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Abstract

The development of consistent left-right (LR) asymmetry across phyla is a fascinating question in biology. While many
pharmacological and molecular approaches have been used to explore molecular mechanisms, it has proven difficult to
exert precise temporal control over functional perturbations. Here, we took advantage of acoustical vibration to disrupt LR
patterning in Xenopus embryos during tightly-circumscribed periods of development. Exposure to several low frequencies
induced specific randomization of three internal organs (heterotaxia). Investigating one frequency (7 Hz), we found two
discrete periods of sensitivity to vibration; during the first period, vibration affected the same LR pathway as nocodazole,
while during the second period, vibration affected the integrity of the epithelial barrier; both are required for normal LR
patterning. Our results indicate that low frequency vibrations disrupt two steps in the early LR pathway: the orientation of
the LR axis with the other two axes, and the amplification/restriction of downstream LR signals to asymmetric organs.
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Introduction

In vertebrates, external bilateral symmetry with respect to

the left-right (LR) axis is coupled with a variety of internal

asymmetries that are consistently biased in all normal individuals

[1,2]. For example, conserved LR asymmetry of the internal

organs includes the shape and placement of the heart, liver, gall

bladder, stomach and lungs. Moreover, abnormalities in laterality

form a class of human birth defects that can seriously impact the

health of affected individuals [3,4,5]. These defects can be

classified into several types: situs inversus, the complete inversion

of all body organs resulting in mirror-image organ position

compared to normal individuals; isomerism, where the individual

develops symmetrically, resulting in organs that are duplicated or

missing completely; dextrocardia (where the heart is located on the

wrong side) and other single organ inversions; and heterotaxia, a loss

of concordance in which the location of each organ is determined

independently from all other organs. The consistent asymmetry

between the left and right sides of many organisms proposes a

puzzling developmental problem. How are all embryos able to

pattern the LR axis consistently despite a bilaterally symmetrical

environment?

Two main models have been proposed to explain consistent

embryonic laterality. The popular nodal flow model proposes that

the inherently clockwise rotation of cilia located on cells isolated in

a small pocket or node of the late gastrula- and early neurula-stage

embryo creates a leftward fluid flow [6,7,8,9,10,11,12]. This

asymmetric flow is transduced into asymmetric gene expression

by direct redistribution of morphogens and/or the activation of

sensory cilia on one side of the node [9,13,14]. However, a

number of facts have suggested the need for alternate models that

focus on much earlier events occurring prior to gastrulation

[15,16,17,18,19].

Animals in many diverse phyla set up the LR axis without cilia,

including snails [20,21], sea urchins [22], Drosophila [23,24],

Arabidopsis [25,26,27], C. elegans [28,29] and pigs [30]. Further-

more, many model organisms establish their LR asymmetry prior

to gastrulation, stressing the importance of earlier mechanisms,

which is the focus of the second model of embryonic laterality. The

cytoskeleton of the vertebrate embryo has a LR-biased chirality,

which is present even prior to the first cell cleavage [31] and is

likely an ancient property of all cells [32]. Within the first

embryonic cell divisions, the biased cytoskeleton drives differential

localization of maternal protein cargo along the LR axis [33,34]

including two potassium channels [33,35] and two proton pumps

[36,37]. Because the cells on the right side of the embryo are

more negative (due to the release of K+ and H+ ions), electrical

gradients, together with a network of open gap junctions, allow LR

signaling molecules such as serotonin to be distributed to the right-

and ventral-most blastomere [38,39]. To protect and maintain the

voltage gradient, tight junctions must preserve the integrity of the

epithelium that participates in this multicellular electric circuit.

Alterations to tight junctions, therefore, result in significant

disruptions of the LR axis [40,41]. Together, all of these steps

are required for LR orientation and are upstream of asymmetric

gene expression and organ situs [42]. While most of these steps

have been characterized in detail in the Xenopus model, similar

roles for ion flux [20,43,44,45,46], gap junctions [47], serotonin
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[39], and tight junctions [48,49] have been observed in a variety of

other species including Arabidopsis, C. elegans, sea urchins, snails,

rabbits, and chicks, among others.

The functional investigation of asymmetry mechanisms requires

the ability to perturb intracellular structures and cell:cell inter-

actions at precise stages of development. However, molecular-

genetic alterations do not offer temporal control (especially for

maternal mRNA or protein targets, where inducible promoters

cannot be used). For example, genetic mutations [6,8] exert effects

throughout development; likewise, once microinjected, mRNAs

cover very broad segments of embryogenesis [36,41,50]. Pharma-

cological approaches [51], while offering some degree of temporal

control [38,39], are not ideal because of issues including unknown

half-life and metabolism, (in)accessibility of internal structures, and

concern over when the chemical is truly ‘‘washed in or out’’ of the

system [52].

Thus, we sought a treatment that would avoid problems of

penetration into deep tissues, and most importantly, would afford

precisely-delimited ON and OFF states for perturbation of em-

bryonic events. A few studies (mostly in vitro) have examined the

effects of physical vibrations. Vibration protocols that were de-

signed to mimic the intensity and duration of vibrations produced

during the launch phase of space flights altered the expression

of several cytoskeletal genes in Jurkat T lymphocytes including

cytoplasmic actin, a-tubulin, keratin, and C-NAP1, a centriole-

organizing protein [53]. The microtubule network and the

microtubule organizing centers (MTOCs) were also disorganized.

Similar results have been obtained for other cell types including

breast cancer cells and whole sea urchin embryos [54]. Thus,

vibrating embryos provides a promising method by which the

cytoskeleton and other aspects of embryonic organization can be

targeted in Xenopus embryos. Because vibration can be initiated

and stopped at exact timepoints, and because of the several studies

implicating cytoskeletal dynamics in LR asymmetry in a wide

range of phyla including vertebrates [23,27,28,31,33,34,55,56],

acoustic vibration was used to explore novel aspects of LR

patterning in frog embryos.

