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In vivo extracellular recordings of thalamic and cortical visual
responses reveal V1 connectivity rules
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The brain’s connectome provides the scaffold for canonical neural computations. How-
ever, a comparison of connectivity studies in the mouse primary visual cortex (V1)
reveals that the average number and strength of connections between specific neuron
types can vary. Can variability in V1 connectivity measurements coexist with canonical
neural computations? We developed a theory-driven approach to deduce V1 network
connectivity from visual responses in mouse V1 and visual thalamus (dLGN). Our
method revealed that the same recorded visual responses were captured by multiple
connectivity configurations. Remarkably, the magnitude and selectivity of connectivity
weights followed a specific order across most of the inferred connectivity configurations.
We argue that this order stems from the specific shapes of the recorded contrast response
functions and contrast invariance of orientation tuning. Remarkably, despite variability
across connectivity studies, connectivity weights computed from individual published
connectivity reports followed the order we identified with our method, suggesting that
the relations between the weights, rather than their magnitudes, represent a connectivity
motif supporting canonical V1 computations.
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Ten years ago, connectomics (1, 2) was declared as a future milestone achievement in
circuit neuroscience. Since then, a series of connectivity studies in mouse primary visual
cortex (V1) substantially advanced our knowledge of the V1 circuit connectome (3–9).
However, these studies have also revealed that connection probability and connection
strength between any two selected cell types in V1 can vary by up to one order of
magnitude across experiments. Such variability in connectivity measurements represents
a puzzle for explaining canonical cortical computations ubiquitously observed in func-
tional recordings. For example, the paradoxical response, i.e., the decrease of inhibitory
activity following stimulation of the inhibitory population, is present across cortices and
experiments (10–12). The presence of such paradoxical decrease across activity recordings
suggests that the connectivity patterns of the underlying network may contain motifs
supporting this canonical computation. Indeed, theoretical analysis of network models
shows that the paradoxical response is only possible for a sufficiently strong connection
between excitatory neurons in the underlying network (10, 11). In this sense, a canonical
activity feature—paradoxical response—constrains the connectivity of the underlying
network. Motivated by this observation, we argue that studying connectivity rules in
a theoretical network model starting from canonical computations, such as inhibitory
stabilization, offers a promising perspective that may help uncover ubiquitous connectivity
motifs within the diverse experimental connectivity measurements.

Previous experimental work reported two further canonical computations present
across activity recordings in V1: normalization and contrast invariance. Normalization
(13) manifests itself in the specific S-shaped profiles of V1 contrast responses. The
canonical computation of contrast invariance observed in the activity of orientation-
selective V1 cells is characterized by the uniform width of orientation responses preserved
across different levels of contrast (14–17). Since normalization and contrast invariance
are activity features observed across experiments, we hypothesize that their existence and,
in particular, the specific shapes of the corresponding contrast and orientation responses
might rely on specific connectivity motifs of the underlying V1 circuit. To understand
which connectivity motifs underlie the specific shapes of the recorded contrast and
orientation responses, we use the stabilized supralinear network model (SSN) to infer V1
connectivity from activity recordings because this model can account for canonical com-
putations of normalization (18), contrast invariance (19, 20), and inhibitory stabilization
(21). Notably, the SSN is one of the few nonlinear population network models for which
the mathematical description of possible firing steady-state configurations is available (22),
granting a unique opportunity to compare possible activity regimes to observed ones.

Significance

The relation between structure
and function is particularly
fascinating in neural networks.
Direct connectivity measurements
in the mouse primary visual
cortex show large variability
across experimental reports. Can
various synaptic connectivity
matrices lead to similar firing
patterns recorded in the cortex?
Vice versa, can observations of
firing rate activity constrain
possible synaptic wiring patterns?
We show that model-based
connectivity inference from
activity recorded in the thalamus
and primary visual cortex reveals
hidden ascending order in the
strengths of otherwise diverse
experimentally reported cortical
connections. Thus, diverse
cortical connectivity patterns
contain mutual motifs that
support canonical neural
computations observed across
cortices and experiments.
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We show that combining in vivo extracellular recordings of visual
responses in mouse dLGN and V1 with the SSN allows determin-
ing diverse sets of V1 connectivity weights leading to the recorded
visual responses. Specifically, we find that connectivity weights of
different magnitudes can support the same recorded responses,
suggesting that variability in connectivity measurements need
not contradict the presence of canonical cortical computations.
Although each weight shows variability across the inferred connec-
tivity sets, the connectivity weights within individual sets followed
a specific order in their magnitudes. For example, the excitatory-
to-inhibitory weight was the strongest cortical connection, while
the thalamic input weight targeting the excitatory population
was the weakest. Remarkably, although experimental connectivity
estimates often show large variability across studies (3–7), we
found that the magnitudes of connectivity weights within indi-
vidual experimental connectivity reports follow the same order as
we found in our inferred connectivity weights. Using the SSN
model, we show how the discovered relationships between the
cortical connectivity weights directly relate to specific features of
the recorded visual responses. Here, the specific shapes of the
recorded nonlinear cortical and thalamic contrast responses and
inhibition stabilized network (ISN) condition combined with the
SSN model are of particular relevance. Finally, we reveal that the
sharper orientation tuning of excitatory cortical neurons com-
pared to inhibitory neurons combined with contrast invariance
implies a specific order in the widths of V1 connectivity and
thalamic input profiles, explaining why almost untuned thalamic
inputs lead to sharper orientation tuning of cortical populations.
Overall, our theory-driven approach of determining network con-
nectivity solely based on the recorded in vivo activity allowed us
to dissect a series of V1 connectivity motifs underlying canonical
V1 computations.

Results

To explore the currently available knowledge about the connec-
tivity of local circuits in mouse V1, we first performed a survey
of the literature (SI Appendix, Table S1). Focusing on connection
probability and connection strength obtained from multipatch
clamp recordings across layers in mouse V1, we found that both
connectivity measures showed large variability across experimen-
tal reports (SI Appendix, Table S1). For example, we found the

connection probability between excitatory neurons in layer 2/3
to vary by a factor of 10, from 2 to 19% (4–6). The probability
of a connection from excitatory to parvalbumin-positive (PV+)
neurons ranged between 15% (4) and 89% (6), while the value
of the average amplitude of the postsynaptic potential (PSP) for
this connection varied by more than a factor of 5 (4, 8). Given the
large variability across experimental measurements of connection
probability and strength, we found that the connectivity weights
between neuronal populations, estimated as connection proba-
bilities combined with the corresponding response amplitudes
(computation in SI Appendix, Table S1), could vary by up to an
order of magnitude. In particular, connectivity weights within the
V1 excitatory population (JEE ) or from the excitatory to the
inhibitory (PV+) population (JIE ) have the largest variability in
layer 2/3 (SI Appendix, Table S1), varying by a factor of 10 across
studies.

