such as TMEM119, P2RY12,
SALL1, and HEXB (Prinz et al., 2021) are warranted to clarify the
contribution of microglia versus non-microglial immune cells
possibly acting together during SB.
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Microglial Priming Is a Hallmark of
Early-Life Adversity and May Contribute
to Stress Susceptibility
Stress-induced inflammation can prime microglia to respond
more strongly when re-exposed to immune challenges (Neher
and Cunningham, 2019). Based on a previous morphometric
characterization of IBA1-positive cells in the dACC (Torres-
Platas et al., 2014a,b) have suggested an increased density
of primed microglia (bigger cell body, ellipsoid-like soma
and fewer higher-order branches) in the dACC of individuals
with MDD who died by suicide compared to age- and PMI-
matched controls. Microglial priming is a hallmark of both MIA,
associated with increased SCZ risk, and ELA, or the emotional
and physical abuse prior to the age of 18 (Tay et al., 2017; Smith
and Pollak, 2020). Accordingly, it is tempting to speculate that
microglial priming during prenatal and postnatal development
contributes to the key role of ELA in SB risk (Figure 1),
particularly via impairing neuronal function (Tay et al., 2017), as
we discuss next.

Prenatal Priming Possibly Disrupts Myelination and
Increases Suicidal Behaviors Risk
MIA induced using a maternal high-fat diet results in exacerbated
responses of plasma cytokines, such as IL6, to LPS, and decreased
microglial interactions with the extracellular space in the HIP of
male and female adolescent mouse offspring (Bordeleau et al.,
2020), which might be relevant for structural remodeling of
synapses or myelination (Nguyen et al., 2020). Indeed, in a
follow up study, maternal high-fat diet was associated with
decreased postnatal presence of structures that support the axon-
myelin unit known as cytosolic myelin channels, in the corpus
callosum of adolescent males, contrasted by increased microglial
synaptic contacts in both sexes (Bordeleau et al., 2021). An altered
microglial support of myelination could be connected to the
myelin impairment detected in the ACC epigenome and the
transcriptome of post-mortem brain samples from individuals
with MDD and a history of ELA who died by suicide (Lutz et al.,
2017). Considering the marked sexual dimorphism observed in
ELA and MIA, it will be crucial that studies addressing this
question consider sex differences in microglial behavior.

Postnatal Priming Could Increase Microglial Synaptic
Pruning Connected to Suicidal Behaviors
Male mice receiving an intraperitoneal injection of LPS
during postnatal development display microglial upregulation of
CX3CR1 which, in a TLR4-dependent manner, causes heightened
synaptic engulfment in the ACC and results in MDD-like
symptoms upon acute exposure to unpredictable stressors during
adolescence (Cao et al., 2021). Notably, elevated TLR4 and TLR3
expression was found in the post-mortem DLPFC of individuals
who died by suicide, irrespective of MDD diagnoses (Pandey
et al., 2014). Moreover, the TLR2 was among the top ten genes
involved in the DLPFC of individuals with MDD who died by
suicide, compared to individuals with MDD who died of other
causes and healthy controls (Zeng et al., 2020; Supplementary
Table 1). According to the results obtained by Cao et al. (2021),

TLR expression changes in post-mortem brain tissue could be
indicative of increased postnatal peripheral inflammation leading
to microglial synaptic pruning and elevated susceptibility to SB,
warranting further investigation.

Postnatal Priming Could Impact Future
Hypothalamus–Pituitary–Adrenal Function
Postnatal exposure to alcohol in adult male rats increased HYP
protein expression of CD11b, a component of complement
receptor 3 mediating microglial pruning of axon terminals
(Schafer et al., 2012; Chastain et al., 2019). Upregulation of
CD11b was accompanied by heightened mRNA levels of Tnf,
Il6, Tl4, and Csf1r both in vivo and in vitro, as well as protein
levels of epigenetic modulators in microglia from the HYP
paraventricular nucleus (Chastain et al., 2019). Particularly,
Chastain et al. (2019) revealed a decreased global DNA
methylation but increased acetylation of factors that upregulate
inflammatory gene transcription, such as histone H3 lysine
9, which prevailed throughout adulthood. Less transcriptional
repression in microglia was paralleled by an elevated GC
response to a LPS challenge during adulthood and reversed by
minocycline (Chastain et al., 2019), a tetracycline normalizer of
microglial cytokine release and phagocytosis (Šimončičová et al.,
2022). GC are produced by the HPA axis following exposure
to physiological or biological threats and have numerous
functions, largely affecting inflammatory and metabolic processes
(de Kloet et al., 2005; Lucassen et al., 2014; Picard et al.,
2021), as well as synaptic plasticity, behavior, and memory
(McEwen and Magarinos, 2001). Polymorphisms and differential
epigenetic regulation of numerous factors along the HPA axis
can underlie impaired stress responses, together with increased
psychiatric risk, SB and suicide ideation (Roy et al., 2017; Ke
et al., 2018; Menke et al., 2018; Berardelli et al., 2020; Nold
et al., 2021). It is possible that inflammatory and epigenetic
responses mediated by HYP primed microglia and impacting
the HPA support the corresponding increase of SB risk in
adolescents exposed to alcohol during development (O’Connor
et al., 2019), although warranting more substantial evidence.
Additionally, this HPA effect could be mediated via CD11b-
complement 3 synaptic remodeling. Correspondingly, decreased
mRNA Cd11b expression was detected in the ACC of individuals
with MDD who died by natural causes but not suicide, compared
to age and PMI-matched controls (Zhang L. et al., 2021).
Moreover, increased complement protein 3 was detected by
microarray in the AMY, HIP, TLM of individuals who died
by suicide compared to healthy controls (Glavan et al., 2021).
Future studies are needed to explore the role of complement
synaptic pruning in SB.