We hypothesized that physical perturbations via low frequency

vibrations would disrupt the orientation of the LR-axis in a period-

specific manner. We expected that vibrations would be most

effective during the first few cleavage stages, during the period

when the chiral cytoskeleton plays a critical role in orienting the

LR axis relative to the anterior-posterior and dorsal-ventral axes

[33], and is required for asymmetric localization of ion trans-

porters and other proteins [31,33,34,35,37]. Here, we identify

several low frequency vibrations that specifically randomize the

LR axis, and explore the effects of one, 7 Hz, at different stages of

development. While we confirm a strong effect of vibration during

the first cell cleavage, we also identify a second period of sensitivity

to vibrations and show that treatment during this sensitive period

disrupts tight junctions, an important part of the LR pathway.

Results

Low frequency vibrations alter orientation of the LR axis
Previous studies have shown that pharmacological reagents

that affect different components of the cytoskeleton can induce

laterality defects in Xenopus embryos [34,37], even when the

cytoskeleton is targeted prior to the first cleavage [31]. In other

systems, particularly in vitro culture of human cells, physical

vibrations have been linked to alterations in the cytoskeleton [54].

To address whether vibration could affect LR asymmetry, we used

a speaker driven by a digital signal generator to vibrate embryos

(covering the range of 7 Hz to 200 Hz) from the 1 cell stage

through neurulation (typically to stage 19, an overnight period)

(Figure 1A). Scoring the position of the heart, stomach, and gall

bladder at stage 45, we observed that several of these frequencies

specifically induced heterotaxia (an independent assortment of

individual organ inversions) in a significant proportion of exposed

embryos (Figure 1B–C). Low frequencies were the most effective of

the vibrations we tested. Inversion of the stomach was determined

only by the direction of gut looping, but we also noted that other

defects in gut coiling were present in some treated embryos (less

than 5% after vibration at 7 Hz, see Figure 1B, far right panel); we

did not characterize these defects. While we only scored asym-

metry in embryos with otherwise normal development (Figure 1B,

see dorsal images), vibration at 15 Hz also induced neural tube

defects and was significantly more toxic than the other frequencies

examined (data not shown); thus, for the remainder of our

analyses, we focused our efforts on 7 Hz vibration because it was

effective at disrupting the LR axis but produced few other defects.

Because speakers produce electromagnetic fields (EMFs) in

addition to physical vibrations, we wanted to determine whether

EMFs alone could be responsible for the effects we observed [57,

58,59,60]. Using a speaker with the stationary magnet removed

(allowing for the exact same EMFs to be produced in the absence

of physical vibration), we exposed embryos from 1 cell to st. 19,

or several other developmental periods. None of these EMF

exposures had an effect on the LR axis (Figure S1). We conclude

that EMFs do not affect the orientation of the LR axis, and that

a sinusoidal signal-driven speaker system is an effective and

inexpensive method for specifically disrupting asymmetry via

mechanical perturbation.

Stage-specific vibration exposure implicates two periods
of sensitivity

To identify specific stages at which developmental mechanisms

might be sensitive to mechanical disruption of LR patterning, we

vibrated embryos at 7 Hz for different periods of time, starting

and ending at different developmental stages. We observed that

vibration from 1 cell to st. 19 was most effective at disrupting the

LR axis (Figure 2, black arrow). Strikingly, initiating vibration just

60 minutes later (at the 2-cell stage) reduced the incidence of

heterotaxia by approximately 33% (Figure 2, blue arrow). This

result suggests that the period encompassing the first cleavage is

especially sensitive to vibration. Importantly, vibration from the 1

cell to 2 cell stage alone did not randomize LR patterning, sug-

gesting that vibration during this period is necessary, but not

sufficient, for maximum disruption of the LR axis.

Vibrations for various other durations revealed a second pos-

sible period that was sensitive to vibration: the window between

st. 4 (8 cell) and st. 7. Short vibration periods that encompassed

this entire developmental window induced heterotaxia in approx-

imately 10% of embryos, whereas other short vibration periods

that only covered portions of this window were less effective

(Figure 2). Further implicating this second sensitive period,

vibrations from st. 6 through neurulation induced heterotaxia in

approximately 12% of embryos (Figure 2, yellow arrow), but

vibrations starting just a few hours later at st. 8, also continuing

through neurulation, had no significant effects on the LR axis.

While the penetrance of heterotaxia was relatively low after these

later vibrations, similar rates of laterality problems have been

reported for well-established LR treatments (see for example

mutants and molecular manipulations reported in [61,62,63]).

From these results, we conclude that a period around stages 4–7

is sensitive to vibration, but to a lesser degree than vibrations

starting earlier in development.

Vibration Disrupts Asymmetry in Xenopus
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Figure 1. Heterotaxia is induced by various low frequency vibrations. A) A simple experimental device was produced from a Gwinstek GFG-
8216A function generator (right) attached to a 4-inch Sony speaker (left). A petri dish, with the appropriate solution containing embryos, was placed
on top of the speaker at various stages. B) Ventral views (V) showing organ position and dorsal views (D) showing normal dorsoanterior development
in tadpoles with wildtype situs, heterotaxia, and situs inversus. In all panels of ventral views, the red arrowhead indicates the apex of the heart, yellow
indicates the stomach, and green indicates the gall bladder. For wildtype organ situs, the apex of the heart loop is located on the animal’s right side,
the stomach coils to the animal’s left, and the gall bladder is positioned on the animal’s right. The heterotaxic tadpole shown here has an inverted
heart, but normal position of the stomach and gall bladder. There are seven combinations of position of the three scored organs that are each
examples of heterotaxia, including situs inversus, where all three organs are inverted. The right-most panel also shows an animal with heterotaxia,
with an inverted stomach and gut, but normal position of the heart. Note that the coiling of the stomach is also abnormal, a phenotype observed in a
minority of vibrated embryos (,5% at 7 Hz). C) Quantification of heterotaxia in embryos vibrated at different frequencies from 1 cell through st. 19 of

Vibration Disrupts Asymmetry in Xenopus
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Vibrations during two discrete periods increase the
incidence of laterality defects