Faced with this variability, we wondered how to reconcile
it with canonical responses found widely across experimental
studies. Seminal computational work has shown that variability
across some parameters of a circuit model can lead to fundamen-
tally different activity regimes, for example, transitioning from
healthy to pathological, while other model parameters can vary by
orders of magnitude and still result in stable and similar network
activity (23). The latter computational stability can emerge when
certain parameter relations (e.g., a ratio of two parameters in
the simplest case) remain unchanged, while individual parameters
vary, creating a complex map of configurations consistent with
specific activity regimes. Assuming that canonical V1 activity
features in response to visual stimuli can be used to infer connec-
tivity in a framework of a powerful network model, we suggest
an alternative approach for investigating connectivity between
neuronal populations in mouse V1. We used the SSN (18, 24)
to infer the V1 recurrent and feedforward connectivity weights
from the recordings of dLGN and V1 responses (Fig. 1A, Top)
(25). Hereby, we exploited contrast invariance (14–17, 19, 20),
i.e., the finding that orientation tuning curves preserve their
width across different levels of contrast (Fig. 1A, Bottom). Con-
trast invariance, which we confirmed in our data, allowed us
to split the response into contrast and orientation components
and develop a two-step inference procedure. In the first step
of our connectivity inference, we concentrated on the recorded
contrast responses (Fig. 1B, Top Left), which allowed us to fit the
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Fig. 1. Inference of thalamic input and V1 recurrent connectivity weights using in vivo extracellular recordings from mouse dLGN and V1 and a network
model. (A) (Top) Neurons in area V1 integrate inputs from dLGN and V1 excitatory (E) and inhibitory (I) neurons. The dLGN input, together with the strengths of
connections between neurons (green), determines the response of the V1 network. (Bottom) Contrast invariance of E and I V1 neurons means that the width
of orientation responses is invariant with respect to contrast. (B) Contrast invariance in V1 allows contrast responses (Top Left) and orientation tuning (Bottom
Left) to be treated separately. Due to contrast invariance, the two-population SSN model used for the contrast response analysis (Top Middle) can be embedded
in the extended SSN model, which reproduces V1 responses as a function of stimulus contrast and orientation (Bottom Middle). The shape of the contrast
responses determines the connectivity weights to the E and I V1 populations arising from dLGN inputs, and recurrent V1 E and V1 I connections (Top Right).
The orientation component of the response contains information about the relative amounts of orientation-specific inputs to a population with a particular
orientation preference (Bottom Right).
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Fig. 2. Population tuning curves for excitatory and inhibitory neurons in V1 are contrast-invariant. (A) Schematic of the setup for extracellular silicon probe
recordings in V1. (B) Histology of example V1 recording site. Blue indicates DAPI, and white outline indicates V1, labeled according to ref. 26. Bregma, −2.7
mm. (Scale bar, 1 mm.) (C) Classification of single units based on extracellular wave shape into putative excitatory (broad-spiking, E; orange) and inhibitory
(narrow-spiking, I; teal) neurons. (Left) Normalized extracellular wave shapes. (Right) Clustering based on wave shape parameters. Large dots indicate neurons
recorded in sessions relevant to the current study, i.e., sessions containing the flashed grating stimulus, (N = 204 E + 38 I); small dots indicate V1 neurons
recorded in other sessions, used to improve N for clustering. (D) Flashed gratings stimulus paradigm consisting of three stimulus intervals containing a random
sequence of gratings (white bars), with interleaved blank periods (gray bars). In some sessions, the blank periods were used for photoactivation of ChR2
expressed in V1 PV+ inhibitory interneurons. (E) Responses of two V1 example neurons to combinations of orientation and contrast (Left), first SVD component
(Middle), and SVD residual (Right). Spatial patterns in the residual, such as those that are evident for the lower example neuron, reveal violations of contrast
invariance. (F) Violations of contrast invariance were assessed by the power of the SVD residual (> 5 %) and significance of spatial autocorrelation (gz > 1.96).
Light dots indicate contrast-dependent neurons (14/144 E, 0/30 I neurons). Solid dots indicate contrast-invariant neurons, considered for further analysis
(130 E, 30 I neurons). Purple indicates example neurons from E. (G) Two-dimensional tuning fit consisting of a product of a hyperbolic ratio function and a
wrapped Gaussian (27) for an example V1 neuron. (H) Distribution of fit quality across neurons. Dashed line indicates fit quality threshold (0.4). Solid bars
indicate neurons considered for further analysis (125/130 E, 30/30 I neurons). (I) Normalized orientation tuning component for E (Left) and I (Right) neurons.
(K ) Cumulative distribution of orientation selectivity (OSI; 28, 29). (Inset) Density histogram of orientation selectivity. The x axis is the same as the cumulative
distribution; y scale bar represents two neurons per bin of OSI. (J and L) Same as I and K but for normalized contrast response component and cumulative
distribution of contrast sensitivity (contrast at which the contrast response function reaches half height). (M and N) Pooled population responses from V1
(mean ± SEM). In C, F , and H–N, orange indicates putative excitatory neurons, and teal indicates putative inhibitory neurons.

SSN model consisting of one excitatory (E) and one inhibitory
(I) population that receive input from dLGN (Fig. 1B, Top
Middle). Specifically, we determined the dLGN input weights
and the recurrent V1 connectivity weights between the E and
I populations that best matched the recorded activity (Fig. 1B,
Top Right). In the second step, we could expand our inference
to the orientation components of the cortical responses (Fig. 1B,
Bottom Left) within an extended SSN model that took into ac-
count the orientation tuning of the cortical populations (Fig. 1B,
Bottom Middle). Here we determined the relative amount of
orientation-specific input from each presynaptic source (Fig. 1B,
Bottom Right).

In Vivo Recordings of Mouse V1 Confirm Contrast Invariance
of Orientation Tuning. To obtain neuronal responses for the
inference of connectivity, we performed extracellular recordings
in awake, head-fixed mice (Fig. 2A). We measured visual re-
sponses across all layers of V1 (Fig. 2B), with the majority of
recorded neurons being located in granular and infragranular
layers (see SI Appendix for quantification). To obtain stimulus
selectivities separately for the E and I V1 populations, we clas-
sified individual neurons (n = 242), based on the extracellular
spike wave shape, as putative excitatory (broad-spiking; orange)
and putative inhibitory (narrow-spiking; teal) (Fig. 2C ). Narrow
spike wave shapes are indicative of parvalbumin-positive (PV+)
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inhibitory interneurons (30–32), which preferentially inhibit one
another and pyramidal cells (33, 34) and thus resemble the SSN
I population. We confirmed with optotagging of a few neurons
(SI Appendix) that PV+ V1 neurons indeed fell into the cluster of
narrow-spiking units, as expected from previous studies (34).