Additional Microglial Morphological Analyses Are
Required to Inform Suicidal Behaviors Risk
The increased density of primed cells observed by Torres-Platas
et al. (2014b) constitutes the only available microglial quantitative
morphological analysis in the context of SB. Microglia use cues
from the microenvironment to tune their branching processes,
as well as the shape and size of their soma, and modulate how
motile, mobile and interactive they are with their surroundings
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(Savage et al., 2019). Enlarged microglial soma size, present
in primed cells, was linked to enhanced gene transcription in
adult mice (Dungrawala et al., 2010; Kozlowski and Weimer,
2012; Marguerat and Bähler, 2012) and to microglial mobility in
aged male and female mice (Hefendehl et al., 2014). Moreover,
elevations in IBA1-positive cell area, also detected after priming,
were associated with the uptake of neuronal inclusions which
coincided with a decreased spine density in the PFC of adult male
mice exposed to CUS (Milior et al., 2016; Wohleb et al., 2018).
Microglial morphological adaptations related to phagocytosis
of neuronal elements were also linked to MDD-like behaviors
in CUS-exposed male mice (Milior et al., 2016; Wohleb et al.,
2018). Future research is needed to evaluate whether priming-
driven changes in microglial morphology are tied to synaptic
remodeling and if they could help understand, for example,
the impaired reward and decision making, as well as mental
pain associated with SB in the DLS and NA (Schmaal et al.,
2020). Although microglial morphology is intimately associated
to their activity, analyses of microglial morphological states
can be highly contradictory, as shown in the stress literature,
probably due to experimental variability in the time course and
types of stress paradigms used, as well as regions examined
and various coping strategies employed (Picard et al., 2021).
Qualitative data has argued for a lack of difference in morphology
of HLA-DR-positive cells in the DRN of individuals with
MDD who died by suicide compared to individuals with MDD
who died by other causes and healthy controls (Brisch et al.,
2017). In particular, this study compared cells with enlarged
cell body and few ramifications, also known as ameboid, and
microglia with numerous radial, thin ramifications, defined
as ramified (Brisch et al., 2017). Similar lack of SB-specific
effects was suggested after comparing the density of HLA-
DR ameboid and ramified microglia within the ACC, DLPFC,
HIP, and MTN of two individuals with SCZ who died by
suicide compared to age-, sex-matched healthy controls (Steiner
et al., 2006). Other qualitative assessments, for example, in
the ACC and VLPFC, resulted in similar findings (Steiner
et al., 2011; Schnieder et al., 2014; Clark et al., 2016; Petrasch-
Parwez et al., 2020). Quantitative assessments of microglial
morphology are notably required to verify more nuanced
differences along the spectrum of morphologies microglia can
assume, which goes beyond ramified and ameboid states (Savage
et al., 2019). Prospective studies should consider the variety
of factors that can influence the shape and size of microglia
and contextualize in space and time their morphological and
stereological investigations.

Region-Specific Microglial Heterogeneity
May Influence Suicidal Behaviors Risk
After Inflammation
Differences of microglial distribution across the CNS are reported
in homeostatic contexts, for instance, with higher numbers in
cortical regions and lower values in the cerebellum of adult
male and female mice (Verdonk et al., 2016; Stowell et al.,
2018). Regional microglial heterogeneity is similarly relevant
after stress and inflammation (Tan et al., 2020). Upon CRS,

only 9 out of 15 CNS regions, including the NA and HIP
CA3, presented elevated densities of IBA1-positive cells in
adult male rats (Tynan et al., 2010). Similarly, adult male
mice showed increased IBA1-positive cell density in the DG
2 days after CUS, while at 5 weeks, a reduction in IBA1-
positive cells was observed (Kreisel et al., 2014). In another
work, acute but not CSDS resulted in marked increases in
CX3CR1-positive cells. Elevated CX3CR1 density was identified
in 7 out of 12 regions examined, including the ACC, NA,
dorsal DG of adult male mice (Lehmann et al., 2016).
Minocycline administration supports that, at least partially,
modulation of the inflammatory activity of microglia can rescue
changes in density among stress-sensitive areas. In adult male
mice receiving IFNα therapy, minocycline rescued increases
in density of HIP IBA1-positive cells and mRNA expression
of cytokines such as Ifnα, Il6, Il1β, and Tnf (Zheng et al.,
2015). In the same animals, it similarly restored decreased
immunolabeling for the proliferation markers Ki67 and BrdU,
neuronal progenitor marker TBR2 and maturation marker DCX,
as well as increased MDD-like behaviors (Zheng et al., 2015).
Moreover, this antibiotic rescued the effects of CRS in adult
male rats, improving spatial working memory and reducing the
PFC immunoreactivity for IBA1 and FOSB, which progressively
accumulated in repeatedly activated neurons (Hinwood et al.,
2012) and is associated with MDD and suicide risk, according
to transcriptomic data (Zeng et al., 2020). Minocycline also
attenuated increases in IBA1 and C1q protein expression
correlated with decreased DRN serotoninergic signaling caused
by social isolation-induced alcohol intake in adult male mice
(Lee et al., 2021). In adult male rats exposed to ESI, treatment
with minocycline further reverted MDD-like behavior, HIP
protein IBA1 increases, as well glutamate receptor subunits
reductions (Wang et al., 2017). Overall, these results suggest that,
in stress-susceptible regions, inflammation potentially affects
the density of microglia and impairs synaptic remodeling,
which could be relevant to density changes observed upon
SB (Figure 1).