Our results clearly implicated an effect of vibration during the

first cell cycle; groups of embryos vibrated from 1 cell through

neurula stages were more affected than those vibrated from the 2

cell stage (Figure 2). However, vibration from the 1 cell to 2 cell

stage was not by itself sufficient to alter LR patterning. To

determine if this early period of vibration would have additive

effects on a second discrete period of vibration, we vibrated

embryos from 1 cell to 2 cell, removed them from vibration, and

then resumed vibration at later periods for various developmental

windows. For many vibration periods, adding an early vibration

during the first cell cleavage enhanced the effect of later vibrations

(Figure 3). The most striking example was observed in embryos

vibrated from st. 6 through neurulation; embryos vibrated during

this period alone had a rate of 11.5% heterotaxia. Adding in an

early vibration from 1 cell to 2 cell increased the incidence of

heterotaxia obtained from this treatment to 42%. From these

results, we conclude that there are two main periods of sensitivity

to low frequency vibrations, and that treatments including both

periods of sensitivity have additive effects.

Vibration affects LR-relevant events upstream of
asymmetric gene expression

In Xenopus and other model species, there are well-character-

ized genes with asymmetric expression that are upstream of the

asymmetric morphogenesis and position of the heart and visceral

organs. We next asked whether vibrations disrupted the most

widely conserved asymmetric gene, Nodal (Xnr-1). Xnr-1 is nor-

mally expressed only on the left side of the embryo at approx-

imately stage 20 [64]. Vibrations starting at 1 cell, 2 cell, 4 cell or

st. 6 and continuing through neurulation all significantly disrupted

Xnr-1 localization (Figure 4). Mislocalization of Xnr-1 was

observed in 49–59% of the vibrated embryos, depending on the

period of treatment. Vibration from st. 8 through neurulation did

not significantly affect Xnr-1 localization (Figure 4); consistently,

this same treatment also did not significantly affect organ situs.

From these results, we conclude that the LR orientation mecha-

nisms disrupted by low frequency vibrations feed into the well-

conserved transcriptional cascades regulating organ situs [65,66],

and function upstream of asymmetric Xnr-1 expression.

Different periods of vibration produce variable
‘‘signatures’’ of inverted organs

We next analyzed the detailed distribution of different combina-

tions of the three organ positions among each treatment (7 possible

outcomes in all). We observed that embryos exposed to low

frequency vibrations from 1 cell to st. 19 had a large proportion of

the affected embryos developing situs inversus rather than

discordant heterotaxia (Figure 1B). If each of the three organs

independently assumes a right or left position in a truly random

manner, each combination of the 7 possible organ distributions is

expected to occur 14.3% of the time. To determine whether the

timing of vibration exposure affected the distribution of heterotaxia

development. 7 Hz and 15 Hz were the most effective at randomizing the LR axis, but 15 Hz vibration also produced other developmental
abnormalities in a large subset of embryos (not shown); therefore, 7 Hz was selected for additional study. Numbers on bar graphs indicate sample
sizes from a combination of two or more replicate studies. * p,0.01, but not biologically relevant because heterotaxia rates were below 10%, the
minimal meaningful difference. ** p,0.001, x2 test.
doi:10.1371/journal.pone.0023306.g001

Figure 2. Vibration period influences the frequency of laterality defects. When embryos were vibrated at 7 Hz during different periods of
development, striking differences in the rate of heterotaxia were observed. Most effective were vibrations that started at 1 cell and went through
mid-gastrula (st. 10.5) or neurula stages (st. 19, see black arrow). Somewhat less effective were vibrations starting just a short time later, at the 2 cell
stage (blue arrow). Finally, vibrations that included a second period of time, around st. 6, were able to disrupt left-right patterning, but to a lesser
degree (see yellow arrow, for example). For all groups, a red line indicates significant differences from non-vibrated controls (x2 test, p,0.01) and
heterotaxia rates above the minimal meaningful difference of 10%. A green line indicates that the treatment either was not significantly different
from controls or was below the minimal meaningful difference of 10% heterotaxia. All lines are the summed data from two or more replicate studies.
doi:10.1371/journal.pone.0023306.g002

Vibration Disrupts Asymmetry in Xenopus
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phenotypes, we graphed the affected embryos on a ternary plot [67],

where one axis defined the % of affected embryos with single organ

inversions (expected value for random placement = 14.3%63 =

42.9%), the second axis defined the % of affected embryos with

double organ inversions (expected value for random place-

ment = 14.3%63 = 42.9%), and the third axis defined the % of

affected embryos with all organs inverted (situs inversus, expected

value = 14.3%). Using this graph, we observed that distinct windows

during which embryos were vibrated produced unique ‘‘signatures’’

on the ternary plots. Embryos vibrated from 1 cell to st. 19 had a

higher percentage of affected embryos with situs inversus (Figure 5A,

blue), whereas embryos vibrated from 2 cell or 4 cell through

neurulation had significantly less situs inversus and more single

organ inversions (Figure 5A, red). Contrasting further, embryos

vibrated from st. 6 through st. 19 had even fewer affected embryos

with situs inversus, and more with single organ inversions

(Figure 5A, violet). In all 4 vibration groups examined, there was

relatively little change in the percentage of affected embryos with

double organ inversions. From these results, we conclude that the

timing of vibration significantly and specifically affects the signature

of affected organs, with the greatest differences due to changes in the

ratios of heterotaxic embryos with one versus three organ

inversions.

In order to compare these signatures to the outcomes of other,

well-characterized pathway perturbations, we analyzed the

primary data of published studies in which the position of all

three organs was reported following treatment with a molecular or

pharmacological reagent to disrupt orientation of the LR axis

[34,37,38,39,68,69,70,71]. Comparing the % of affected embryos

with single or double organ inversions and situs inversus from

embryos treated with chemicals or molecular constructs targeting

the cytoskeleton, H+ pumps, K+ channels, gap junctional commu-

nication, and serotonergic signaling (see Figure S2 for a complete

list of reagents), we observed that the inverted organ signatures

obtained from these reagents were very similar (Figure 5B).