During our recordings, we presented briefly flashed (84
ms), static gratings of different orientations and contrasts
(Fig. 2D). To determine two-dimensional (2D) contrast and
orientation response profiles (Fig. 2E), we performed subspace
reverse correlation analysis (36) (SI Appendix, Fig. S1A). For
the subsequent analyses, we concentrated on visually responsive
neurons (SI Appendix; 181/242 neurons) and determined each
neuron’s optimal response time (SI Appendix, Fig. S1B). Since
transmission of visual information to V1 requires time, we only
considered visually responsive neurons with optimal response
times greater than 25 ms (174/242; SI Appendix, Fig. S1B).

We first asked whether responses of individual V1 neurons
are contrast-invariant. To this end, we applied a singular value
decomposition (SVD) to split response profiles into their largest
contrast-invariant component and a residual component (37)
(Fig. 2E). Since violations of contrast invariance would be visible
as nonrandom spatial patterns in the residual, we used spatial
autocorrelation analysis (38) to statistically assess the presence of
spatial structure in the residuals (z -scored Gamma index, gz ).
Additionally, we computed the power of the residual within the
SVD as a measure of the strength of the remaining responses
not captured by the separable component (SI Appendix). Similar
to the example neuron in Fig. 2E, Top (gz =−0.48, power of
residual = 4%), most neurons’ residual lacked spatial structure
and constituted only a minor part of the response profile. For
other neurons, such as the example neuron in Fig. 2E, Bottom,
the SVD residual indeed contained spatial structure (gz = 8.21),
but its power was negligible (residual power = 2%). Across the
population of recorded responses, we thus classified neurons as
contrast-invariant if their residual SVD component’s power was
small (< 5%) or if the residual did not contain a significant spatial
pattern (gz < 1.96; Fig. 2F ). Consistent with previous studies
(14–17), we classified the vast majority of V1 neurons as contrast-
invariant (91%, 160/174). The observed violations of contrast
invariance were restricted to excitatory neurons (E, 14/144; I,
0/30), but the low number of inhibitory neurons leaves open the
possibility that the proportion of contrast invariance in the two
populations was similar (Fisher–Yates test, p = 0.13).

Next, we investigated the orientation tuning and contrast
response curves of the contrast-invariant neurons (160 neurons).
We fitted individual response profiles with a separable 2D tuning
model constructed from a hyperbolic ratio function (39) for
contrast responses and a wrapped Gaussian (27) for orientation
tuning (Fig. 2G). The separable tuning model described the
responses of the majority of neurons well (mean R2 = 0.81
for both excitatory and inhibitory neurons; Fig. 2H ), further
strengthening our assertion of contrast invariance. Among the
well-fit neurons (R2 > 0.4) used for further analysis (125/130 E,
30/30 I), we concentrated on those neurons with rising contrast
response functions (101 E, 30 I).

To characterize selectivity for orientation and contrast, we
next analyzed the individual, normalized tuning components of
the fitted 2D tuning model (Fig. 2 I–L; normalization by divi-
sion by maximal response). Focusing first on orientation tuning
(Fig. 2I ), visual inspection suggested—in the face of a broad
range of tuning for both populations—that the inhibitory pop-
ulation had few neurons of narrow tuning. To quantify differ-
ences in tuning strength, we computed an orientation selectivity
index (OSI) (28, 29) (Fig. 2K ). Consistent with previous studies

(6, 40–43), we found that excitatory neurons had overall stronger
orientation selectivity than inhibitory neurons (E, 0.21± 0.02; I,
0.13± 0.03, mean ± SEM; two-tailed Welch’s t test: t = 2.28,
p = 0.03). Note that the overall weak orientation selectivity com-
pared to previous results, also in the E population (17), might be at
least partially related to our sampling from mostly the infragran-
ular layers (17) and our visual stimulation paradigm with short
stimulus duration. We then investigated the normalized contrast
response component of the fitted 2D tuning functions (Fig. 2J )
and found a broad range of contrast sensitivity. Inspecting the con-
trast at half-height of the normalized responses (Fig. 2L), we did
not find a significant difference between excitatory and inhibitory
neurons (E, 0.54± 0.02; I, 0.49± 0.02, mean contrast at half-
height ± SEM; two-tailed Welch’s t test, t = 1.07, p = 0.29).

Finally, to test whether the average population response was also
contrast-invariant, we pooled across individual contrast-invariant
neurons by averaging their tuning curves, after aligning them to
their preferred orientations. This is important because an average
of contrast-invariant neurons does not guarantee contrast invari-
ance of the population (44–46). Analogous to the procedure for
the individual neurons, we applied SVD to the population average
and studied the spatial autocorrelation of the residual in order to
test for contrast invariance. This analysis revealed that the first
SVD component accounted for 99.9% of the variance, albeit with
a significant spatial pattern in the residual (SI Appendix, Fig. S3A).
Due to the small strength of the residual (< 0.1%), we conclude
that the pooled population response was also contrast-invariant,
complementing the invariance of the individual neurons.

To allow connectivity inference in the SSN model (Fig. 1),
another key ingredient besides the V1 E and I population re-
sponses is the input to the cortical network. Instead of assuming
the thalamic input to be linear or retrieving average values from
the literature, we used the same stimulus and analysis framework
to obtain the dLGN population response for contrast (72 neurons;
SI Appendix, Fig. S4). We found its shape to be sigmoidal, with
firing rates lying in between those for V1 E and I neurons
(SI Appendix, Fig. S4, and Fig. 3A). Taken together, our in vivo
extracellular measurements of dLGN and V1 E and I population
responses provided contrast-invariant response profiles which we
next used for connectivity inference in the SSN model.

Contrast Responses Reveal Consistent Relations between Con-
nectivity and Input Weights. Having confirmed contrast invari-
ance of orientation tuning in our in vivo recordings, we first
focused on the contrast components of the dLGN and V1 re-
sponses to infer feedforward and recurrent connectivity weights.
The SSN model (Fig. 3A, Middle) represented the V1 network
and translated the thalamic contrast response (Fig. 3A, Left) into
contrast responses of the E and I cortical populations (Fig. 3A,
Right). The constants JXY > 0 corresponded to the connectivity
weights from the cortical population Y to X with Y ,X ∈
{E , I }, and the constants gX > 0 represented the thalamic input
weights to the cortical populations X (Fig. 3A, Middle). The
power law transfer function I n+ = (max{I , 0})n with exponent
n (Fig. 3A, Middle) described the nonlinear relationship between
the input and output spike rate of a V1 neuron (see figure 5 J and K
in ref. 47). Our goal was to determine JXY , gX , and n , for which
the SSN model reproduced the average recorded thalamic and
cortical contrast responses. Specifically, for each recorded contrast
C , we required that the stable steady states rE and rI and the
input TdLGN of the SSN model equations

rX (C )
1
n = JXE · rE (C )− JXI · rI (C ) [1]