Region-Specific Elevations in Microglial Numbers Are
Detected Upon Suicidal Behaviors
Alike stress, specific CNS regions were more susceptible to
changes in IBA1 or HLA-DR upregulation in post-mortem
samples. Increased density of cells immunostained for IBA1 or
HLA-DR was found in the dACC of male and female individuals
with MDD or SCZ who died by suicide (Supplementary Table 1)
compared to sex- (Steiner et al., 2006, 2008) and age-matched
healthy controls (Torres-Platas et al., 2014b). Elevated HLA-
DR was also observed in the DLPFC and MTN of female
and male individuals who died by suicide, regardless of their
psychiatric diagnosis (Steiner et al., 2006, 2008). Conversely,
decreased HLA-DR immunostaining was detected in the DRN
of individuals with MDD who did not die by suicide, compared
to those who did and to healthy controls (Brisch et al.,
2017). By contrast, no significant differences in HIP HLA-
DR staining were, however, detected in two individuals with
SCZ who died by suicide, compared to healthy matched
controls (Gos et al., 2014). Moreover, IBA1-positive cell density
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in the aMCC did not differ between individuals with SCZ
who died by suicide compared to age-matched individuals
with SCZ who died by other causes or healthy controls
(Petrasch-Parwez et al., 2020).

HLA-DR and IBA1 Signaling Outcomes Are Largely
Unknown in the Central Nervous System
As previously discussed, HLA-DR expression is associated with
immune signaling, however, studies have yet to explore the
possible outcomes of the heterogenous HLA-DR upregulation
found in SB. Similarly, while widely used to assess microglial
reactivity (Ohsawa et al., 2000), the function of the actin-related
protein IBA1 marker is still largely elusive (Walker and Lue,
2015). Depletion of IBA1 can impair HIP microglial motility,
leading to deficits in synapse engulfment and increased excitatory
synapse number in juvenile mice that impact behavior into
adulthood (Lituma et al., 2021). The paradoxical reduction in
synaptic uptake and number of excitatory synapses requires
further investigation but could indicate that IBA1 signaling
participates first in synaptogenesis and later in synaptic pruning
during postnatal CNS development (Lituma et al., 2021).
Accordingly, it is possible that changes in IBA1 expression
detected in post-mortem samples from individuals who died
by suicide reflect alterations of synaptic plasticity, rather than
inflammation per se. Various cognitive alterations are observed
in the areas where disturbed post-mortem levels of microglial
cells were found, such as the ACC, DLPFC, and MTN. In
one study, individuals with MDD and SB displayed a reduced
reward anticipation and an increased activation of the ACC
after viewing angry faces, as detected by fMRI (Pan et al., 2013;
Schmaal et al., 2020). Moreover, a negative correlation between
the severity of suicide ideation and resting state fMRI among
the MTN was found in adults with MDD (Kim et al., 2017),
while deficits in PFC inhibition and flexibility are thought to
contribute to the transition between suicide ideation and SB
(Schmaal et al., 2020). Possible causal adaptive and maladaptive
relationships between the microglial region-specific cell numbers,
IBA1, and HLA-DR signaling adaptations (Figure 1) warrant
future investigation.

Region-Specific Increased Fractalkine Signaling Is
Possibly Associated With Suicidal Behaviors Risk
Cx3cr1 transcripts are increased in the ACC but not in the
DLPFC of individuals with SCZ who died by suicide compared
to individuals with SCZ who died by other causes (Zhang L.
et al., 2021; Supplementary Table 1). Further, CD11b-positive
cells from MFG, STG, TLM, and SZ tissue presented increased
mRNA expression of Cx3cr1 when isolated from individuals with
MDD compared to age-matched healthy controls (Snijders et al.,
2020). According to a microarray study, increased Cx3cr1 was
also detected in the AMY, HIP, and TLM of individuals who died
by suicide compared to healthy controls (Glavan et al., 2021). By
contrast, no difference in Cx3cr1 mRNA expression was detected
in the ACC or DLPFC of individuals with MDD who died by
natural causes and suicide, compared to age and PMI-matched
controls (Zhang L. et al., 2021). Microglia and neuronal cells use
a wide variety of signaling molecules, including fractalkine, to

maintain their balanced communication in the CNS, required
for optimal function of both cellular types (Paolicelli et al.,
2014). Fractalkine signaling relies on binding of CX3CR1, largely
expressed by microglia in the CNS, to the neuronal chemokine
fractalkine, or CX3CL1, which generally inhibits microglial
activity (Harrison et al., 1998; Biber et al., 2007). CX3CR1-
CX3CL1 activity is needed for neuronal maturation and survival,
plasticity of synapses and behavior (Paolicelli et al., 2014). During
postnatal development, CX3CR1 is required for microglial
recruitment to the cortex and maturation of postsynaptic
glutamate receptors in female and male mice (Hoshiko et al.,
2012). Furthermore, CX3CR1 deficiency impairs HIP neuronal
long-term potentiation, a common paradigm to study synaptic
plasticity, and results in cognitive and neurogenesis deficits in
adult male mice (Bachstetter et al., 2011; Rogers et al., 2011).
Given that fractalkine signaling is needed for optimal function of
both cellular types (Paolicelli et al., 2014), regional mechanisms
involving CX3CR1 could participate in susceptibility to stressors
and inflammation contributing to SB risk. Despite the robust
role of fractalkine signaling in synaptic plasticity, following CSDS
in adulthood, CX3CR1 knockout male mice did not develop
anxiety-like behavior compared to wild-type mice, an effect
attributed to their lack of peripheral immune cell recruitment
to the CNS (Wohleb et al., 2013). Moreover, adult CX3CR1
knockout male mice exposed to CUS failed to modify their
HIP microglial morphology, phagocytosis, neuronal plasticity
and did not show MDD-like behaviors compared to wild-type
mice (Milior et al., 2016; Rimmerman et al., 2017). Similar
resistance to developing MDD-like behaviors was found in an
adult male and female mouse model of chronic behavioral
despair (Hellwig et al., 2016) and in adult male mice exposed
to ELA and chronic variable stress in adulthood (Winkler
et al., 2017). Additionally, in a human induced pluripotent
stem cell microglial model, CX3CR1 knockout resulted in
heightened phagocytosis, as assessed with a bead assay (Murai
et al., 2020). Region-specific elevations in Cx3cr1 expression
found in post-mortem samples could confer an increased stress
susceptibility to microglia, disrupting phagocytosis and neuronal
plasticity and contributing to SB (Figure 1), which warrants
further research.