The vibration periods that are most effective at randomizing the

LR axis overlap with the early developmental stages implicated in

the ion flux pathway (including the early cytoskeleton, H+ pumps,

K+ channels, gap junctions and serotonin) [42,72,73,74]. In order

to determine whether vibrations during different developmental

windows produced similar affected organ signatures as the

reagents targeting specific aspects of the ion flux pathway, we

compared several vibration treatments with the signature obtained

from the sum of all ion flux data. We observed that vibrations from

1 cell to st. 19 were the most different from treatments targeting

ion flux, and as the period of vibration started later in develop-

ment, they became more similar to treatments targeting ion flux

(Figure 5C). Ultimately, vibrations starting at st. 6 and continuing

through neurulation were not statistically distinguishable from

chemicals that target ion flux, suggesting that this later period of

sensitivity may be related to mechanisms implicated in the ion flux

LR pathway.

From these data, we conclude that the ‘‘signature’’ of inverted

organs obtained from vibration of embryos is unique to the develop-

mental window when vibration occurred. Vibrations starting at 1

cell are clearly different from other treatments – including vibrations

that started later in development and chemicals targeting the ion

flux pathway – because they induce large amounts of situs inversus.

Because individuals with situs inversus maintain LR asymmetry but

orient their LR axes randomly compared to the other two axes,

these results may suggest that early vibrations uncouple a

mechanism that is needed to orient the LR axis with the other

axes; in contrast, later vibrations disrupt the concordance of organs

similar to reagents that affect the ion flux pathway.

Vibration affects nocodazole-sensitive LR pathways
Previous studies have implicated the cytoskeleton in early

asymmetries apparent in Xenopus embryos, and functional studies

have shown that early alterations in either microtubules or the

actin cytoskeleton can induce heterotaxia [31,33,34]. Because

vibration has been shown to affect the cytoskeleton of cells [53,54],

we first performed epistasis experiments to determine whether

vibration was affecting the same pathway as nocodazole, which

interferes with microtubule polymerization. Embryos that were

treated with both nocodazole and also vibrated from 1 cell to stage

12 had no overall increase in the incidence of heterotaxia (were

not additive) (Figure 6A). From these results, we conclude that

vibration is likely affecting the same LR pathway components as

does the cytoskeletal drug nocodazole, consistent with the effect of

vibration on cytoskeletal organization in vitro.

We also performed epistasis experiments to determine whether

vibrations could affect another target, gap junctional communi-

cation, using lindane, a gap junction blocker [75]. Gap junctions

are an essential component of the LR pathway in several organisms

including Xenopus, chick, rabbit and C. elegans [46,47,75,76]. We

found that in contrast to our experiments with nocodazole, co-

treatment with lindane and vibration from 1 cell to stage 12

produced additive effects with almost double the number of

heterotaxic embryos compared to vibration or lindane exposure

alone (Figure 6B). These results suggest that vibration is not affecting

gap junctional communication in general, or is not targeting gap

Figure 3. Vibration from 1 cell to 2 cell, paired with various
later vibration periods, increases the rate of heterotaxia. One
set of embryos was vibrated for a select period of time later in
development (white bars). A second set was vibrated from 1 cell to 2
cell, allowed to rest in a vibration-free environment, and then re-
vibrated for the same select period of time later in development (black
bars). In all cases, adding vibrations from 1 cell to 2 cell increased the
incidence of heterotaxia observed at st. 45. Vibrations from 1 cell to 2
cell without a later period of vibration were not significantly different
from untreated controls (not shown here, see Figure 2). For statistical
comparison, the actual numbers of embryos from two or more replicate
studies with wildtype versus heterotaxic situs were compared for
single late vibrations and the two paired vibrations (x2 test, *p,0.05,
**p,0.001).
doi:10.1371/journal.pone.0023306.g003
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junctions in the same manner as the general gap junction inhibitor

lindane.

Vibration affects distribution of molecules within the
embryonic cytoplasm

In the early cleavage stage Xenopus embryo, the cytoskeleton is

required for the asymmetric movement of LR-relevant cargo

throughout the cytoplasm [33,34,35,37], similar to the role of the

cytoskeleton in the transport of dorsal determinants during

specification of the dorsal-ventral axis [77] and the movement of

cargo along cytoskeletal tracts in differentiated cells [78]. To

determine whether low frequency vibrations affect the movement

of molecules within the embryo, we injected embryos in the cen-

termost point of the animal pole with a mixture of two fluorescent

dyes with different molecular weights, and then compared the

distribution of the dyes in vibrated versus control embryos that

were sectioned along the animal-vegetal plane. We observed that

the low molecular weight dye (10 kDa) distributed throughout the

embryos, with no qualitative differences between treatments. In

contrast, we observed striking differences in the distribution of

high molecular weight dye (70 kDa) between vibrated and control

embryos (Figure 6C). The 70 kDa dye diffused deeper into the

control embryo, whereas in the vibrated embryo the dye remained

localized to a smaller ‘‘node’’ in the animal hemisphere. Further-

more, when we examined the number of 100 mm cross-sections

that contained the high molecular weight dye, we observed that

the dye spread outward (laterally, into more individual sections) in

the control embryos to a higher degree than was observed in the

vibrated embryos (Figure 6D). These results together suggest that

vibration affects the cytoplasmic movement of large molecular

weight molecules in both the animal-vegetal axis as well as the

lateral direction of the 1 cell embryo.