+ gX · TdLGN(C ), X ∈ {E , I }
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Fig. 3. Inference of cortical and thalamic input weights from contrast responses using the SSN model. (A) The cortical network transforms the dLGN population
contrast response (Left) to the contrast responses of E and I V1 populations (Right). The SSN model (Middle) represents the cortical network. The weights JXY > 0
denote the strength of the recurrent connections from cortical population Y to X , and gX > 0 denotes the strength of the thalamic input to cortical population X .
The transfer function relating input to output of the cortical E and I populations is In+ = (max{I, 0})n. Shaded areas represent ± SEM of the recorded responses.
(B) Supralinear thalamocortical mapping of contrast responses excludes the exponent n = 1 in the SSN model. (C) (Left) Randomly generated sample curves
(green lines) within ± SEM of the dLGN and V1 contrast responses (shaded areas) were substituted into the SSN model to yield the initial parameters JXY and gX
for the fixed exponents n. (Right) Subsequently, the SSN parameters JXY , gX , and n were optimized to minimize the distance between the fit (red) and the mean
of the recorded responses (orange, gray, and teal). (D) The distribution of fit scores of the final 103 fits has a mean of 2 × 10−2. The arrow (red) points to the
largest score value used to produce the example fit in C (red). (E) The distribution of the optimized power law exponents n corresponding to the final 103 fits has
a median of n = 1.9. (F) The distributions of the optimized connectivity weights JXY are broader than that of input weights gX . The location of vertical dotted lines
corresponds to the JXY and gX medians presented in the plot’s upper right corners. (G) The average ratios of connectivity weights from three input sources (local
E, local I, and external dLGN) to E cortical population are similar to those to the I population. (H) In 99% of the inferred connectivity parameter sets, the recurrent
and input connectivity weights, ordered according to the x axis labels, build an increasing sequence. Thin green lines indicate four representative examples of
fits; bold green line indicates median of parameter distributions.

approximated the mean recorded contrast responses of the V1
and dLGN populations, relative to the spontaneous activity at
0% contrast (Fig. 3A and SI Appendix, Eq.S3). To provide an
unbiased comparison with the direct, experimental measurements
of connectivity, we computed the JXY and gX without prior
assumptions about their possible range and without the hyperbolic
ratio fit used for Fig. 2. Our only experimentally motivated
parameter constraint was the assumption that the power law
exponent n ranged between 1 and 5 (48, 49). Notably, plotting
the V1 population contrast responses as a function of dLGN
contrast response (Fig. 3B), we found a supralinear relationship,
which ruled out the possibility that the transfer function was linear
(n = 1).

Since direct connectivity measurements often show large
variability across studies (SI Appendix, Table S1), we wanted to
understand if the V1 network model can reproduce the same
recorded contrast response (Fig. 3A, Left and Right) with connec-
tivity weights of different magnitudes and, if yes, how different
these connectivity weights could be. Intuitively, if one increases
the excitatory weight JXE to a population, it is necessary to com-
pensate it with a proportional increase in the inhibitory weight
JXI in order to keep the overall firing rates the same. Therefore, we
expect JXE and JXI that are consistent with the experimentally
recorded firing rates to be variable, yet correlated. Thus, to infer
distributions of connectivity weights that are consistent with the
recorded firing rates, we first generated diverse initial sets of the
SSN connectivity parameters JXY and gX . In the next step, we
optimized these initial SSN parameters to ensure that the SSN

steady states and input (rE , rI , and TdLGN) closely approximated
the average recorded cortical and thalamic contrast responses.

To obtain initial sets of the SSN parameters JXY , gX , and
n , we generated triplets of sample thalamic and cortical contrast
responses TdLGN, rE , and rI as random monotonically increas-
ing functions of the contrast C within the ± SEM areas of
the measured contrast responses (Fig. 3C, Left). For each such
triplet, we kept n constant in the range between 1.1 and 5 and
computed the initial six weights JXY , gX as a solution of the
overdetermined linear system in Eq. 1. We kept the resulting
initial weights JXY , gX for the optimization procedure if they
were positive, and led to a stable steady state of the SSN model
(SI Appendix, Eqs. S4–S7). In the next step, we minimized a score
function (SI Appendix, Eq. S8) to obtain the optimized weights
which accurately reproduced the mean contrast responses (Fig.
3C, Right). The resulting optimal weights yielded excellent fits
with low scores (SI Appendix, Eq. S8, and Fig. 3D; to illustrate the
accuracy of these fits we show the worst resulting fit in Fig. 3C,
Right). Considering the resulting optimal fits, we found that, in
line with previous experimental and theoretical evidence (19, 20,
48, 49), the distribution of the power law exponents n peaked at
n = 1.9 (Fig. 3E).

Next, we highlight four characteristic features of the result-
ing connectivity distributions. First, the recorded thalamic and
cortical responses were supported by connectivity weights of
diverse magnitudes (Fig. 3F ), showing that variability in connec-
tivity strengths across experiments does not necessarily contradict
the existence of canonical cortical computations. Specifically,
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we found that the distributions of the inferred thalamic input
weights gE and gI were largely limited to the range 1 to 5, while
distributions of recurrent connectivity weights JXY were broader
and spanned almost a fivefold range, with values from 1 to 24
(Fig. 3F ). Second, since it has previously been demonstrated that
mouse E and PV+V1 neurons respond paradoxically to excitation
of the PV+ population (12), we asked if the resulting circuit was
an ISN (10, 11). We found that all inferred connectivity weights
were consistent with the ISN regime (SI Appendix, Eq. S11) (10,
12, 21, 50), starting from the smallest contrast value of 4%
recorded in our experiments (SI Appendix, Fig. S5C ). Third, the
connectivity weights to the I population were stronger than the
weights to the E population in all inferred sets of parameters (Fig.
3F, Top, weights to E; Fig. 3F, Bottom, weights to I). However, the
relative contributions of the weights from all three input sources
(E, I, and dLGN) targeting the E population were remarkably
similar to the relative contributions of the weights targeting the
I population (Fig. 3G). Finally, even though JXY and gX were
broadly distributed, the connectivity weights in 98.5% of the 103
final parameter sets represented an ascending sequence following
the order gE < gI < JEI < JEE < JII < JIE (Fig. 3H ).

Having discovered this strikingly consistent order within the
inferred connectivity weights, we next focused on those pairs of
connectivity weights for which connection probabilities and am-
plitudes have been previously reported within experimental stud-
ies (Fig. 4). First, we addressed the relationship between the thala-
mic input weights gI and gE . Recently, an extensive in vitro study
(51) reported connection probabilities and response amplitudes
of thalamocortical connections across V1 layers and cell types.
Specifically, Ji et al. (51) demonstrated that the thalamic projec-
tions to V1 E neurons had either similar (L2/3 and L6) or slightly
lower (L4 and L5) connection probabilities than thalamic projec-
tions to PV+V1 neurons; the response amplitudes, however, were
substantially lower in V1 E cells than in PV+ neurons in all V1
layers (see also ref. 52 for L4). Connection probabilities combined
with corresponding response amplitudes estimate the connectivity
weight between cortical populations. Thus, the data in ref. 51
suggest that the connectivity strength of thalamocortical projec-
tions to E neurons is lower than to PV+ V1 neurons. Consistent
with this report, our inferred input weights to E cortical neurons
were lower (median gE = 1.5) than the thalamic input weights to
the I neurons (median gI = 1.9) across all inferred parameter sets
(Fig. 4A).

