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Abstract  

TAR DNA-binding protein-43 (TDP-43) accumulation is the primary pathology underlying 
several neurodegenerative diseases. Charting the progression and heterogeneity of TDP-43 
accumulation is necessary to better characterise TDP-43 proteinopathies, but current TDP-
43 staging systems are heuristic and assume each syndrome is homogeneous. Here, we 
use data-driven disease progression modelling to derive a fine-grained empirical staging 
system for the classification and differentiation of frontotemporal lobar degeneration due to 
TDP-43 (FTLD-TDP, n=126), amyotrophic lateral sclerosis (ALS, n=141) and limbic-
predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) with 
and without Alzheimer’s disease (n=304). The data-driven staging of ALS and FTLD-TDP 
complement and extend previously described human-defined staging schema for ALS and 
behavioural variant frontotemporal dementia. In LATE-NC individuals, progression along 
data-driven stages was positively associated with age, but negatively associated with age in 
individuals with FTLD-TDP. Using only regional TDP-43 severity, our data driven model 
distinguished individuals diagnosed with ALS, FTLD-TDP or LATE-NC with a cross-validated 
accuracy of 85.9%, with misclassifications associated with mixed pathological diagnosis, age 
and genetic mutations. Adding age and SuStaIn stage to this model increased accuracy to 
92.3%. Our model differentiates LATE-NC from FTLD-TDP, though some overlap was 
observed between late-stage LATE-NC and early-stage FTLD-TDP. We further tested for the 
presence of subtypes with distinct regional TDP-43 progression patterns within each 
diagnostic group, identifying two distinct cortical-predominant and brainstem-predominant 
subtypes within FTLD-TDP and a further two subcortical-predominant and corticolimbic-
predominant subtypes within ALS. The FTLD-TDP subtypes exhibited differing proportions of 
TDP-43 type, while there was a trend for age differing between ALS subtypes. Interestingly, 
a negative relationship between age and SuStaIn stage was seen in the 
brainstem/subcortical-predominant subtype of each proteinopathy. No subtypes were 
observed for the LATE-NC group, despite aggregating AD+ and AD- individuals and a larger 
sample size for this group. Overall, we provide an empirical pathological TDP-43 staging 
system for ALS, FTLD-TDP and LATE-NC, which yielded accurate classification. We further 
demonstrate that there is substantial heterogeneity amongst ALS and FTLD-TDP 
progression patterns that warrants further investigation in larger cross-cohort studies.  
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Introduction 

The accumulation of tar DNA-binding protein 43 (TDP-43) underlies a variety of syndromes, 
being the primary cause of many cases of frontotemporal dementia (FTD) and most cases of 
amyotrophic lateral sclerosis (ALS). More recently TDP-43 accumulation has been identified 
as a frequent feature of Alzheimer’s disease and advanced aging, a phenomenon described 
as limbic-predominant age-related TDP-43 encephalopathy neuropathological change 
(LATE-NC) 1. Neuropathological staging systems have been derived by neuropathologists 
for each proteinopathy that describe the stereotypical spatiotemporal progression pattern of 
TDP-43 accumulation1–5 . However, the manual derivation of these staging systems limits 
their spatiotemporal resolution and relies on the assumption that there is a single common 
spatiotemporal progression of TDP-43 for each syndrome. This limitation is of particular 
importance given that the mapping between TDP-43 pathology and clinical syndrome is 
imperfect6,7. 

FTD is clinically and pathologically heterogeneous8, and recent work has recognized 
systematic variation in pathological features of TDP-43 underlying FTD9. ALS also exhibits 
substantial clinical heterogeneity10; whilst ALS is primarily characterised as a neuromuscular 
disorder, approximately 20% of ALS cases also have cognitive impairment11, and/or a typical 
FTD-syndrome. The concurrence of ALS and FTD suggest the possibility of these disorders 
constituting two extremes of an ALS-FTD spectrum disorder (ALS-FTD)12, supported by 
observations that C9orf72 mutations can lead to either phenotype, or a mix of both13,14.  

LATE-NC is a recently proposed terminology describing the commonly observed 
phenomenon of TDP-43 deposition mostly within medial temporal lobe structures in elderly 
adults1. Unlike FTD and ALS, the clinical syndrome that is associated with LATE-NC (termed 
‘LATE’) currently does not have a corresponding set of criteria for a clinical diagnosis. 
Although LATE is associated with memory impairment, discriminating whether cognitive 
impairment is due to LATE rather than other conditions is challenging without 
neuropathological evidence, particularly since it commonly co-occurs with Alzheimer’s 
disease (AD), which is also associated with memory impairment. LATE-NC is defined 
neuropathologically by a stereotypical distribution of TDP-43 in older adults1,4,5. However, the 
definition and description of this common neuropathological phenomenon is still being 
debated, and the terms LATE and LATE-NC have not met full consensus15.  

Much is still unknown about the origin, progression and variability of TDP-43 aggregation as 
a whole, as well as within respective neurodegenerative diseases. For example, while many 
argue that there are clear clinical and pathological distinctions denoting distinct entities, 
there remains debate surrounding whether late-stage LATE-NC can be discriminated from 
early stage frontotemporal lobar degeneration due to TDP-43 (FTLD-TDP) given overlap of 
regions that are affected15,16. Similarly, the regional origin of FTLD-TDP is still unknown, with 
both the amygdala3 and frontoinsular or anterior cingulate17 proposed as candidate 
pathological epicentres.  