Vibration disrupts integrity of the epithelium in st. 6
Xenopus embryos

Our initial examination of the effects of vibration during dif-

ferent developmental periods implicated a second period of

sensitivity to vibration around st. 6 (Figure 2). Previous studies

indicate that this is a period where tight junction integrity is

essential for LR asymmetry [40,41]. To determine whether

vibration disrupts integrity of the normally impermeable epithelial

barrier, we performed a biotin permeability assay on vibrated and

control embryos. In this assay, a biotin molecule that was modified

to have long spacer arms and a charged sulfo-group to prevent it

from passing through normal tight junctions was used. This

molecule covalently bonds with primary amine groups on the

external surfaces of the cell unless tight junctions between cells are

compromised [40]. In control embryos at st. 6, we observed that

biotin was, as expected from the known pattern of tight junctions

[79], typically localized only to the surface of the embryo, with

penetration limited to less than half the depth of the outer cell

layer (Figure 7). In contrast, embryos vibrated from 1 cell to st. 6

Figure 4. Localization of the asymmetric gene Xnr-1 is affected by vibration during early, but not late, cleavage stages. A) Control
and vibrated embryos were examined at approximately st. 22 for the localization of Xnr-1 mRNA. All embryos were classified as having correct, left-
sided expression (i), or incorrect right-sided (ii), bilateral (iii) or absent (iv) expression. Green arrows indicate correct expression, red indicate incorrect
expression, and white indicate absent expression. All embryos are positioned with the anterior upward and the left (L) and right (R) sides are
indicated. B) Quantification of incorrect Xnr-1 localization in control and vibrated embryos. When vibrations started at 1 cell, 2 cell, 4 cell or st. 6, there
was a significant increase in incorrect Xnr-1 expression compared to controls (x2 test, *p,,0.001). Vibrations starting at st. 8 were not statistically
different from untreated controls.
doi:10.1371/journal.pone.0023306.g004

Vibration Disrupts Asymmetry in Xenopus
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often showed localization of biotin several cell layers deep at st. 6

(Figure 7). These results are consistent with a disruptive effect of

vibration on epithelial integrity.

Discussion

Here, we show for the first time that physical perturbations

induced by low frequency vibrations are sufficient to alter orienta-

tion of the LR axis in a vertebrate animal. While we observed that

several frequencies disrupted LR patterning, we focused our efforts

on examining the effects of 7 Hz, a low frequency that can be

physically felt, but not heard, by human ears. This frequency was

selected because of its low toxicity and few non-specific effects on

other aspects of Xenopus development.

Our results clearly implicate two periods of sensitivity to low

frequency vibrations. The first period coincides with the first cell

cleavage, a developmental window when embryos are sensitive to

chemical agents that disrupt the chiral cytoskeleton [31,34].

Importantly, vibrations from 1 cell to 2 cell alone were not suf-

ficient to alter orientation of the LR axis, but this is similar to what

has been seen with most pharmacological treatments that target

the cytoskeleton as well [34]. It has been previously proposed that

cortical rotation at the 1-cell stage could be the driving force

behind the specification of the LR axis, whereby microtubule-

driven movements are required to establish both the dorsal-ventral

and LR axes [80]. Previous experiments directly addressed the

question of whether Spemann’s organizer is required for

orientation of the LR axis; when UV irradiation – which ablates

dorsal-ventral patterning information by blocking cortical rotation

– is rescued at the 1-cell stage, the LR axis is typically oriented

properly, but in contrast, when dorsal-ventral patterning is

restored several cell divisions later, the LR axis is randomized

[81]. These experiments indicate the importance of the chiral

cytoskeleton in the establishment of LR asymmetry, but challenge

the idea that the organizer is sufficient to orient this axis. While the

results we have presented could be consistent with vibrations

affecting cortical rotation, we limited our analyses to embryos with

normal dorsoanterior indexes (Figure 1), suggesting that even

subtle changes to the midline were not induced by this treatment.

Our results indicate that aspects of internal dynamics of the

embryo, including the movement of high molecular weight dyes

throughout the cytoplasm, are affected by low frequency vibra-

tion.. Yet our results show that early vibration protocols produce a

unique signature compared to reagents that disrupt the cytoskel-

eton, as well as those that affect other aspects of the ion flux

pathway including H+ and K+ flux, gap junctional communica-

tion, and the LR signaling molecule serotonin (Figure 5). Previous

studies of the earliest steps in this pathway have utilized reagents

that target the chiral cytoskeleton including nocodazole, latruncu-

lin and 2,3-butanedione monoxime (BDM), a drug that inhibits

myosin which effectively alters LR patterning only when exposures

occur prior to the first cell cleavage [31]. Our results suggest that

vibrations during the first stage of development target a structure

that is not affected by nocodazole, latrunculin or BDM, even when

exposures to those chemicals start during the first cell cleavage.

Figure 5. Ternary plots reveal unique signatures of inverted
organs depending on the timing of vibration treatment. All
heterotaxic embryos were compiled by treatment and graphed on a
ternary plot where one axis represents the % of embryos with single
organ inversions, the second axis represents the % of embryos with two
(double) organ inversions, and the third axis represent the % of
embryos with situs inversus (all three organs inverted.) Data is graphed
so a single point represents each treatment, surrounded by an oval that
illustrates the 95% confidence interval (CI); when the ovals do not
overlap, the groups are significantly different from each other [67]. A)
Unique signatures of embryos vibrated from 1 cell to st. 19 (blue), 2 cell
to st. 19 (red), 4 cell to st. 19 (green) or st. 6 to st. 19 (violet)
demonstrate that the period of vibration significantly affects the organ
inversions observed. Most striking are the differences in the incidence
of situs inversus, which is highest in embryos vibrated from 1 cell to st.
19 and lowest in embryos vibrated from st. 6 to st. 19. B) Signatures of
affected organs are very similar in heterotaxic embryos from groups
treated with chemicals and molecular constructs targeting H+ pumps
(yellow), K+ channels (blue), gap junctional communication (GJC, green),

the cytoskeleton (red), and the LR signaling molecule serotonin (5HT,
purple). For a complete list of the reagents used, see Supplemental
Table 2. C) The ion flux data shown in panel B was combined and
statistically collapsed to produce a datapoint that represents all ion flux-
related treatments (black dots, inside the violet circle). This was
compared to the signatures obtained from the vibration protocols
(panel A). The ion flux data thus overlaps with the signatures obtained
from vibrations occurring from st. 6 through neurulation (violet).
doi:10.1371/journal.pone.0023306.g005
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Thus, while the results of our epistasis experiment indicates that

the effects of vibration likely affect the same LR pathway as

nocodazole (Figure 6A), the physical perturbations appear to also

affect some additional aspect of LR patterning, as revealed by the

comparison of organ reversal signatures.