RISK OF SUICIDAL BEHAVIORS MAY
INVOLVE MICROGLIAL OXIDATIVE
STRESS

Oxidative stress is a hallmark of sustained and often maladaptive
inflammation (Chaudhari et al., 2014). It refers to the unbalanced
production of free radicals, including ROS, which possess
unpaired electrons that readily oxidize and modify lipids, DNA
and proteins (Bakunina et al., 2015; Black et al., 2015). Despite
having homeostatic roles in neurogenesis, synaptic plasticity,
programmed cell death and pathogen removal, oxidative stress
can severely damage CNS cells. The CNS consumes around
20% of the total oxygen levels in the body but has limited
anti-oxidant capacity, therefore, it requires ROS levels to be
tightly controlled (Black et al., 2015). As most phagocytic cells,
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microglia are robust sources of ROS (Block and Hong, 2007).
Selective depletion of microglia using the CSF1R antagonist
PLX5622 protected adult male mice from the negative behavioral
outcomes of CSDS, an effect that was specifically attributed
to excessive microglial ROS production in the PFC and HIP
(Lehmann et al., 2019). Furthermore, compared to resistant
and healthy mice, microglia isolated from the HIP and medial
PFC of adult male mice susceptible to CSDS presented higher
ex vivo labeling with a membrane-permeable dye indicating
respiratory burst activity and ROS production (Lehmann
et al., 2018). Excessive microglial oxidative stress activity could
increase susceptibility to psychiatric and SB risk (Figure 1).
Notably, ROS production arises from multiple mechanisms,
which could be, simultaneously or not, at play in SB, as
we outline next.

Molecular Evidence of Microglial
Oxidative Stress Is Detected Upon
Suicidal Behaviors
Microglial ROS can be produced through the activity of NOX2
in response to pathogens and inflammatory molecules (Block
and Hong, 2007). Given the inflammatory profile identified in
many individuals with SB, microglial NOX2 signaling could
be recruited in suicide. In post-mortem brain samples of
individuals who died by asphyxiation suicide, NOX2 protein
expression was markedly upregulated in cortical GABAergic
inhibitory neurons and to a lesser extent in MAC387-positive
cells, representing microglia and macrophages, compared to
healthy controls and non-suicide asphyxiation deaths (Schiavone
et al., 2016; Supplementary Table 1). NOX2 upregulation
was accompanied by elevations in IL6 and 8-OHdG, a by-
product of ROS-oxidized guanine (Schiavone et al., 2016).
Elevated 8-OHdG levels were similarly detected in the CA1,
CA2 and DG of male and female individuals with MDD
or SCZ compared to controls (Che et al., 2010). While
looking at death by asphyxiation, the work by Schiavone et al.
(2016) highlights that specific methods of suicide are likely
associated with different impacts on oxidative or inflammatory
pathways affecting microglial function, an area that awaits
future investigation.

Mitochondrial Oxidative Stress Is
Associated With Suicidal Behaviors
ROS can similarly originate from the activity of the mitochondrial
respiratory chain (Wilkinson and Landreth, 2006). Twenty
subunits of the mitochondrial oxidative phosphorylation
complexes showed increased levels in the DLPFC of individuals
with MDD, whilst being usually decreased in SCZ (Martins-
de-Souza et al., 2012). Furthermore, a suicide-specific elevation
in the expression of DNA-dependent ATPase activity was
revealed by gene ontology analysis in the DLPFC, AMY,
and TLM (Pantazatos et al., 2017; Supplementary Table 1).
Higher oxidative phosphorylation activity was hypothesized to
compensate for oxidative stress which depletes ATP production
in the DLPFC of individuals with MDD (Martins-de-Souza et al.,
2012). Despite looking at post-mortem tissue from suicide deaths,

the study by Martins-de-Souza et al. (2012) did not discuss the
SB-specific proteomic changes in their cohort, encouraging
further research in this topic. Additionally, after CUMS, adult
male mice exhibited altered mitochondrial ultrastructure, such
as swelling, disrupted cristae and membranes and impaired
respiration rates among the cortex, HIP, and HYP, paralleling
MDD-like behaviors (Gong et al., 2011). Overall, these results
indicate mitochondrial respiratory chain oxidative stress is seen
upon SB and stress.

Dark Microglia May Participate in Suicidal Behaviors
After Oxidative Stress and Epigenetic Modulation
Disrupted mitochondria, dilation of the Golgi apparatus and
endoplasmic reticulum, as well as cell shrinkage and abundant
endosomes, are hallmarks of DM, a microglial state uncovered
by our group (Bisht et al., 2016). DM often encircle synaptic
structures and are occasionally surrounded by extracellular
space containing debris, altogether suggesting ongoing synaptic
pruning and extracellular digestion (Bisht et al., 2016). Albeit
nearly absent during mature steady-state conditions in the HIP,
PFC, HYP, and BLA, DM become abundant in male mice
subjected to MIA and in mouse models of stress, including CSDS
and CUMS (Bisht et al., 2016). Given the appearance of DM
upon distal and proximal SB risk factors as well as their marked
oxidative stress, it is tempting to speculate that DM are potentially
found upon SB. Electron microscopy studies assessing post-
mortem samples from suicide deaths could clarify this matter.
Notably, “dystrophic” microglia that resemble DM are present in
the post-mortem PFC of individuals with SCZ (Uranova et al.,
2018). Correspondingly, DM could help explain the dendritic
atrophy and reduced spine density found in the PFC and HIP
of male and female rats and mice exposed to CRS and CUMS
(Qiao et al., 2016), similar to what is observed in the same regions
of individuals with MDD (Duman et al., 2016; Bollinger and
Wohleb, 2019).