A potential solution to capture the progression and spatial heterogeneity of TDP-43 
proteinopathies is the use of data-driven disease progression modelling, which facilitates the 
probabilistic reconstruction of sequential disease progression patterns from cross-sectional 
data in a similar manner to traditional staging schema. However, in contrast to the traditional 
method of constructing neuropathological staging systems by hand, disease progression 
modelling can account for uncertainty in the level of pathology in each region and can 
enable the reconstruction of more complex progression patterns with large numbers of 
regions18. The Subtype and Stage Inference (SuStain) algorithm19 combines disease 
progression modelling with clustering to further enable the identification of subgroups of 
individuals (subtypes) with distinct disease progression patterns. This enables the 
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probabilistic assignment of an individual to a subtype based on their subgroup, and stage 
based on their position along the inferred progression pattern for that subgroup. While 
previously applied to imaging datasets19–22, SuStaIn has recently been adapted to 
accommodate scored data often used in pathological assessment23.  

Here we use SuStaIn to assess the progression and heterogeneity of TDP-43 accumulation 
in FTLD-TDP, ALS and LATE across 21 brain regions. We first estimate a single progression 
pattern for each group to enable comparison with existing TDP-43 staging schema. Next, we 
demonstrate the potential utility of disease progression models for the three-way 
classification of FTLD-TDP, ALS and LATE-NC. We further explore whether there is 
heterogeneity in the progression of TDP-43 within FTLD-TDP, ALS and LATE-NC by 
modelling multiple progression patterns within each group, and we test for differences 
between the resulting subgroups. 

 

 

Methods 

Dataset 

Neuropathological samples with TDP-43 pathology were taken from the Center for 
Neurodegenerative Disease Research (CNDR) Brain Bank at the University of Pennsylvania, 
for which the tissue preparation, staining and immunohistochemistry procedures have been 
described previously24. Both sporadic cases and mutation carriers were included (see Table 
1, S2). For each brain, up to 21 regions were sampled comprising the amygdala, 
hippocampal dentate gyrus, hippocampal cornu ammonis (CA)/subiculum, entorhinal cortex, 
anterior cingulate, superior/middle temporal gyrus, middle frontal gyrus, angular gyrus, 
occipital cortex, thalamus, globus pallidus, caudate/putamen, substantia nigra, midbrain, 
locus coeruleus, upper pons, cerebellum, medulla, orbitofrontal cortex, motor cortex and 
spinal cord (cervical spinal cord α-motoneurons in lamina 9) (Figure S1). Each region was 
assigned a score according to a semi-quantitative rating scale based on the extent of TDP-
43 inclusions, where 0 = non-detectable, 0.5 = sparse, 1 = mild, 2 = moderate, and 3 = 
severe. The reliability of these scores was verified by independent expert neuropathologists. 
All individuals with any evidence of TDP-43 pathology in the brain were included in this 
study.  

Three data subsets – those with FTLD-TDP, ALS and LATE-NC – were extracted for 
disease progression modelling (Table 1, S2). The inclusion criteria for the FTLD-TDP and 
ALS subsets were a primary neuropathological diagnosis of FTLD-TDP9,25 and ALS12, 
respectively. Four ALS patients with a diagnosis of “ALS - Other”, which includes ALS 
without TDP-43 proteinopathy, and one ALS patient with a diagnosis of “ALS - Dementia” 
were excluded from this study. The inclusion criterion for the LATE-NC subset was a 
secondary or tertiary neuropathological diagnosis of LATE-NC1, with (LATE-AD+) or without 
(LATE-AD-) a primary neuropathological diagnosis of Alzheimer’s disease neuropathologic 
change26. A secondary neuropathological diagnosis of LATE-AD+ was made if individuals 
showed a primary diagnosis of AD (using NIA-AA criteria), did not have a secondary 
diagnosis of FTLD or ALS, and also had evidence of TDP-4316. The criteria for a 
neuropathological diagnosis of LATE-AD- were the absence of another TDP-43 
neuropathological diagnosis (i.e. ALS, FTLD-TDP, or corticobasal degeneration), a TDP-43 
score of 1 or more in the amygdala, and a TDP-43 score of less than 1 in the medulla (a 
region with near 100% sampling rate across diagnoses). These inclusion criteria were the 
sole criteria for inclusion in the study. In particular, we included individuals regardless of their 
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TDP-type (A-E), and mutation carriers (e.g. GRN, C9orf72) and ALS-FTD cases were 
included. In total there were 126 individuals with FTLD-TDP, 141 with ALS and 304 with 
LATE-NC that were included in the SuStaIn modelling (Table 1, S2). 

Age at death and estimated age at symptom onset were recorded for all individuals. Note 
that age of symptom onset refers to the age that primary symptoms were reported to 
manifest, which may or may not be symptoms directly related to TDP-43 neuropathology. 
Disease duration was calculated as the difference between age at symptom onset and age 
at death. Sex and interval between death and postmortem examination was also recorded 
for all patients. APOE genotype (ALS: 99%; FTLD-TDP: 100%; LATE-NC: 98%) and Braak 
tau stage (ALS: 95%; FTLD-TDP: 99%; LATE-NC: 97%) was also recorded for nearly all 
individuals using methods that have been previously described24. TDP-43 type was also 
available for FTLD-TDP patients using published criteria9. TDP-43 type was missing for two 
FTLD-TDP patients. 