Vibrations can disrupt both the cytoskeletal network and the

organization of MTOCs in cultured cells [53,54], and it is

plausible that these structures are affected in our embryos. We

have previously proposed that the MTOC could be an ancient,

highly-conserved mechanism by which asymmetry can be pro-

duced in a variety of systems [15,16] including those observed in

single cells [32]. However, vibrated Jurkat cells show growth arrest

for a 24-hour period after vibration [54], whereas our embryos

develop normally other than problems with laterality. This

suggests that if the MTOCs in Xenopus embryos are targeted

by low frequency vibrations, the induced alterations in structure

would be subtle so as not to disrupt normal cellular processes

including cell division. Future studies are needed to explore this

hypothesis further.

While the effects of vibration during the first cleavage stage were

expected, we were surprised to identify a second period of

sensitivity to vibration, a window that overlaps stages 4–7 in the

Figure 6. Epistasis and dye movement experiments indicate
that low frequency vibrations alter nocodazole-sensitive
pathways and intracellular movements. For epistasis experiments,
embryos were vibrated, treated with a drug, or given a combination of
these two treatments from 1 cell to st. 12, and organ laterality was
assessed at st. 45. If the combination produced an additive effect, we
concluded that these treatments were likely affecting different aspects
of the left-right (LR) pathway; if the combination was not additive, we
concluded that the treatments were likely targeting the same aspects of
the LR pathway. A) Embryos were vibrated, treated with the
microtubule disruptor nocodazole, or a combination of the two. No
additive effects on heterotaxia rates were observed, therefore it is likely
that vibrations target nocodazole-sensitive LR pathways. B) In contrast,
embryos treated with lindane, a gap junction blocker, and vibration
showed additive effects over each treatment alone. These results show
that additive effects can be obtained, and indicate that vibrations are
not likely to be targeting gap junctions. C) 1 cell embryos were injected
in the central area of the animal pole with a mixture of two dyes, then
vibrated or left untreated and examined 10 minutes later. In both
treatments, the low molecular weight dye (10 kDa) spread throughout
most of the embryo with the strongest concentration in the vegetal
hemisphere. In controls, the high molecular weight dye (70 kDa)
typically spread throughout the top third of the embryo, whereas the
same dye remained localized much more strongly to a single point in
the upper quadrant of animal pole in the vibrated embryo. Orientation
of the embryos is indicated in the merged panels with a (animal) and v

(vegetal). D) Sections were obtained from 1 cell embryos after 10 or
20 minutes of vibration, and time-matched unvibrated controls. The
percentage of A/V sections containing TMR dye were calculated, giving
a quantitative measure of how far the dye had spead laterally through
the embryo. The data indicate that over time, the high molecular
weight dye spread out laterally in control embryos, but in vibrated
embryos, the dye spread to a lesser degree.
doi:10.1371/journal.pone.0023306.g006

Figure 7. Epithelial integrity is disrupted in vibrated embryos.
A) Using a biotin permeability assay, we determined that epithelial
integrity was maintained in control embryos such that the biotin signal
was normally observed at the outer edges of the embryo, less than 1
cell depth (arrowheads). B) In vibrated embryos, the biotin signal was
observed much farther into the embryo, with signal several cell layers
deep (arrows).
doi:10.1371/journal.pone.0023306.g007
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developing Xenopus embryo (Figure 2). These developmental

stages correspond to those where the embryo first displays the

characteristics of an epithelium including the expression of tight

junctions, desmosomes and apical-basal domains [82], although

tight junctions are expressed as early as the 4-cell stage (st. 3) [79].

Normal expression of the tight junction protein claudin by the

early cleavage stage embryo is an important step in proper LR

development (Brizuela et al., 2001). Furthermore, it has been

suggested that altered tight junction integrity can prevent the

establishment of the electrophysical gradients that are needed for

biased localization of the LR signaling molecule serotonin, thereby

causing laterality problems [40]. Results from our epithelial

permeability assay show that epithelial integrity is disrupted in

vibrated embryos (Figure 7), suggesting that vibrations during this

period may alter aspects of the ion flux pathway.

In support of this hypothesis, we examined the signature of

affected organs in thousands of embryos treated with chemicals

and molecular constructs that target different aspects of the ion

flux pathway; these reagents produced remarkably similar sig-

natures of affected organs (Figure 5B). While early vibrations,

covering the first sensitive period, were significantly different from

the embryos where ion flux parameters were affected, vibrations

starting at stage 6 were indistinguishable from ion flux (Figure 5C).

We thus propose a model explaining how these two periods of

sensitivity to vibration could affect different parts of the LR

pathway, but both contribute overall to problems with laterality

(Figure 8). We observed that vibrations starting at the 1-cell stage

disrupt the orientation of the LR axis with respect to the anterior-

posterior and dorsal-ventral axes, but maintain high levels of organ

concordance. Thus, we propose that by altering an aspect of the

chiral cytoskeleton (i.e. the MTOC), early vibrations produce

mostly situs inversus. Alternatively, vibrations during the second

period of sensitivity altered tight junction integrity, which does not

affect alignment of the three axes, but disrupts the amplification

and restriction of LR information. This disturbs the concordance

of the organs, allowing each organ to make an independent deci-

sion about placement, and thus producing heterotaxic embryos.

It is worth noting that while vibration protocols that include the

two periods of sensitivity (1–2 cell stage plus stages 4–7) produce

more heterotaxia than treatments that target either sensitive

period alone (Figure 3 and data not shown), the most penetrant

LR phenotypes were observed with prolonged vibrations. For

example, vibration from the 1–2 cell stages, plus additional

vibration from stage 6 through neurulation produced heterota-

xia in over 40% of embryos. This is similar to the incidence of

heterotaxia observed when embryos are vibrated undisturbed from

1 cell through neurulation (Figure 2). These results may suggest

that there are multiple periods that are sensitive to vibration, and

that vibrations across several of these critical periods are needed to

maximize the incidence of LR phenotypes.