We next examined the relation between the thalamic feedfor-
ward weight gE and recurrent cortical weight JEE . Specifically,
we related our findings to the experimental results by Lien and
Scanziani (53), who performed in vivo recordings of excitatory
postsynaptic currents in V1 L4 pyramidal cells and found that
thalamic excitation, isolated by optogenetic silencing of V1, was
36± 2% of the total pyramidal cell excitation. To understand
whether our inferred connectivity was compatible with the lower
thalamic contribution to overall V1 excitation reported by Lien
and Scanziani (53), we computed thalamic and cortical excitatory
contributions to the E cortical population as the product of
our recorded cortical and thalamic firing rates with the inferred
connectivity weights JEE and gE (SI Appendix). Consistent with
this observation, the relationship gE < JEE held across 100%
of our inferred sets of connectivity weights (Fig. 4B), suggesting
the predominant role of recurrent cortical connections over the
thalamic input weights.

We now turned to the cortical circuit and compared the
inferred recurrent connectivity weights JXY with reports from
in vitro whole-cell patch-clamp recordings of pyramidal cells
and PV+ neurons (SI Appendix, Table S1). For each experimental

source, we computed the connectivity weights JXY (gray cells in
SI Appendix, Table S1) as a product of the measured connection
probability, the measured strength of the PSP (white cells in
SI Appendix, Table S1), and the percentage of neurons in the
source population Y of the connection XY . Since our network
represents the circuit motif between V1 pyramidal cells and
PV+ inhibitory neurons, we made the following assumptions to
determine the percentage of neurons in the source population: we
set the fraction of excitatory neurons to be 80% of all V1 neurons
(55) and the fraction of PV+ neurons to 50% of the inhibitory V1
population in layers 2/3 to 6 (56) (SI Appendix). This resulted in
89% of neurons in the E SSN population and 11% of neurons
in the I SSN population (SI Appendix). Visual inspection of
the computed connectivity weights in the experimental reports
(SI Appendix, Table S1) suggested a similar ascending order to
that observed in our inferred connectivity sets (Fig. 4C and
SI Appendix, Fig. S5B; for each column in SI Appendix, Table S1,
consider the estimated JXY values in subsequent rows highlighted
in gray). Since connectivity weights computed from experimental
measurements (SI Appendix, Table S1) sometimes showed large
variability across experimental studies, we decided to next analyze
the relationship between the weights JXY within individual
studies (4, 6, 8) that contained information on at least one pair
of connectivity weights JXY .

To understand how often the relationship in a pair of
the connectivity weights JXY inferred from our activity
recordings coincided with the relationship between connectivity
weights determined based on the experimental reports (4, 6,
8) (SI Appendix, Table S1), we systematically analyzed each of
six possible pairs built from four connectivity weights JXY .
Remarkably, all measured relations, in which the experimental
results among themselves were consistent across all available
sources and V1 layers, corresponded to those inferred by our
model (JEI < JIE , JEE < JIE , JII < JIE , and JEE < JII )
(SI Appendix, Table S1, and Fig. 4D, Bottom). Specifically, JIE
was always the strongest connectivity weight, and JII exceeded
JEE in all cortical layers and in our inferred connectivity sets
(SI Appendix, Table S1, and Fig. 4D). The remaining two pairwise
relations found in our inferred connectivity sets (JEI < JEE

and JEI < JII ) held true for the majority of cortical layers and
experimental sources. Specifically, we found three exceptions from
the above rules: the relation JEI < JEE did not hold in L6, and
two available experimental reports for the relation (JEE , JEI ) in
L2/3 and (JII , JEI ) in L5 did not lead to consistent conclusions
(Fig. 4D, Bottom).

Is it possible to specify which features of the recorded contrast
response trajectories lead to the discovered ascending order in
the connectivity weights gE < gI < JEI < JEE < JII < JIE ?
We used the SSN model equations to analyze the impact of
the contrast response shapes and magnitudes on the relations
between the connectivity weights. First, we could show that
the relation gE < gI between the input weights gE and gI
follows from the SSN equations whenever the relative increase
of the I firing rate rI for low contrasts overtakes the E firing
rate rE increase (SI Appendix, Fig. S6A). The supralinear power
law transfer function makes the feedforward thalamic contrast
response dominate the recurrent cortical input for low contrasts
(24), and the higher input weight gI ensures that the I firing
rate exceeds the E firing rate, as observed in our recorded con-
trast response functions (SI Appendix). Second, we found that
the relation gE < JEI follows directly from the fact that the
cortical network operates as an ISN and because there exists an
interval of contrasts where the thalamic contrast response grows
faster than the contrast response of the I cortical population
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Fig. 4. Comparison of the cortical and thalamic input weights inferred from the contrast responses and computed based on the direct experimental
connectivity measurements. (A) The thalamic input weights to E cortical population were lower than the I-weights in 100% of the inferred connectivity parameter
sets. (B) For cortical E neurons, the weight gE of the dLGN input was lower than the recurrent cortical weight JEE in 100% of the inferred connectivity parameter
sets. The colored area (purple) comprises relations between JEE and gE for which thalamic contribution of excitatory input entering the E cortical population
would be smaller than the experimentally determined upper bound of 36 ± 2% (53, 54). (C) The connectivity weights between V1 populations computed from
previously published in vitro measurements have largely the same increasing order as the connectivity parameters obtained from our SSN-based inference
procedure based on in vivo activity. (D) Most of the pairwise relations between connectivity weights (Fig. 3H) inferred from in vivo activity were consistent with
relations computed from previous in vitro measurements (SI Appendix, Table S1).

(SI Appendix, Fig. S6B). Notably, while the connectivity weights
inferred using the nonlinear thalamic response fulfilled the ISN
condition automatically (SI Appendix, Fig. S5), none of the con-
nectivity weights inferred assuming a linear thalamic input sat-
isfied the ISN condition for low and intermediate contrasts.
Additionally, reflecting the lack of the ISN condition, inference
led to thalamic input weights gE that exceeded the cortical
connectivity weights JEI (SI Appendix, Fig. S7). Finally, we found
that the specific shapes of the contrast response functions imply
the relations gE < JEE , JEI < JEE , gI < JIE , and JII < JIE .
In particular, these relations hold if for some contrast values, the
dLGN contrast response lies above the linear contrast response—
the line connecting zero and 100% contrast values—while the
recorded cortical contrast responses are located below the linear
responses (SI Appendix, Fig. S6C ). Notably, as we tested our in-
ference method with the recorded cortical responses and artificial
linear thalamic inputs, both thalamic feedforward input weights
gE and gI exceeded recurrent cortical excitation weights JEE

and JIE (SI Appendix, Fig. S7). Using this observation and the
SSN model, we have shown that the specific concave shape of the
thalamic response impacts the relationship between the recurrent
connectivity weights of the cortical network (SI Appendix).