 

Disease progression modelling using SuStaIn 

Disease progression modelling was performed using Ordinal SuStaIn23,27. The SuStaIn 
algorithm combines clustering and disease progression modelling to estimate subtypes with 
distinct progression patterns from cross-sectional data. The Ordinal version of SuStaIn is 
specifically designed for modelling ratings data such as neuropathological ratings. Ordinal 
SuStaIn describes disease progression as a sequence in which different regions reach 
different scores, requiring as input the probability that a given score is observed in each 
region. In addition to learning the sequence in which different regions reach different scores, 
the algorithm quantifies the uncertainty in that sequence using Markov Chain Monte Carlo 
(MCMC) sampling. The uncertainty in the sequence is influenced by several factors including 
the number of samples available to estimate the sequence at different stages, the 
heterogeneity in the sequence between individuals, and the signal to noise ratio of the 
biomarker measurements (neuropathological ratings in this case). We modelled scores of 1, 
2 and 3 in Ordinal SuStaIn, translating the scores of 0.5, 1, 2 and 3 to probabilities by 
evaluating a normal distribution around that score with a standard deviation of 0.5, and 
normalising by the sum of the probabilities of each score (Table S1). Note that, for example, 
a score of 0.5 (“sparse”) corresponds to an equal probability of the score being 0 or 1. 
Missing neuropathological ratings were modelled as having an equal probability of having 
each score. Regions with a significant proportion of missing data (missing in more than 25% 
of subjects) were excluded when running Ordinal SuStaIn. For FTLD-TDP, the orbitofrontal 
cortex was excluded due to missingness, giving a total of 20 regions. For ALS, the occipital 
cortex, locus coeruleus and orbitofrontal cortex were excluded, with 18 regions remaining. 
For LATE-NC, the motor cortex and spinal cord were excluded, leaving 19 regions. As each 
SuStaIn stage corresponds to a new region reaching a new score, there were N = 20*3 = 60 
stages for FTLD-TDP, 18*3 = 54 stages for ALS, and N = 19*3 = 57 stages for LATE-NC. 
Ordinal SuStaIn was first used to estimate a single progression pattern for each group, 
enabling direct comparison with previous staging systems. Next, Ordinal SuStaIn was used 
to estimate multiple progression patterns for each group. The subtype progression patterns 
were cross-validated using 10-fold cross-validation and the optimal number of progression 
patterns (number of subtypes) within each group was chosen using the cross-validation 
information criterion, which balances model accuracy with model complexity19. For each 
progression pattern, individuals were first assigned to a subtype (in cases where n subtypes 
> 1), and were then assigned to a stage, based on maximum likelihood19. The SuStaIn stage 
can be thought of as a proxy for progression along a pathological trajectory. Subtypes were 
evaluated for cross-over events by plotting the distribution of subtype probability across 
stages. Subtype probability distributions that crossed chance levels (in this case, 50% for 
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both ALS and FTLD-TDP given k=2 subtypes) after stage 1 were tagged as evidence for a 
crossover event. Crossover events suggest the possibility of discontinuity between variation 
observed before and after the event.   

 

Classification using SuStaIn 

Three-way classification of FTLD-TDP, ALS and LATE-NC was initially performed by directly 
using the outputs of SuStaIn with a single progression pattern per group. SuStaIn was used 
to assign each individual to a group (FTLD-TDP, ALS or LATE-NC) and stage by evaluating 
the probability each individual belonged to each stage of each group’s progression pattern. 
The group and stage combination that had the highest probability was chosen as the 
predicted diagnosis for that individual. Individuals that had a most probable stage of 0 for 
their most probable SuStaIn-based diagnosis were labelled as “Unclassified”. Note that 
probabilities were computed out-of-sample for each individual (using 10-fold cross-validation 
when evaluating within-diagnosis), and took into account uncertainty in the progression 
pattern by integrating over the MCMC samples of the progression pattern output by SuStaIn. 
Unclassified stage 0 individuals were excluded before classification. 

 

Classification using logistic regression 

A second predictive diagnostic model was evaluated using a combination of SuStaIn and 
logistic regression. Progression patterns for each group (ALS, FTLD-TDP, LATE-NC) were 
used to assess the probability that each individual fit within each progression pattern. Similar 
to above, these probabilities were calculated by evaluating the probability of the maximum 
likelihood stage within the progression pattern for each diagnosis. The three probabilities, 
along with maximum likelihood SuStaIn stage and age at death, were used as independent 
features in a multinomial logistic regression three-way classification model using an L2 
penalty and Limited-memory BFGS (“lbfgs”) solver. The sample was divided into training 
(80%) and testing (20%) sets. In the training set, 10-fold cross-validation was used to 
optimise over a grid of 10 linearly spaced values between 1e-4 and 1e4 for the 
hyperparameter ‘C’. Performance was evaluated by recording accuracy, precision, recall and 
F1 score, both overall and class-weighted, of predictions in the left out test set. This process 
was repeated 100 times to establish confidence intervals around the measurements. 