While the early cytoskeleton and motor proteins have been

implicated in LR patterning in a large number of invertebrate

species [20,24,83,84] and even plants [25,26,27], the only

vertebrate model studied in detail is Xenopus [31,33,34]. There-

fore, this protocol allows for the exploration of mechanistic con-

servation across additional species including zebrafish and perhaps

even the chick [74,85].

We propose that low frequency vibrations are an alternative to

pharmacological treatments that target the cytoskeleton, because

unlike exposures to drugs and chemicals, we know exactly when in

development the embryo is subjected to treatment. Vibration

therefore allows discrete developmental periods to be targeted, and

also allows multiple periods to be tested in the same embryos

(Figure 3). Additionally, the effects of low frequencies are subtle

enough that vibration can be paired with other treatments

(Figure 6). In our experience, multiple treatments, each at sub-

toxic levels, are typically lethal when combined (Vandenberg &

Levin, unpublished data); thus, we have now achieved an experi-

mental system where the effects of altered cytoskeletal dynamics

can be paired with treatments targeting other pathways. Of

course, vibration protocols are not expected to completely replace

pharmacological treatments, but do provide an alternative to these

methods when there are concerns about the timing of chemical

exposures or when multiple treatments are necessary.

Importantly, knowing exactly when the vibration treatments

have ended is not informative about the period of time it takes

the embryo to recover from treatment. In cultured cells, the

cytoskeleton remains disorganized several hours after vibration,

but recovers within 24-hours; cell proliferation resumes sometime

after that point [54]. Thus, it is important to address whether the

effects of vibration are due to early interruptions of the LR

pathway, or whether they could be indicative of effects on other

cytoskeletal structures (like cilia) later in development. There are

two results that address this issue. First, the striking differences

between embryos vibrated from 1 cell through neurulation,

compared to embryos vibrated from 2 cell through neurulation,

clearly indicates that an extremely early event is affected by this

treatment (Figure 2); no differences in the effects on cilia would be

expected from these treatments. Second, several treatments that

Figure 8. Vibrations affect patterning of the left-right (LR) axis
in two distinct ways, producing different phenotypes depend-
ing on the timing of treatment. Early events involved in the
patterning of the LR axis have been split into three basic steps [1,42,94]:
breaking of symmetry, orientation of the axes, and amplification/
restriction of LR signals. Targeting each of these steps is expected to
produce different phenotypes: altered symmetry breaking leads to
mirror-image left and right halves, i.e. isomerisms, a LR defect rarely if
ever seen in Xenopus but often observed in mutant mice; altered
orientation of the axes will produce a mixed population of wildtype and
mirror-image individuals (with situs inversus) because the LR axis is
randomly oriented with respect to the anterior-posterior and dorsal-
ventral axes; altered amplification/restriction of LR signals will cause
each organ to make independent decisions, thus producing a
population of heterotaxic individuals. Here, we show that early
vibrations produce large amounts of situs inversus, therefore we
propose that the effects of early vibrations on the cytoskeleton are
responsible for the second step, proper orientation of the three axes.
The effects of vibrations during the second period of sensitivity largely
produce heterotaxia, thus we propose that the effects of vibration on
tight junction integrity, part of the ion flux pathway, alters the third
step in the pathway, the amplification/restriction of LR signals.
doi:10.1371/journal.pone.0023306.g008
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start prior to and span the period of time where ciliary motion and

nodal flow occur do not significantly affect the LR axis (i.e.

vibration from st. 8 through neurulation; Figure 2). If vibration

were affecting the organization or assembly of cilia, these treat-

ments, which fully encompass the developmental periods where

cilia appear and flow begins [86,87,88], should be effective.

Instead, all of our results are consistent with vibration affecting

early LR pathways via two mechanisms: disruption of the chiral

cytoskeleton and altered epithelial integrity.

In summary, we have identified a new treatment paradigm by

which the LR axis of the Xenopus embryo can be disturbed, and

our results suggest that the physical perturbations of low frequency

vibrations affect the very early cytoskeleton (during the first

cleavage stage) and tight junctions. Thus, vibration acts to disrupt

two specific steps in the early LR pathway, and ultimately alters

patterning of this axis. For the first time, we have identified a

treatment that can separately randomize the alignment of the LR

axis with the other two axes in addition to disrupting the ampli-

fication and restriction of LR information, thus producing dif-

ferent LR phenotypes depending on when the exposures occurred.

This information should put scientists in this field one step closer to

understanding how the LR axis is consistently oriented and organ

concordance is controlled. The question of how symmetry is

broken remains a fascinating and provocative question with

important relevance to the field of developmental biology as well

as medicine, and biophysical tools including the low frequency

vibrations explored here offer tremendous power to explore the

many puzzles that remain unsolved.

Materials and Methods

Animal husbandry
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by Tufts University’s Institutional Animal

Care and Use Committee (#M2008-08). Xenopus laevis embryos

were collected and fertilized in vitro according to standard protocols

[89] in 0.16 Modified Marc’s Ringers (MMR) pH 7.8+0.1%

Gentamycin. Xenopus embryos were housed at 18–23uC and staged

according to [90].

Vibration of embryos
4-inch Sony speakers (Model # 1-544-670-11) were connected

to a Gwinstek GFG-8216A function generator. Placed on these

speakers were embryos (100–200 per treatment) in polystyrene

petri dishes (Fisherbrand Catalog # 0875712, diameter = 10 cm,

depth = 1.5 cm) containing approximately 40 ml 0.16 MMR.

These dishes were vibrated at specific frequencies over various

developmental time periods (as indicated in the text). Typically,

two speaker systems were positioned on a benchtop near each

other, and both were operated at the same time and at the same

frequency, set to vibrate at the highest non-lethal amplitude on the

sine wave setting for all experiments. When the function generator

was set at 7 Hz, the average acceleration of the dish was measured

as 0.53 m/sec2 using a calibrated Endevco accelerometer (Model

2250K). At 15 Hz, the average acceleration of the dish was

3.96 m/sec2. The ambient temperature was always #23uC, a

temperature that does not affect orientation of the LR axis.