Taken together, with minimal prior assumptions and solely
based on the recorded in vivo extracellular data, our SSN-
based inference method found a consistent ascending order
between the inferred cortical and input connectivity weights gE <
gI < JEI < JEE < JII < JIE . Remarkably, despite substantial
variability in the absolute values of connectivity measurements
in previous in vitro connectomics estimates (white rows in

SI Appendix, Table S1), the inferred pairwise relations between
connectivity weights (JEI < JIE , JEE < JIE , JII < JIE ,
and JEE < JII , gE < JEE , gE < gI ) were preserved across
experimental sources and cortical layers and matched the relations
identified through our inference method. Finally, we used the
SSN model to analyze which features of the recorded contrast
responses underlie the relations between the thalamic input
weights gE < gI and the relations gE < JEE , JEI < JEE ,
gI < JIE , and JII < JIE between the cortical connectivity
and input weights. Additionally, we discovered that the relation
gE < JEI is a consequence of the ISN condition.

Determining Connectivity and Input Profiles from Contrast and
Orientation Responses. Since it is known that V1 neurons form
fine-scale subnetworks according to orientation preference and
general response similarity (5–7, 57–59), our next goal was to
infer orientation-dependent connectivity patterns in a network of
orientation-selective cortical neurons. To reproduce the recorded
dLGN contrast responses and V1 responses to orientations and
contrasts (Fig. 5A and B ), we assumed that the cortical firing rates
are the steady states RE and RI of the SSN model

RX (ψ − θ,C ) =
( π/2∫
−π/2

(
WXE (θ − θ′)RE (ψ − θ′,C )

−WXI (θ − θ′)RI (ψ − θ′,C )
)
dθ′

+ TdLGN(C )LX (ψ − θ)
)n

+
. [2]
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C D

B

Fig. 5. Inferring orientation dependence of recurrent and feedforward connectivity. (A) The connectivity profile WXY (θ − θ′) describes the connection strength
from a population Y to X with a difference in their preferred orientations of |θ − θ′|. The input profile LX(ψ − θ) represents the thalamic input to a population
with the preferred orientation θ. (B) The width of the normalized orientation tuning curve r̃E is smaller than r̃I, wrapped Gaussian fit σE = 56◦ ± 2◦, σI =
62◦ ± 3◦ mean ± SEM (Left). The orientation-dependent connectivity (WXY ) and input connectivity profiles (LX ) are determined using the widths of the recorded
orientation tuning curves σE and σI and the connectivity weights JXY , gX , n derived from the contrast responses in Fig. 3. (C) The connectivity profiles WXY (Left
and Middle) can be calculated using σX , JXY , and n. The input profiles LX (Right) depend on σX , gX , and n. Line indicates connectivity and input profiles for median
JXY , gX , and n. Shaded area indicates distributions of connectivity and input profiles corresponding to JXY , gX , and n distributions in Fig. 3 E and F. (D) Normalized
connection strengths between populations with different preferred orientations. The orientations are binned in 15◦ steps to aid comparison with experimental
findings.

Here C represents the stimulus contrast, n is the exponent of
the transfer function, θ is the preferred orientation of a cortical
population X , X ∈ {E , I }, and RX (ψ − θ,C ) represents the
firing rate of the population X with the preferred orientation
θ in response to a grating stimulus having orientation ψ. The
connectivity profiles WXY (θ − θ′) correspond to the strength
of connections from population Y to population X that dif-
fer in their preferred orientations by |θ − θ′|. The X popula-
tion with the preferred orientation θ receives the thalamic input
TdLGN(C )LX (ψ − θ), and the function LX describes orienta-
tion dependence.

Next, we used our experimental observation of contrast invari-
ance to constrain the recurrent and input connectivity profiles
WXY and LX in Eq. 2. Contrast invariance means that for a fixed
grating orientation, the response can be represented as a product
of contrast and orientation components, namely, the firing rates
RE and RI follow the relations (19, 20)

RE (ψ − θ,C ) = rE (C )r̃E (ψ − θ),

RI (ψ − θ,C ) = rI (C )r̃I (ψ − θ). [3]

Here rE and rI are the contrast response functions studied
in the previous section, and r̃E and r̃I are the peak-aligned and
normalized orientation tuning curves (Fig. 5B, Left). The property
of contrast invariance is computationally advantageous because it
allowed us to reduce the 2D product of its 1D contrast and ori-
entation components and study each component independently.
We found that contrast responses rX , TdLGN (Fig. 5B, Right),
and orientation tuning curves r̃X (Fig. 5B, Left) provide direct

access to the connectivity WXY and input tuning profiles LX as
expressed by the following relations:∫ π/2

−π/2

WXY (θ − θ′)r̃Y (ψ − θ′)dθ′=JXY (r̃X (ψ − θ))1/n ,

LX (ψ − θ) = gX (r̃X (ψ − θ))1/n , X ,Y ∈ {E , I }, [4]

where the connectivity and input weights JXY and gX cor-
respond to the cortical and thalamic contrast response func-
tions studied in the previous section (for full derivation, see
SI Appendix, Eqs. S18–S27). Relations in Eq. 4 generalize the
result in Persi et al. (60), which showed that the wrapped Gaus-
sian approximation makes it possible to relate orientation tuning
curves and connectivity profiles.

In order to understand how our inferred connectivity between
populations depends on the similarity of their orientation prefer-
ence, we next determined the widths of the recurrent connectivity
profiles WXY (Fig. 5C, Left and Middle) and the input profiles
LX (Fig. 5C, Right and SI Appendix, Eqs. S29 and S31). Inter-
estingly, inspecting equations in SI Appendix, Eqs. S29 and S31,
we realized that the recorded contrast responses corresponding to
JXY and gX mostly determine the amplitudes of the connectivity
and input profiles and represent connectivity strength between
populations with similar preferred orientations (Fig. 5C ). In
contrast, the widths of orientation tuning curves σX together with
the power law exponent n characterizing the neuronal transfer
properties determine the widths of connectivity profiles. The
relative widths of connectivity and input profiles are best visible
after normalizing their amplitudes (Fig. 5D). We found that the
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widths of connectivity profiles in each parameter set followed the
order σEI < σEE ≈ σII < σIE . This order of connectivity pro-
files’ widths resembled the ascending order of connectivity weights
JEI < JEE < JII < JIE discussed in the previous section.