 

Comparison of SuStaIn-derived progression patterns to previously described staging 
systems 

Previously described staging systems were used to stage each individual based on regional 
presence of TDP-43 pathology. For ALS staging, we used the four-stage system described 
in 2. For FTLD-TDP, we used the four-stage system described in 3. Given that this system 
was derived based specifically on behavioural variant FTD (bvFTD) patients, we describe 
staging across both the whole group of FTLD-TDP patients, and across patients with a 
primary clinical diagnosis of bvFTD only. Since there are multiple proposed staging schemes 
for LATE-NC, we use three different proposed LATE-NC staging systems, as described in 1. 
For each staging system, composite regions of interest were created for each stage based 
on averaging the TDP-43 scores of the regions falling within that stage (see Figure S2). A 
patient was assigned to a stage if they showed a TDP-43 score equal to or greater than 1 for 
that stage as well as all previous stages in the regime. If a patient showed “out of order” 
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staging (e.g. score >1 in stage I and III, but not II), they were assigned to an “Unclassifiable” 
category. Once all patients were staged using their group specific staging scheme, this stage 
was compared to the data-driven stage assigned to that patient. This approach allowed us to 
evaluate how much the data-driven SuStaIn stages resembled previously described manual 
staging systems of these various proteinopathies.  

 

Statistical analysis 

Correlations were used to describe univariate relationships between SuStaIn stage and age, 
disease progression and total TDP-43 pathology, the latter calculated as the sum of all 
regional TDP-43 scores across an individual. Independent sample t-tests were used to 
assess differences between stage classifiable and unclassifiable patients (see “Comparison 
of SuStaIn-derived progression patterns to previously described staging systems”) in 
the probability of assignment to their a patient’s diagnostic progression pattern (see 
“Classification using SuStaIn”). Ordinary least squares (OLS) general linear models and 
𝝌2 tests were used compare misclassified to correctly classified patients from the machine 
learning classification analysis. To explore regional differences between subtypes, OLS 
general linear models were fit using each region as the dependent variable, subtype as the 
independent variable, and SuStaIn stage as a nuisance covariate (to ensure relationships 
were not due to differences in disease progression). Benjamini-Hochberg false discovery 
rate (FDR) was applied across all regions to correct for multiple comparisons. Multivariate 
logit maximum likelihood estimate regression models were used to investigate other subtype 
differences. Models were constructed using subtype as the dependent variable and the 
following as simultaneous independent variables: Age at symptom onset, age at death, sex, 
postmortem interval, APOE E2 carriage, APOE E4 carriage, Braak stage and SuStaIn stage. 
For the FTLD-TDP model only, TDP-43 type was also included as a covariate. Due to low 
numbers of individuals expressing TDP-43 type D (n=2), these individuals were excluded. In 
addition, two ALS individuals were assigned to “Stage 0” by SuStaIn, indicating they did not 
have sufficient TDP-43 pathology to be subtyped, and were excluded from the statistical 
analyses. Both the ALS (n=130) and the FTLD-TDP (n=115) models were fitted on a sample 
of subjects with complete data for all variables. To examine further clinical differences 
between ALS subtypes, another logit regression model was fit, this time using clinical 
symptom onset as the main independent variables, and all variables found to be significant 
in the previous analysis as covariates. 

 

Data availability 

Source code for the Ordinal SuStaIn algorithm is available at https://github.com/ucl-
pond/pySuStaIn. Data produced in the present study are available upon reasonable request 
to the authors.  

 

 

Results 

Progression of LATE-NC 
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Assuming a common progression pattern across all individuals with LATE-NC (Figure 1), 
SuStaIn identified that TDP-43 deposition was initially confined to the amygdala region 
(SuStaIn stages 1-2). This was expected given our definition of LATE-NC required TDP-43 
pathology in the amygdala. During SuStaIn stages 3-9, TDP-43 deposition spread to the 
hippocampal CA/subiculum, followed by the entorhinal cortex and then to the hippocampal 
dentate gyrus. Subsequently, at SuStaIn stages 10-13, TDP-43 deposition emerged in the 
orbitofrontal cortex, followed by the anterior cingulate and then the superior/middle temporal 
gyrus. Moderate to severe TDP-43 pathology was present in all medial temporal regions 
before the appearance of TDP-43 pathology in cortical regions at SuStaIn stage 10. Beyond 
SuStaIn stage 13 there were few samples available, and the progression pattern had high 
uncertainty. 

 

Progression of ALS  

Under the assumption of a single common progression pattern (Figure 1), SuStaIn 
estimated that TDP-43 deposition in ALS began in the spinal cord, before progressing to the 
medulla and motor cortex in SuStaIn stages 2-5. Subsequently, in SuStaIn stages 6-13, 
there was TDP-43 deposition in the caudate/putamen, thalamus, globus pallidus, midbrain, 
substantia nigra, pons and anterior cingulate. In SuStaIn stages 14-15, TDP-43 progressed 
to the middle frontal and angular gyri. By SuStaIn stage 21, TDP-43 was found in all regions 
sampled except the cerebellum, including regions of the medial temporal lobe.  