Constructive or destructive interference did not appear to occur

between the two speakers, and similar results were obtained with

single speakers. In each experiment, non-vibrated control dishes

were placed in an incubator away from all external sources of

vibration.

EMF treatment
Embryos were placed on 4-inch Sony speakers after removal of

the stationary magnet, leaving a speaker that produced electro-

magnetic fields (EMFs) in the absence of physical vibrations. The

speakers were connected to a frequency generator, and all other

aspects of the experiment were the same as in the vibration studies.

Laterality assay
At stage 45, live Xenopus embryos were analyzed for position

(situs) of the heart, stomach and gall bladder according to [76].

Heterotaxia was defined as the reversal in position of one or more

organs including situs inversus (reversal of all three organs), which

was also considered separately in some experiments. Only embryos

with a normal dorsoanterior index (DAI = 5) were scored to prevent

confounding of randomization caused by midline defects [91].

Percent heterotaxia was calculated as number of heterotaxic

embryos divided by the total number of scorable embryos. A x2

test was used to compare absolute counts of heterotaxic embryos.

10% was set a priori as the minimum meaningful difference due to

the rate of spontaneous heterotaxia observed in untreated controls

(1–3%) and the rates of heterotaxia observed in well-characterized

mutants and treatments [17]. For all treatments, experiments were

performed in duplicate or triplicate, and the data presented are the

sums from those replicates.

In situ hybridization
Whole mount in situ hybridization was performed using

standard protocols [92]. In situ hybridization probes against Xnr-

1 (the Xenopus nodal) mRNAs [64] were generated in vitro from

linearized template using DIG labeling mix (Roche). Embryos

vibrated for multiple stages were examined for Xnr-1 localization.

A x2 test was used to compare absolute counts of embryos with

correct versus incorrect Xnr-1 expression.

Ternary plots
All embryos with heterotaxia were separated into one of three

groups: single organ inversions, double organ inversions, and situs

inversus. The percentage of each group was calculated for several

vibration periods as well as previously characterized reagents that

affect LR orientation (Supplemental Table 2). Each treatment was

plotted on a ternary graph using these three measures according

to methods described previously [67]. Using the calculations

provided by the ternary plot program, https://webscript.prince-

ton.edu/,rburdine/stat/three_categories, when there was no

overlap of confidence intervals, results were considered statistically

significant. When confidence intervals overlapped, a x2 test was

used to calculate statistical significance.

Epistasis Experiments
For these experiments, embryos were vibrated at 7 Hz, treated

with drugs targeting specific LR relevant pathways, or both

starting at the 1 cell stage. For drugs concentrations, the following

doses were utilized: 2.1 mM lindane [75]; 13 nM nocodazole [34].

All treated embryos remained in the drug solution overnight until

stage 12 of development when they were repeatedly washed and

then housed in clean 0.16 MMR for the remainder of the

experiment. At st. 45, embryos were scored for heterotaxia and the

results from each treatment were compared to determine whether

there was an additive effect of vibration and drug.

Tight junction permeability assay
A tight junction assay was performed according to standard pro-

tocols [40]. Briefly, control and vibrated embryos were collected at
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st. 6, cooled to 10uC for 10 min, and then incubated in a 1 mg/ml

solution of EZ-Link Sulfo-NHS-LC biotin in 0.16MMR and

10 mM HEPES (pH = 7.8) at 10uC for 10 min. This biotin

molecule has been modified to prevent it from passing through

normal tight junctions unless epithelial integrity has been com-

promised. After labeling, embryos were rinsed twice with cool

0.16MMR, fixed in MEMFA, processed and embedded in

paraffin. 5 mm sections were cut on a Leica M2255 microtome

and mounted on glass slides.

The slides were deparaffinized, rehydrated, and blocked with

10% goat serum in 16PBS for 1 hr at room temperature, then

incubated with the fluorescent secondary antibody streptavidin-

Alexa 555 at a concentration of 1:200 in blocking solution. Slides

were then washed, mounted with a coverslip, and imaged.

Intracellular movement assay
Immediately following fertilization, 1 cell embryos were placed

in 3% Ficoll and injected with a 1:1:2 mixture of Oregon Green

(OrG, MW = 10 kDa), Tetramethylrhodamine (TMR, MW =

70 kDa), and RODI water using standard protocols (100 ms pulse

time and borosilicate glass needles with a bubble pressure of 60–

70 kPa). Injections were uniformly delivered into the middle of the

embryo at the animal pole of the embryo. Injected embryos were

then either vibrated at 7 Hz for various intervals of time within the

first 2 cell divisions or stored in a location with equivalent

temperature but no source of external vibration. Following treat-

ment, embryos were fixed in MEMFA, washed, and embedded in

agarose according to standard protocols [93]. 100 mm sections

were cut using a Leica VT1000S vibratome and imaged in PBS.

Microscopy
An Olympus BX-61 with a Hamamatsu ORCA AG CCD

camera, controlled by MetaMorph software, was used for all

fluorescence imaging. For all other experiments, images were

collected with a Nikon SMZ1500 dissection microscope with a

Retiga 2000R camera and ImageQ software. PhotoshopTM was

used to orient, scale, and improve clarity of images. Data were

neither added nor subtracted; original images are available on

request.

Supporting Information

Figure S1 Embryos were placed on a speaker with the stationary

magnet removed, allowing them to be exposed to the same EMFs

without any physical vibration. The signal generator was set at

7 Hz. Regardless of the exposure period. EMFs did not affect LR

patterning. Siblings collected from the same batches of embryos

that were vibrated at 7 Hz had significant amounts of heterotaxia.

(DOC)

Figure S2 Pharmacological (P) and molecular (M) reagents that

have been shown to disrupt patterning of the LR axis by targeting

the cytoskeleton, H+ pumps, K+ channels, gap junctional

communication (GJC) or serotonin (5HT). (These reagents were

previously reported in: [34,37,38,39,68,69,70,71]).

(DOC)
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