In addition to marked oxidative stress, DM are
characterized by an electron-dense nucleus with altered
nuclear heterochromatin (Bisht et al., 2016; St-Pierre et al., 2020).
Nuclear heterochromatin remodeling is a process coupled to
DNA methylation and transcriptome adaptations (Robertson,
2002). Notably, DNA methylation is one of the proponent
mechanisms by which ELA translates into higher SB risk
later in life (Lutz et al., 2017; Zeng et al., 2020). ELA-induced
methylation could potentially drive the appearance of DM,
albeit more direct evidence is needed to support this hypothesis.
Initial studies indicate microglia can be the target of complex
epigenetic modulation after exposure to psychological stress,
such as ESI and ESS (Wang et al., 2017; Catale et al., 2020), or
physiological challenges, for instance early-life alcohol exposure
(Chastain et al., 2019). IBA1-positive cells located in the core
and shell of the NA, dorsomedial striatum and DLS, CA1 and
CA3 of the HIP, as well as BLA and central AMY showed a
marked decrease of methylation in ESI mice compared to control
and ESS groups (Catale et al., 2020). Additionally, the authors
revealed a decreased global methylation in the CA1 of mice
exposed to ESS compared to controls from both sexes (Catale
et al., 2020). While similar mechanisms might participate in SB,
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microglial epigenetic studies in the context of SB neuropathology
are currently lacking.

Impaired Tryptophan Metabolism
Induced by Oxidative Stress May Affect
Suicidal Behaviors Risk
Cytokines and oxidative stress molecules work in a positive
feedback loop (Black et al., 2015; Figure 1). ROS stimulation
results in activation of NF-κB and production of cytokines
(Bakunina et al., 2015; Black et al., 2015). In turn, increased
protein levels of IFNγ, IL6, IL1β, and TNF enhance oxidative
stress (Bakunina et al., 2015; Black et al., 2015). Cytokines
and ROS, both notably released by microglia, similarly activate
IDO and TDO, which metabolize L-tryptophan through the
kynurenine pathway (Heyes et al., 1992, 1996; Alberati-Giani
et al., 1996; Fujigaki et al., 2017). In humans, IDO is expressed
by microglia (Figure 1), astrocytes and to a lesser extent in
neurons, whilst TDO is mostly detected in astrocytes (Wu et al.,
2013). Decreased kynurenine:tryptophan ratio was identified
in the VLPFC of individuals with MDD compared to healthy
controls, irrespective of the cause of death, including suicide
(Clark et al., 2016; Supplementary Table 1). In agreement, this
study detected lower mRNA expression of Ido1 and Ido2, their
homologous genes, as well as Tdo, in the VLPFC of individuals
with MDD (Clark et al., 2016). In adult male rats, following
LPS injection, mRNA upregulation of Ido was found to be
accompanied by increased transcript levels of Tnf and Il6 in
the cortex and HIP (O’Connor et al., 2009). While it is unclear
if a similar upregulation is present in SB, a polymorphism in
the promoter region of the IDO1 gene is associated with higher
risk of developing MDD symptoms in individuals receiving IFN
therapies (Smith et al., 2012), suggesting that IDO1 plays a
significant role in determining the susceptibility to SB.

Microglial Tryptophan Metabolites Are Regionally
Detected in Suicidal Behaviors
In the brain, L-kynurenine gets broken down into 3-
hydroxykynurenine, QUIN and xanthurenic acid, all synthesized
by microglia and peripheral macrophages according to human
cells in vitro evidence (Heyes et al., 1992, 1996; Espey et al.,
1997; Gos et al., 2014), while kynurenic acid and picolinic
acid are produced by astrocytes (Raison et al., 2006; Fujigaki
et al., 2017). QUIN is a marker of oxidative stress which was
found to be significantly elevated in the CSF of individuals
with a history of suicide attempts (Erhardt et al., 2013) and
in the ACC of individuals with MDD who died by suicide
compared to age- and sex-matched healthy controls (Steiner
et al., 2011; Supplementary Table 1). In the same cohort,
however, decreased QUIN immunoreactivity was found in the
HIP CA1 of individuals with MDD or bipolar disorder who died
by suicide compared to age- and sex-matched healthy controls,
indicating that different brain regions likely present distinct
microglial oxidative balances in SB (Busse et al., 2015). Similarly,
individuals with SCZ presented reduced QUIN binding in the
CA1 compared to controls without psychiatric diagnoses, despite
a lack of specific changes in the two suicide deaths included in

this study (Gos et al., 2014). Robust evidence links oxidative
stress and SB; however, more studies are warranted to explore
the extent through which microglia contribute to modulating
region-specific tryptophan metabolism in particular mental
health disorders and SB (Suzuki et al., 2019; Baharikhoob and
Kolla, 2020).