 

Progression of FTLD-TDP 

Assuming a single common progression pattern for FTLD-TDP (Figure 1), SuStaIn identified 
that there was high uncertainty in the initial stages of TDP-43 progression in FTLD-TDP due 
to a lack of individuals with early stage TDP-43. The progression pattern was under-sampled 
and had high uncertainty before SuStaIn stage 27. While uncertainty was too high to draw 
confident inference, SuStaIn inferred that the amygdala, entorhinal cortex, anterior cingulate 
and superior/middle temporal gyrus were the first regions to display moderate TDP-43 
pathology, between SuStaIn stages 10-13. When uncertainty became lower at SuStaIn 
stage 27, there was already moderate TDP-43 deposition throughout regions sampled from 
the medial temporal lobe, basal ganglia and cerebral cortex, with the exception of the 
occipital lobe, and light pathology throughout all subcortical regions sampled. At SuStaIn 
stages 28-32, TDP-43 deposition in the superior/middle temporal gyrus, anterior cingulate, 
entorhinal cortex, and middle frontal became severe, while mild TDP-43 deposition was seen 
in the occipital cortex. By SuStaIn stage 38, TDP-43 burden became severe in the 
amygdala, and moderate in the thalamus, midbrain, medulla, and also appeared in the spinal 
cord. Beyond SuStaIn stage 38, model uncertainty became too high for confident 
interpretation, though the locus coeruleus and cerebellum appeared to be the latest regions 
to be affected.  

 

Relationship between SuStaIn stage and age of onset, age at death and disease 
duration 

Figure 2 shows the relationship between SuStaIn stage and total TDP-43 pathology, age of 
onset, age at death and disease duration in each condition. As expected and by design, 
SuStaIn stage was nearly collinear with total TDP-43 pathology, making it a convenient 
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proxy for overall pathologic progression. FTLD-TDP had an inverse relationship between 
SuStaIn stage and global age of onset, age at death, and disease duration. In contrast the 
LATE-NC group had a positive relationship between SuStaIn stage and global age of onset 
and age at death, but no relation with disease duration. There was no significant relationship 
between SuStaIn stage and age or disease duration in ALS, however see ALS subtype 
results below. 

 

Comparison with previous staging schema 

SuStaIn stage showed a good correspondence with existing staging schema (Figure 3), 
whilst providing additional granularity. Individuals were considered unclassifiable on existing 
staging schema if some regions had evidence of TDP-43 pathology (score greater than 1) 
that was consistent with a late stage, but other regions lacked evidence of TDP-43 pathology 
consistent with the earlier stages of the staging scheme. Notably, for all prior staging 
systems, unclassifiable individuals occurred at low, moderate and high levels of pathology. 
Due to its probabilistic formulation, SuStaIn was able to stage individuals that were 
otherwise unclassifiable using existing staging schema. This probabilistic information could 
also be used to identify individuals that didn’t fit the staging system well. Indeed, compared 
to classifiable individuals, unclassifiable individuals had a lower (cross-validated) probability 
of belonging to the dominant progression pattern of their diagnostic group for the ALS 
staging system (t=2.60, p=0.01) and two of three LATE-NC staging systems (Nelson: t=1.46, 
p=0.14; Josephs: t=5.84, p<0.001; Rush: t=2.85, p=0.0046), though not for the FTLD-TDP 
staging system (full sample: t = -0.99, p=0.32; bvFTD only: t=-1.26, p=0.21). 

 

Three-way classification of FTLD-TDP, ALS and LATE-NC 

Using SuStaIn, each participant was assigned a probability of belonging to the typical ALS, 
FTLD-TDP or LATE-NC progression (Figure 4A-C), regardless of TDP-type or genetic 
group. Most cases featured a high probability of their true pathological diagnosis. In fact, a 
winner-takes-all classification using only these probabilities resulted in a three-way 
classification accuracy of 85.9% (balanced accuracy = 81.3%; Figure 4D, Table S3), which 
was hampered most by a relatively low recall in FTLD-TDP diagnosis. Specifically, many 
FTLD-TDP cases were misclassified as LATE-NC (Figure 4D), and the probability of a 
LATE-NC diagnosis varied widely among FTLD-TDP cases (Figure 4B). After further 
optimising this model using logistic regression and including SuStaIn stage and age at death 
as features, out-of-sample three-way classification accuracy improved to 92.3% (balanced 
accuracy = 90.3%; Figure 4E,F; Table S3). Diagnostic tests of the decision boundaries 
suggested this improvement involved allowing higher ALS probability thresholds in the 
context of lower LATE-NC thresholds (Figure S3A). Most misclassifications across both the 
maximum likelihood and the logistic regression models involved FTLD-TDP patients 
misclassified as ALS or LATE-NC, and many of these misclassifications were high 
confidence (Figure 4B; Figure S3A). Interestingly, cases having both ALS and FTLD-TDP 
as primary and secondary diagnosis (in either order) tended to have intermediate 
probabilities of both ALS and FTLD-TDP (Figure S2B). Many of the misclassifications were 
consistent with secondary underlying pathology, such as FTLD-TDP and ALS; for further 
case studies of misclassified individuals see Supplementary Note 1 and Figure S4.  

 

Differentiating LATE-NC from FTLD-TDP 
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Despite SuStaIn issuing good classification of LATE-NC from FTLD-TDP, the very low 
number of early stage FTLD-TDP cases or late-stage LATE-NC cases (Figure 5A) made it 
difficult to examine the point where these pathological entities could potentially intercept. 
However, sufficient cases were present at SuStaIn stage 12 of both diagnostic groups to 
examine overlap of modelled SuStaIn’s progression patterns with a tolerable degree of 
certainty. Qualitatively, at stage 12, SuStaIn projects FTLD-TDP patients to have greater 
cortical burden of TDP-43 pathology, particularly in the anterior cingulate, as well as sparse 
TDP-43 burden in the basal ganglia. In contrast, stage 12 LATE-NC cases were projected to 
have greater (more severe) TDP-43 burden in the medial temporal lobe (Figure 5C). 
However, among LATE-NC cases, a brief increase of FTLD probability was seen around 
LATE-NC stages 12-16, and a similar phenomenon of higher LATE-NC probability was seen 
in FTLD-TDP cases also around stages 12-16 (Figure 5B), indicating some degree of 
overlap between these two entities around these stages.    