How do our inferred connectivity profiles WXY and tuning
properties of the thalamic inputsLX relate to previous experimen-
tal results? We first compared the width of the inferred thalamic
input profiles LX with the width of V1 orientation tuning curves
(Fig. 5B, Left), a relation addressed in prior experimental reports
(e.g., refs. 53, 61–64). We found that the widths of the inferred
orientation-specific thalamic inputs to cortical neurons (mean
σ

inp
E = 65◦, σinp

I = 70◦) have a broader tuning than the average
V1 orientation tuning curves themselves (mean σE = 56◦, σI =
62◦). This is consistent with a wide range of experimental studies
across cortical layers, showing broader dLGN input than V1
orientation tuning curves (53, 61–64).

We also compared our derived cortical connectivity profiles
WXY with previous direct connectivity measurements. To
the best of our knowledge, information on how connection
probability and the relative connection strength of I-to-E, and
I-to-I projections depend on the difference in the populations’
preferred orientations does not seem to be available (but see ref.
57). Hence, for our comparison of inferred and experimentally
measured orientation-dependent profiles, we concentrated on the
direct measurements currently available for E-to-E and E-to-PV+
connections in L2/3 (5, 6). The orientation dependence of our
inferred connectivity profiles (mean σEE = 33◦, σIE = 42◦;
Eq. 4 and SI Appendix, Eq. S31) is consistent with direct
experimental measurements of connection probability (5, 6),
demonstrating that the connectivity profile between pairs of E
neurons was sharper than the E-to-I connectivity profile.

In summary, we found that the widths of the connectivity
profiles we derived from in vivo extracellular activity followed
the order σEI < σEE ≈ σII < σIE , resembling the order of the
connectivity weights JEI < JEE < JII < JIE . Consistent with
experimental reports across cortical layers, we found that both E
and I input profiles LX were broader than the average cortical
orientation tuning curves. For future experiments, our results
predict that WEI is the narrowest and WIE is the broadest
profile of all four projections. We derived this relation from two
observations: 1) that the width of the I orientation profile σI

exceeds that of the E population σE and 2) that the width σ
inp
E

of the E input profile LE exceeds the width of orientation tuning
curve σI (SI Appendix).

Discussion

Here we combined in vivo extracellular dLGN and V1 responses
with the stabilized supralinear network (SSN) model to infer
feedforward and recurrent connectivity weights of mouse primary
visual cortex and their orientation-dependent connectivity pro-
files. In a two-step inference procedure based on the separation
of contrast and orientation tuning of V1 responses, we identified
consistent relationships between the input and recurrent cortical
connectivity weights, gE < gI , gE < JEE , and JEI < JEE <
JII < JIE . We were also able to extract these relations from
experimental functional connectomics results showing variability
across studies. Our results demonstrate that connectivity weights
of diverse magnitudes can support the same recorded thalamic and
cortical responses. However, the specific shapes of the recorded
responses rely on ubiquitous connectivity motifs present across
otherwise diverse connectivity measurements. These results pro-
vide evidence that key computations of visual processing are

imprinted into the underlying connectivity and can be discovered
via a circuit model.

Inferred Connectivity Reveals Principles Consistent with
Previous Functional Connectomics Estimates. Cell type–
specific connectivity in mouse V1 has been measured by a
number of functional connectomics studies (4, 6, 8). These
studies reported amplitudes of PSPs and connection probabilities
which can differ by an order of magnitude across experiments
(SI Appendix, Table S1). Specifically, considering relations
between pairs of connectivity weights—a procedure similar to
methods applied to single slices or individual neurons to remove
experimental variability (e.g., refs. 51, 65, 66)—revealed that the
relative magnitude of the recurrent weights followed the order
JEI < JEE < JII < JIE across the majority of experimental
studies and across the different cortical layers. Intriguingly,
this order was also contained in the connectivity we derived
from our in vivo data. Our further theoretical analysis of the
recorded cortical and thalamic contrast responses suggests that the
specific response shapes rely on the order we identified using our
inference procedure. We note that a specific rank structure of the
connectivity weights between the neuronal populations requires
combining PSP amplitudes with the connection probability.
In contrast to the connectivity weights between the neuronal
populations, the PSP amplitudes between individual cell types
alone do not seem to follow a specific rank structure.

Our results support several experimental and theoretical find-
ings related to the computational regime of the cortex. First, the
strong E-to-I connection has been linked in a previous compu-
tational study to image discriminability (67). Second, we found
that 100% of the inferred feedforward and recurrent connectivity
weights were consistent with the inhibition stabilized regime (12,
50). This regime has been associated with the paradoxical firing
rate reduction in response to increased excitation of the I pop-
ulation and a fast, flexible stabilization mechanism that balances
otherwise unstable networks (11, 50). Such a paradoxical response
of cortical populations seems to be present in both superficial and
deep layers of mouse V1 (12). Interestingly, although previous
studies hypothesized that a strong connectivity weight JEE might
be a requirement for inhibitory stabilization (11, 50, 67), the
ISN regime arises in our network even though the connectivity
weights JEE and JEI were the smallest entries in the connectivity
matrix (Fig. 3). Last, our inference method exploited the property
of contrast invariance (19, 20), which we confirmed at the level
of single neurons as well as cortical excitatory and inhibitory
populations. This indicates that contrast invariance and inhibitory
stabilization can be supported jointly by a connectivity pattern
consistent with recorded cortical and thalamic activity.

Furthermore, we determined the widths of the orientation-
dependent connectivity profiles showing that they follow the order
σEI < σEE ≈ σII < σIE . Specifically, we have shown that this
ascending order of the connectivity profiles’ widths is a direct
consequence of the property of contrast invariance, combined
with the observation that the recorded inhibitory orientation
tuning curve is broader than its excitatory counterpart. In line
with our inferred relation σEI < σEE , direct measurements of
orientation-dependent connectivity profiles report that the E-to-
E connection is sharper than that of E-to-PV+ in V1 L2/3 (5, 6).
However, both profiles WEE and WIE which we inferred from
our in vivo recorded data were sharper than respective profiles
reported in the direct connectivity measurements (5, 6). Inves-
tigating our network model and its implications, we found that
broader profiles WEE and WIE correlate with narrower orienta-
tion tuning in the excitatory population. Interestingly, V1 L2/3
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pyramidal neurons targeted in the previous connectivity measure-
ments (5, 6) are known to display sharper orientation tuning (e.g.,
refs. 17, 63) compared to lower layers, which dominate in our
experimental data. Thus, the overall broader orientation tuning
curves in deeper cortical layers might cause the sharper tuning
of connectivity profiles WEE and WIE we find based on our
recorded data.

Previous work reported that E cortical neurons receive primar-
ily untuned input from their local inhibitory afferents (68). We
emphasize that our highly selective WEI represents the connec-
tivity profile and not the recurrent input current profile measured
in these experiments. Indeed, our theory predicts that the input
arriving at E cortical population from their local I afferents is a
convolution of the functions WEI with the I orientation tuning
curve (SI Appendix). Consequently, we show that the resulting
width of the recurrent input profiles from each of the local affer-
ents is equal to the widths of the corresponding external thalamic
input profiles, which we found to be almost flat. Additionally,
although direct measurements of the highly selective connectivity
profile WEI do not seem to be available at present, the overall
similarity of neuronal feature selectivity found for this connection
in Znamenskiy et al. (57) can serve as a predictor of connectivity
in mouse V1 L2/3.