Impaired Tryptophan Metabolism Disrupts Serotonin
Levels and Microglial Function
Tryptophan is a precursor of serotonin (Bakunina et al.,
2015; Fujigaki et al., 2017). Increased microglial degradation of
tryptophan, supported by changes in IDO isoforms and QUIN
levels, could help explain the decreased levels of serotonin
metabolites measured in the CSF of individuals with MDD and
SB (Brown et al., 1982; Mann et al., 1992; Steiner et al., 2011;
Bakunina et al., 2015; Fujigaki et al., 2017; Figure 1). Notably,
serotonin depletion is associated with increased impulsivity and
aggressive behaviors (Stanley et al., 1982; Stanley and Mann,
1983), low mood, anxiety, as well as suicide risk (Achtyes
et al., 2020; Baharikhoob and Kolla, 2020; Koweszko et al.,
2020). More research could clarify the specific contribution
of microglia to serotonin depletion in the context of SB.
Simultaneously, serotonin affects the inflammatory activity,
trophic support, phagocytosis and motility of microglia in a
context-dependent manner (Turkin et al., 2021). For instance,
serotonin treatment enhanced adult mouse cortical microglial
process motility toward laser injury but reduced phagocytosis of
beads by neonatal amoeboid microglia of the corpus callosum
in situ (Krabbe et al., 2012). Adult male mice treated with
the selective serotonin reuptake inhibitors fluoxetine exhibited
different HIP inflammatory responses according to the quality of
their living environment (Alboni et al., 2016). In mice exposed
to CUMS, fluoxetine was associated with anti-inflammatory
responses, such as reduced Tnf transcripts, increased microglial
spacing index and cell body area, but decreased arborization
in the HIP CA1 (Alboni et al., 2016). Conversely, in mice
housed in an enriched environment, microglia had increased
pro-inflammatory responses, involving IL1β protein and Tlr4
mRNA (Alboni et al., 2016). Stress appears to regulate serotonin
levels along with microglial activity. Social isolation in adult
male mice caused a decrease in DRN serotonin production
accompanied by elevated IBA1 and C1q protein expression, as
well as depressive-like behavior (Lee et al., 2021). Upregulation
in complement expression was paralleled by a downregulation
in synaptic proteins, i.e., postsynaptic density protein 95 and
synaptophysin, which could indicate synaptic pruning (Lee et al.,
2021). It is therefore possible that stress-induced serotonin
depletion increases the susceptibility to psychiatric disorders or
SB via adaptations in microglial pro-inflammatory activity, cell
motility and microglial synaptic remodeling, an area that awaits
future investigation.

Microglial Tryptophan Metabolites Can Cause
Glutamate Excitotoxicity
In LPS-treated adult male mice, minocycline and the IDO
antagonist 1-methyltryptophan rescued the development of
MDD-like behavior, independently of brain serotonin turnover
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(O’Connor et al., 2009). Therefore, at least partially, microglial
IDO may influence SB independently of serotonin. As previously
described, in addition to reducing tryptophan levels, IDO activity
results in production of the metabolite QUIN in microglia. QUIN
is an agonist of the NMDAR crucial for glutamatergic excitatory
signaling in the CNS (Olloquequi et al., 2018). Elevated levels
of QUIN, found in association with SB, as discussed above
(see section “Microglial Tryptophan Metabolites Are Regionally
Detected in Suicidal Behaviors”), can over-activate the NMDAR,
generating abnormally high levels of intracellular Ca2+, toxic free
radicals and disrupted ATP production that ultimately contribute
to loss of neuronal cell function and cell death, a process
formally known as glutamate excitotoxicity (Olloquequi et al.,
2018). QUIN-mediated glutamate excitotoxicity could be another
mechanism by which microglia participate in SB (Suzuki et al.,
2019; Baharikhoob and Kolla, 2020; Figure 1). Correspondingly,
several clinical trials with ketamine, a NMDAR antagonist,
found a significant and rapid reduction in suicidal cognition, a
reason why ketamine therapy is currently being evaluated for
the treatment of suicidal ideation (Ballard et al., 2021). Ketamine
was shown to rescue MDD-like behavior, decreasing brain IL6,
TNF and QUIN protein production, as well as CX3CR1-positive
cell area, whilst increasing CX3CR1-positive cell arborization in
the PFC of adult male mice exposed to LPS (Verdonk et al.,
2019). Partial depletion of microglia by the CSF1R inhibitor
PLX3397 blocked the effects of R-ketamine, a more potent and
longer-lasting enantiomer of (R,S)-ketamine in adult male mice
susceptible to CSDS (Zhang K. et al., 2020). Hence, ketamine
affects microglia in a manner that is partially required to achieve
its anti-depressant effects. It is, however, unknown if similar
mechanisms underlie the effects of ketamine in SB.

Despite positive results in the context of MDD, an inverse
response to ketamine is found in SCZ, where it produces
psychosis-like responses in healthy subjects and can temporarily
worsen positive symptoms in individuals previously diagnosed
with SCZ (Lahti et al., 2001). This indicates that NMDAR
antagonism is to some degree involved in SCZ pathology (Stone
et al., 2007; Straub et al., 2007; Nakazawa et al., 2012; Steiner et al.,
2012) and that ketamine may possibly induce disorder-specific
adaptations in microglia. It is postulated that hypofunctional
NMDAR located on GABAergic inhibitory interneurons
disinhibit excitatory pyramidal neurons, the principal neurons
of the cerebral cortex, leading to a paradoxical increase in
glutamatergic activity that contributes to SCZ (Stone et al., 2007;
Nakazawa et al., 2012). Based on cortical post-mortem results
of asphyxiation suicide deaths, cytokines such as IL6 affecting
NOX2 expression in GABAergic neurons, can contribute to
oxidative stress that causes the loss of inhibitory tone on
glutamatergic neurons and increases glutamatergic excitotoxicity
(Schiavone et al., 2016; Supplementary Table 1). Cortical
glutamate excitotoxicity is hypothesized to elevate synaptic
apoptosis, a sub-lethal form of apoptosis in terminal neurites
and individual synapses that triggers synaptic elimination in
the absence of cell death, in line with the reduced cortical
volume in individuals with SCZ without associated pyramidal
cell loss (Bennett, 2011; Schobel et al., 2013; Parellada and
Gassó, 2021). While in the DLPFC and HIP apoptosis and