 

Heterogenous pathological progression patterns of TDP-43 proteinopathies 

For each neuropathologic diagnostic category, SuStaIn was refit allowing estimation of 
multiple progression patterns. For ALS, SuStaIn identified two subtypes of TDP-43 
progression (Figure 6; S5; S6). The first subtype, which we labelled as subcortical 
predominant, had greater TDP-43 deposition in brainstem and subcortical regions, namely in 
the medulla, pons, basal ganglia, midbrain and substantia nigra. The second subtype, which 
we labelled as corticolimbic predominant, had greater TDP-43 deposition in cortical and 
medial temporal regions, namely the amygdala, hippocampus, superior/middle temporal 
gyrus, entorhinal cortex, and the occipital cortex (Figure 6; S6). No evidence was found for 
putative crossover events between the two subtypes after stage 1 (Figure S5). 

When allowing SuStaIn to estimate multiple progression patterns for FTLD-TDP, SuStaIn 
identified two subtypes with distinct TDP-43 progression (Figure 6; S5; S7). The first 
subtype, which we labelled as cortical predominant, had greater TDP-43 deposition in the 
angular gyrus, occipital cortex, superior/middle temporal gyrus, middle frontal gyrus, anterior 
cingulate and dentate gyrus. The second subtype, which we labelled as brainstem 
predominant, had greater TDP-43 deposition in the medulla, pons, spinal cord, cerebellum 
and amygdala (Figure 6; S7). No evidence for a subtype crossover event was observed 
(Figure S5). 

Despite aggregating a diverse set of individuals with and without Alzheimer’s disease, a 
single progression pattern best described the TDP-43 progression pattern for the n=304 
participants with a secondary or tertiary neuropathological diagnosis of LATE-NC (Figure 
S5). 

 

Clinical characteristics of FTLD-TDP subtypes 

FTLD-TDP pathological subtypes were assessed for differences in demographic, 
pathological and genetic variables (Table 2). Compared to subtype 2 (brainstem 
predominant), subtype 1 (cortical predominant) participants were more likely to present with 
TDP-43 type C pathology, while subtype 2 was more likely to present with TDP-43 type B 
pathology and type E pathology, after adjusting for other covariates. There was also a 
significant interaction between SuStaIn subtype and SuStaIn stage on age at death (t=-2.85; 
p=0.005) and disease duration (t=-3.26, p=0.001), such that subtype 2 individuals showed a 
stronger negative relationship between SuStaIn stage and age at death (Figure S8). 
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Individuals with a secondary diagnosis of ALS were more likely to be subtype 2 (85.7% of 7 
individuals with secondary neuropathological evidence of ALS vs 52.9% of 119 individuals 
without secondary neuropathological evidence of ALS), but this trend did not reach statistical 
significance (p=0.1928). 

 

Clinical characteristics of ALS subtypes 

Similarly, differences in various clinical variables were tested between ALS subtype 1 
(subcortical predominant) and ALS subtype 2 (corticolimbic predominant). Two confounding 
factors significantly discriminated between the two subtypes (Table 2): Subtype 1 had a 
longer postmortem interval, and also tended to die with less overall brain pathology (e.g. 
lower SuStaIn stage) compared to subtype 2. Covarying for these and other variables, there 
was a nonsignificant trend (p=0.09) for subtype 1 being associated with a younger onset 
age. There was a significant SuStaIn subtype x SuStaIn stage interaction on symptom onset 
age (t=2.56, p=.01) and age at death (t=2.72, p=0.007), where subtype 1 showed a stronger 
negative relationship (Figure S8).  

 

 

Discussion 

In this study we employed data-driven disease progression modelling to derive an empirical 
system for staging and differentiating three major TDP-43 proteinopathies: ALS, FTLD-TDP 
and LATE-NC. The data driven staging schema derived from disease progression modelling 
corroborated previously described staging systems, whilst revealing additional detail in the 
progression patterns of each TDP-43 proteinopathy. Individuals diagnosed with ALS, FTLD-
TDP or LATE-NC could be distinguished with high accuracy based on their probability of 
belonging to the learnt progression pattern for each proteinopathy. Most misclassified cases 
appeared to be driven by features of more than one TDP-43 diagnostic entity intermingling, 
as well as mutations and presence of co-pathologies. Our study further identified 
considerable heterogeneity in the progression of ALS and FTLD-TDP across individuals, but 
the progression of LATE-NC was found to be remarkably homogeneous. 
 