We not only studied the recurrent connections in cortex but
also considered simultaneously the thalamic input strengths and
their profiles. Recurrent connections and feedforward input
weights are rarely measured at the same time (53, 54, 63, 68);
therefore, it is often difficult to study their relative strength.
Consistent with previous experimental results, we found cortical
connections to be stronger than the thalamic input weights,
indicating that only a fraction of the excitation in cortex is due
to the thalamic connections (53, 54, 63). Our findings are also in
line with direct comparisons of orientation selectivity of dLGN
spiking output, V1 membrane potential, and V1 spiking activity
(61), where dLGN spiking output was found to be more strongly
orientation-tuned than the average V1 membrane potential. This
would predict that orientation-tuned information from thalamus
is either mixed when converging on V1 neurons or preserved
only for specific projections, such as shown for the relay of
direction selectivity from retinal ganglion cells via the shell of
dLGN to upper layers in V1 (70). In general, the tuning of
thalamocortical afferents and their interplay with intracortical
connections in the emergence of orientation selectivity have been
under intense discussion. Our model results provide evidence that
if thalamic afferents, cortical inputs, membrane transfer functions,
and stimulus responses are considered together, orientation tuning
can be generated with a combination of weaker, broadly tuned
thalamic input and strong, sharply tuned cortical connections
(53, 54, 63).

Theory-Based Inference of Connectivity from In Vivo Responses
Complements Existing In Vitro Approaches. Inferring network
connectivity using a theory-driven network model and in vivo
responses complements existing in vitro approaches based on
paired whole-cell recordings (3–9, 34), photostimulation (71),
or glutamate uncaging (72), gold standard methods for assessing
circuit-level connectivity. One strength of our method is that it
is based on functional measurements in the intact, living brain,
which has the potential to overcome limitations imposed by
the unavoidable truncation of axodendritic branches in slices,
where connectivity measurements constitute a lower bound. In
addition, since our in vivo activity recordings are obtained under
thalamocortical operating regimes established by local and long-
range activity, they reflect, for instance, neuromodulatory input

(73, 74), specific short-term synaptic dynamics (75), and back-
ground synaptic activity, rarely present under in vitro conditions
(76). Finally, our inference method rests on stimulus-driven re-
sponses of neuronal populations and can thus yield estimates
of connectivity in the context of functional response properties.
This is important because fine-scale specificity of connectivity
with respect to visual tuning similarity is a prominent motif in
primary visual cortex (5–7, 59) but typically requires technically
challenging experiments involving a reidentification of neurons in
vitro after their visual response properties were first characterized
in vivo (5–7, 57, 59, 77–79). Such mapping is currently only
performed by a few laboratories worldwide, which have the ap-
propriate technical resources and broad methodological expertise.

Our model-based connectivity inference connects a mathemat-
ically interpretable, generative model of brain activity with the un-
derlying circuit. In contrast to direct connectivity reconstruction
(3, 80, 81) or inference approaches using large spiking networks
(82–84), which focus on detailed neuron-to-neuron connectivity,
we are able to deduce cortical firing regimes and possible network
states directly from the inferred weight matrix. Since the inferred
connectivity is connected to a generative model, it can additionally
be used to generate predictions about network activity that can
be tested experimentally. Other groups have recently made com-
plementary progress in inferring connectivity from constrained
models, focusing on spatial integration and behavioral state (85),
inhibitory cell types (86), or response perturbations (87), showing
that model-based connectivity inference can be used flexibly to
elucidate multiple aspects of cortical information processing. Yet,
our approach is unique in that it succeeds in inferring remarkably
accurate cortical connectivity features directly and exclusively
from dLGN and V1 response data, without imposing connectivity
constraints taken from the literature.

Future Directions. Our results can be extended in several direc-
tions. Conceptual advances on the experimental side demonstrate
that not only orientation preference but general similarity in
stimulus selectivity can influence V1 connectivity (7, 57). Future
modeling efforts could thus expand the computational framework
we present here to other aspects of feature selectivity, such as
receptive field location, spatial and temporal frequency prefer-
ences, and similarity of responses to temporally varying stimuli.
More substantially, while V1 neurons can be broadly classified into
excitatory and inhibitory types, there are many known subtypes
for both excitatory and in particular inhibitory V1 neurons (4,
34, 88–94). Future work, both on the recording and modeling
front, could therefore consider more neuronal subtypes in relation
to specific computations. For instance, interneuron-specific two-
photon calcium imaging (85–87) or optogenetic perturbations
(12, 87) would have the potential to inform multidimensional
circuit models including multiple cell types. In this context, it
might also be interesting to further explore the role of SbC
neurons, which we found to constitute a substantial fraction of
dLGN and V1 neurons. Here multipopulation SSNs might help
elucidate their so-far relatively unexplored function (17, 95–97).
Future work could also consider cortical layers separately, provid-
ing insights into the pronounced differences in connectivity and
potentially operating regime observed experimentally (11, 98, 99).
For instance, L2/3 is well known for its long-range connectivity
between similarly tuned pyramidal cells (5, 58), strong lateral
inhibition, and the sparsity of responses (41, 98), while L5 coding
is considered dense, with higher firing rates and broader stimulus
selectivity (98, 100).

With respect to theoretical insights, an important next
step would be establishing ubiquitous connectivity statistics
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in the alternative modeling frameworks (101) taking into account
additional or complementary circuit mechanisms. This step would
require mathematical theories to bridge these models with the
SSN-type circuits and direct connectivity measurements. Besides,
we have so far restricted our analyses on the steady state, but
responses to contrast and orientation are well known to exhibit
interesting and relevant dynamics, such as phase advance (16)
and time-dependent sharpening of tuning (102). In the future, it
will be important to extend our approach to understand whether
and to which degree the dynamic changes in the population re-
sponses are accompanied by changes in the underlying functional
connectivity.

Finally, future studies could investigate how recurrent V1 and
thalamic input connectivity change as a function of behavioral
state of the animal. Indeed, previous work has suggested that
effective connectivity might change with locomotion and stim-
ulus context (85, 103). Exploiting in vivo recordings, which can
encompass the full spectrum of behavioral state-related neuronal
modulations, and our model-based inference framework to study
circuit connectivity promises to generate novel insights into the
potentially highly dynamic relationship between connectivity and
computations.

Data, Materials, and Software Availability. Data and computer code under-
lying this manuscript can be found at G-Node (https://doi.gin.g-node.org/10.127
51/g-node.qwc7y5) (25). All other study data are included in the article and/or
SI Appendix.
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