neuronal death pathways were significantly correlated with
suicide death (Zeng et al., 2020; Glavan et al., 2021), further
studies are required to evaluate whether these changes reflect
cellular or synaptic events. It is suggested that synaptic
apoptosis causes exposure of internal phosphatidylserine and
accumulation of complement on the synaptic membrane,
such as C1q, which stimulate microglial chemotaxis and
synaptic pruning (Nonaka and Nakanishi, 2019; Parellada
and Gassó, 2021). Minocycline successfully dampened the
aberrant synaptic engulfment of SCZ patient-derived microglial
cells in vitro (Sellgren et al., 2019) and may be used for
similar outcomes in SB.

Elevated Purinergic Signaling May Contribute to Suicidal
Behaviors Risk
Glutamate excitotoxicity elevates extracellular levels of ATP in
HIP slices of adult female and male mice (Dissing-Olesen et al.,
2014), similar to what is observed in male rats exposed to
CUS, which can develop MDD behaviors upon chronic ATP
administration (Yue et al., 2017). In mice, cortical P2RY12
binds to extracellular nucleotides, like ATP, and is required for
postnatal synaptic plasticity (Sipe et al., 2016), in addition to
microglial chemotaxis and phagocytosis (Davalos et al., 2005;
Haynes et al., 2006; Dissing-Olesen et al., 2014), as well as BBB
closure (Lou et al., 2016), upon injury in adult males. Elevated
P2ry12 transcripts are found across the ACC of individuals with
SCZ who died by suicide compared to individuals with SCZ
who died by other causes (Zhang L. et al., 2020; Supplementary
Table 1). Correspondingly, a single-cell microglial study of
medicated individuals with MDD has found elevations in P2RY12
protein expression in the frontal lobe, temporal lobe, TLM
and SZ, in parallel with a decrease in HLA-DR and CD68
compared to age-, sex- and PMI-matched controls (Böttcher
et al., 2020). Moreover, decreased mRNA P2ry12 expression
was detected in the ACC of individuals with MDD who
died by natural causes but not suicide, compared to age and
PMI-matched controls (Zhang L. et al., 2020). Upregulation
of P2RY12 without exacerbated inflammation may indicate
increased neuron-microglia communication (Böttcher et al.,
2020). It is possible that, after stress, ATP-P2RY12 recruitment
attracts microglia toward neurons with an elevated excitatory
activity, promoting synaptic pruning to reduce excitability
along with psychiatric-like behavior (Bollinger and Wohleb,
2019) and SB. Additional studies are warranted to explore
the putative origins and outcomes of purinergic signaling in
the context of SB.

Balance Triggering Receptor Expressed on Myeloid Cells 2
Signaling May Reduce Suicidal Behaviors Risk
Trem2 transcripts were reduced in the ACC of individuals
with SCZ, but only in deaths not caused by suicide (Zhang
L. et al., 2020; Supplementary Table 1). In opposition,
mRNA Trem2 expression was not significantly different in
the ACC or DLPFC of individuals with MDD who died
by natural causes and suicide, compared to age and PMI-
matched controls (Zhang L. et al., 2021). TREM2 is a cell
surface protein binding to phospholipids, phosphatidylserine,
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sulfatides, LPS and DNA, which is involved in amyloid
β and apoptotic neuron clearance, as well as AD risk
(Guerreiro et al., 2013; Jonsson et al., 2013; Wang et al.,
2015; Krasemann et al., 2017). MDD risk genes were involved
in the pathology of AD (Ni et al., 2018), but it is unclear
whether TREM2 signaling is affected (Santos et al., 2016).
Balanced TREM2 levels could be a protective factor against
the apoptotic effects of glutamate excitotoxicity (Ren et al.,
2021) in SB, although requiring more substantial research.
Studies with TREM2 knockout mice suggest this protein can
reflect microglial proliferation, survival around amyloid β and
migration toward injury throughout life (Ulland and Colonna,
2018). Moreover, TREM2 absence impairs postnatal microglial
synaptic pruning, consequently increasing HIP excitatory
neuronal activity and stereotypic behavior in adult female and
male mice (Filipello et al., 2018). Accordingly, elevated microglial
TREM2 protein expression reduced microglial production of
the pro-inflammatory cytokines TNF and IL1β, but increased
phagocytosis in vitro (Takahashi et al., 2005). Additional studies
are needed to clarify the outcomes of reduced TREM2 expression
in psychiatric or SB risk.