Previous staging systems have been based on the delineation of a smaller, coarser set of 
stages based on the overall severity of pathology. In contrast, our data-driven staging 
systems were based on probabilistic inference of the sequential progression of TDP-43, 
enabling us to infer fine-grained progression patterns and to stage individuals 
probabilistically. Where previously described staging systems resulted in a substantial 
proportion of ‘unclassifiable’ individuals that didn’t precisely match the staging system, our 
data-driven method was able to probabilistically assign individuals to their best matching 
stage, accounting for the variability and uncertainty in the TDP-43 progression pattern for 
each particular TDP-43 proteinopathy. The probabilistic nature of the SuStaIn algorithm also 
allowed us to build proteinopathy classifiers by comparing an individual’s regional pattern to 
that of the dominant pattern of a given proteinopathy. This resulted in a robust and fully 
automated classification of diseases based only on an array of regional TDP-43 frequency 
scores plus age at death. The combined staging and classification could be useful for 
pathologists in classifying unusual cases and for establishing consistent quantification of 
individual TDP-43 progression for research studies. 
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Previous studies have described considerable pathological, clinical and biomarker 
heterogeneity in both ALS28–30 and FTLD-TDP31,32, and the two syndromes often co-occur 
within an individual12. Here we identified two major neuropathological subtypes in ALS and a 
further two in FTLD-TDP. The ALS subtypes broadly split into a subcortical predominant 
subtype with greater involvement of the spinal cord, medulla, pons and the 
caudate/putamen, and a corticolimbic predominant subtype with greater involvement of the 
temporal lobe, amygdala and hippocampus. Previous studies have similarly identified a 
subgroup of ALS cases with greater hippocampal and cortical involvement33,34. There is 
some controversy as to whether TDP-43 pathology in ALS originates in the motor cortex or 
the spinal cord. While our subtype analysis revealed subgroup differences in the relative 
timing of regional onset of motor cortex pathology, SuStaIn inferred the spinal cord as the 
first susceptible region for both ALS subtypes.  

The FTLD-TDP patterns identified in this study divided into a brainstem predominant  
subtype with greater subcortical and brainstem involvement, and a cortical predominant 
subtype with greater cortical involvement. This is consistent with previous studies identifying 
subcortical involvement in FTD subgroups35,36, with the brainstem predominant subtype 
having greater subcortical involvement. The brainstem predominant subtype was more likely 
to present with TDP-43 type B and E pathology, whilst the cortical predominant subtype was 
more likely to present with TDP-43 type C pathology. This aligns with previous work 
demonstrating that TDP-43 type B is associated with FTD-ALS phenotypes32,37–39, with the 
subcortical and brainstem involvement in the brainstem predominant subtype being closer to 
the pattern of TDP-43 progression in ALS. As with ALS, further studies in larger samples 
may reveal further subdivision of the subtypes.  

SuStaIn stage was positively correlated with age in LATE-NC, in agreement with previous 
studies1. However, in FTLD-TDP SuStaIn stage was found to be negatively correlated with 
age. Interestingly, when allowing for subtypes, both ALS and FTLD-TDP exhibited subtypes 
with an increased amount of subcortical pathology and an inverse relationship between age 
and pathology, suggesting that age associations may have been driven by subgroup 
associations for FTLD-TDP and negated by subgroup associations for ALS. The factors 
leading to positive and negative relationships between pathology and age are complex and 
incompletely understood. A positive association with age might be produced by a slow 
progressing (typically late onset) pathology, which is often present alongside other 
pathologies and is unlikely to be the primary cause of death. A negative association with 
age, in contrast, may be produced by a fast progressing (often early onset) pathology, with a 
higher burden of pathology being found in individuals with faster progression who 
consequently die at a younger age.This idea is supported by previous studies that have 
found inverse correlations between the primary pathology and age, such as between age 
and tau deposition in Alzheimer’s disease20,40,41. An alternative explanation for an inverse 
correlation between disease stage and age is that more neuronal death in older (or more 
progressed) subjects leads to lower proportions of TDP-43 pathology being stained on 
histopathological slides. Some evidence for this phenomenon is presented by individuals 
with long-lasting ALS, who demonstrate decreased TDP-43 staining due to neuronal death 
of TDP-43-vulnerable neurons42,43. One final explanation for an inverse correlation with age 
is that younger subjects may have higher neurocognitive reserve, and are therefore able to 
function under a greater burden of pathology44.  

We identified a single progression pattern for LATE-NC, suggesting that the pattern of TDP-
43 progression in LATE-NC is relatively stereotypical, or at least spread around a single 
major mode. We didn’t find evidence in the present study that the progression of LATE-NC 
differed between individuals with or without Alzheimer’s disease, although our sample was 
dominated by individuals with Alzheimer’s disease and larger studies will be required to 
confirm this. A recent study by Cykowski et al.45 identified subtypes of LATE-NC with distinct 
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TDP-43 inclusion morphologies. Our study does not necessarily contradict this study as we 
didn’t consider the morphology of the TDP-43 inclusions when deriving subtypes and stages. 
It is also worth noting that we didn’t consider very early ‘sparse’ pathology, whereas early 
pathology was found to be more heterogeneous in the study by Cykowski et al. 
 
The regions affected by LATE-NC and FTLD-TDP are known to overlap and the similarity of 
their TDP progression patterns has not yet been fully determined, although some studies 
suggest that they can be differentiated16. Whilst could differentiate LATE-NC and FTLD-TDP 
with high accuracy, it is important to note that there was a systematic under-sampling of 
individuals with early stages of FTLD-TDP and late stages of LATE-NC in our dataset. We 
did observe subtle differences for the few individuals at overlapping middle stages of FTLD-
TDP or LATE-NC.. However, we also observed a clear decrease in the confidence of 
classifying these  individuals, suggesting that these subtle differences may not be strong 
enough to differentiate one condition from the other at an individual level. Similarly, there 
was considerable uncertainty in the early stages of the FTLD-TDP progression pattern and 
the late stages of the LATE-NC progression pattern. There is some controversy as to 
whether FTLD-TDP and LATE-NC share similar origins, where FTLD-TDP may be an 
earlier-onset and far more aggressive variant of LATE-NC. Based on our observations, we 
can neither confirm nor reject this hypothesis, especially since early FTLD-TDP is 
undersampled in our cohort. Closer study of TDP-43 morphology in LATE-NC and FTLD-
TDP may help to resolve this controversy.  
 