MICROGLIAL NEURONAL TROPHIC
SUPPORT COULD BE IMPAIRED IN
SUICIDAL BEHAVIORS

Microglia could additionally influence plasticity in SB by
altering the release of neurotrophins, such as BDNF (Dwivedi,
2009). Individuals with a history of suicide attempts and
MDD present reduced levels of plasma BDNF compared
to control groups (Dawood et al., 2007; Deveci et al.,
2007; Kim et al., 2007; Lee et al., 2007), although a larger
study found a lack of effect (Eisen et al., 2016). Moreover,
decreased BDNF protein expression was detected in the PFC
and HIP of individuals who died by suicide, compared to
healthy controls (Dwivedi et al., 2003; Banerjee et al., 2013).
Similarly, BDNF protein level was lower in the ACC, but
not the DLPFC, in suicide decedents with a history ELA
compared to controls without reported adversity or suicide
death (Youssef et al., 2018). In vivo and in vitro data
from adult male rats indicates microglial BDNF can cause
neuronal hyperexcitability in the spinal cord relevant to pain
disorders (Coull et al., 2005). In adult mice, abrogation
of microglial BDNF is enough to recapitulate the effects
of CX3CR1 cells depletion in motor learning tasks and
cortical dendritic spine remodeling (Parkhurst et al., 2013).
Moreover, susceptibility to CUMS in adult male mice was
associated with reduced HIP arginase-positive microglial IL4
signaling and decreased microglial production and secretion
of BDNF (Zhang J. et al., 2021). Dysfunctional microglial
BDNF production and synaptic remodeling activity as a result
of susceptibility to stress could help explain changes in
neurotransmitter binding and dendritic spine density observed
in individuals with SB (Kang et al., 2012; Underwood et al.,
2012, 2020; Dean et al., 2016; Holmes et al., 2019). Altogether,
these results emphasize the intricate and multidimensional

microglial activities putatively involved in SB, encouraging
further studies in this area.

CONSIDERATIONS ON MICROGLIAL
DIVERSITY

Recent research has uncovered that the widespread and diverse
functions of microglia are fulfilled by a spectrum of cellular
states with variable morphology, proteome, metabolome and
ultrastructure (Stratoulias et al., 2019). Microglial diversity is
drawn by cues from their microenvironment, which differ
according to the species, age, sex, CNS region, particular context
of health or disease, as well as lifestyle habits of the organism
(Hanamsagar and Bilbo, 2017; Bordeleau et al., 2019; Masuda
et al., 2020). Context-dependent microglial diversity challenges
the entangling of suicide-specific microglial mechanisms. As a
primary constraint, results from animal models of SB risk factors
may not completely translate to humans. For example, despite
sharing a generally similar transcriptome with mouse microglia,
human microglia isolated from surgical procedures presented a
species-specific expression bias for several transcripts, including
those associated with complement proteins, crucial for synaptic
turnover (Gosselin et al., 2017). Secondly, great variability in
the distribution of sex, age, PMI and psychiatric diagnoses
is present among samples examined thus far (Supplementary
Table 1), straining inter- and intra-studies comparisons. For
example, the PMI between studies fluctuates from 7 to 40 h
(Supplementary Table 1) and was shown to correlate with some
of the gene expression and morphological alterations detected
in microglia (Steiner et al., 2006; Gos et al., 2014; Torres-Platas
et al., 2014b). Acutely tuned to environmental cues, microglia
appear to change from the time of death until tissue fixation or
cell isolation. Their dynamic processes still respond to axonal
lesions of the spinal cord up to 10 h after the death of adult
mice (Dibaj et al., 2010). Yet, post-mortem microglial responses
are not expected to last longer than this given the depletion
of immediate energy sources such as ATP (Dibaj et al., 2010),
oxygen and glucose (Eyo and Dailey, 2012). Moreover, it is
predicted that, even in the best scenarios of body storage at
4◦C, some RNA, DNA and protein degradation occurs, thus,
hindering multi-omic approaches and immunohistochemistry
assays (Ferrer et al., 2008). Evidence from a mouse and human
study, however, suggests that it is still possible to obtain viable
microglia and high-quality RNA after 12 h PMI, with relatively
few transcriptional changes compared to shorter PMIs (Heng
et al., 2021). Correspondingly, one adult male mouse brain
harvested and fixed after a PMI of 43 h mostly displayed similar
numbers of ramified IBA1-positive cells in the ACC compared
to brains immediately harvested after death (Torres-Platas et al.,
2014a). Method of death could similarly create acute brain
changes related to hypoxia and oxidative stress. To discriminate
SB-specific changes, previous post-mortem studies investigating
microglia have suggested matching suicide deaths groups with
controls who died under stressful or inflammatory conditions,
including homicide and death related to cardiovascular disease
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(Steiner et al., 2008; Clark et al., 2016). In addition to PMI
or method of death, inter-individual differences in coping
strategies, risk factor exposure, for instance, ELA, as well
as factors such as sex, CNS region and age could help
explain the heterogenous results concerning microglial gene
and protein expression, as well as morphology found across
studies in SB (Supplementary Table 1). Notably, significant
efforts are already present in the literature to control for
confounders using age-, sex-, tissue pH-, PMI-, and psychiatric
diagnoses-matched cohorts (Steiner et al., 2006, 2008, 2011;
Gos et al., 2014; Torres-Platas et al., 2014a; Busse et al.,
2015; Schneider et al., 2015; Pantazatos et al., 2017;
Petrasch-Parwez et al., 2020; Snijders et al., 2020; Glavan
et al., 2021). It will be crucial that prospective studies
continue to strive to contextualize in space and time their
analyses of microglia.

CONCLUSION

Suicide has an important neurobiological component
predisposed by cumulative risk factors throughout life, namely
stress and psychiatric disorders. Abundant and diverse evidence
posit microglia as mechanistically involved in the neurobiological
etiology of SB and its risk factors. In this Review, we summarized
various promising microglial pathways deriving from stress-
induced inflammation, oxidative stress and trophic support that
could be further investigated in the context of SB. Our discussion
centered around putative outcomes on neuronal activity but
also included BBB function, and other immune populations
infiltrating the CNS. Moreover, we outlined how diversity in
microglial states, functions and features, influenced by factors
such as region, sex, age and lifestyle, is a key component to
explore in future SB research. According to current data, it is
likely that microglia participate in mechanisms that contribute to
both the resistance and susceptibility to SB after stress. Selective

modulation of processes that boost resistance to neuropathology
encountered in SB could help prevent suicide deaths.
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