Our study has a number of limitations that warrant further consideration in future work. The 
neuropathological sample was obtained from a tertiary academic centre and may have a 
referral bias. FTLD-TDP is also known to be highly heterogeneous, potentially with distinct 
progression patterns in carriers of genetic mutations for FTLD-TDP, however our study was 
underpowered to resolve mutation-specific patterns. The SuStaIn algorithm infers subtypes 
with distinct progression patterns from cross-sectional data, relying on the assumption that 
TDP-43 proteinopathies progress sequentially from region to region, as is the case in all 
neuropathological studies. The SuStaIn algorithm also assumes that each individual has a 
single TDP-43 proteinopathy (FTLD-TDP, ALS or LATE-NC), an assumption violated by 
several individuals in this study, leading to misclassification. Our study determined 
progression patterns using neuropathological samples from a large number of regions. 
Whilst ideally suited to determining the progression pattern of each TDP-43 proteinopathy, 
this means that the derived staging systems may require sampling of a larger range of 
regions than is necessary to differentiate one proteinopathy from another. There are also 
several regions that were not sampled in the present study that merit further investigation in 
future studies. Our study only considered the total amount of TDP-43 pathology in each 
region and did not consider the specific TDP-43 inclusion morphologies, which may provide 
further stratification if considered in future work, e.g. TDP type may enhance the 
differentiation of FTLD-TDP and LATE-NC46 but was only available for a subset of 
individuals in our study. In this study, we focused on comparing SuStaIn to staging schema 
of predefined neuropathological groups, running SuStaIn separately in each group. While 
consistent with current neuropathological practice, this may bias our results towards only 
reproducing these preconceived diagnostic categories. For example, diagnosis of LATE-NC 
in this study required amygdalar TDP-43 pathology, which may bias the amygdala as the 
earliest region to show TDP-43 burden. A similar issue may be present with the spinal cord 
and ALS, though other criteria are used in the neuropathological definition of ALS as well. 

Overall, we develop an empirical pathological staging system for ALS, FTLD-TDP and 
LATE-NC, using data-driven disease progression modelling. We demonstrate that this 
staging system is sufficient for staging and accurate classification and can provide 
probabilistic information that aids classification of individuals that deviate from the 
stereotypical progression pattern for each TDP-43 proteinopathy. Our results demonstrate 
that there is substantial heterogeneity amongst ALS and FTLD-TDP progression patterns, 
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whilst we identify that LATE-NC is relatively homogeneous in this cohort. Data-driven 
disease progression modelling is a useful tool for neuropathological staging and 
management and can aid in unravelling neuropathological heterogeneity. 
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Main Text Figures  

 

Figure 1: Progression patterns of TDP-43 proteinopathies. Inferred trajectory of regional 
TDP-43 progression based on individuals with a primary pathological diagnosis of ALS (left), 
a primary pathological diagnosis of FTLD-TDP (center), or a secondary or tertiary 
pathological diagnosis of LATE-NC. Colors within each brain region represent the cumulative 
sum of probabilities (0-1) summed across three stages of severity, light pathology (1) in red, 
moderate pathology (2) in purple, and severe pathology (3) in blue (see key at the bottom of 
each column). Only stages with reduced event ordering uncertainty (e.g. those represented 
by at least 5 individual donors) are shown. Below the brains are positional variance 
diagrams. Each box represents the degree of certainty that a given brain region (y-axis) has 
reached a given severity stage (red-light, purple-moderate, blue-severe) at a given SuStaIn 
stage (x-axis). Amyg = Amygdala; Ang = Angular Gyrus;  CB = Cerebellum; Cing = Anterior 
Cingulate; CP = Caudate/Putamen; CS = CA1/Subiculum; DG = Dentate Gyrus; EC = 
Entorhinal Cortex; GP = Globus Pallidus; LC = Locus Coeruleus; MB = Midbrain; MC = 
Motor Cortex; MF = Middle Frontal Gyrus; Med = Medulla; OC = Occipital Cortex; OFC = 
Orbitofrontal Cortex; SC = Spinal Cord; SMT = Superior and Middle Temporal Gyrus; SN = 
Substantia Nigra; TS = Thalamus. 
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Figure 2: Relationships between age and disease progression. The relationship 
between total TDP-43 pathology, age of disease onset, age at death and disease duration 
with total TDP-43 pathologic burden (as measured with SuStaIn stage) across all three 
diagnostic categories. SuStaIn stage was strongly related with total TDP-43 pathology 
across all diagnostic groups. LATE-NC showed a significant positive relationship between 
SuStaIn stage and age (at onset and at death), whereas FTLD-TDP showed a significant 
negative relationship with age and disease duration.  
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Figure 3: Comparison between SuStaIn-inferred TDP-43 pathological progression and 
previous staging systems. Individuals are staged based on various proposed staging 
criteria (refs; see Figure S2). TDP-43 pathology was averaged within regions belong to each 
stage. If an individual shows TDP-43 pathology (1+) in an advanced stage before showing 
TDP-43 pathology in a previous stage, they are considered to be ”out- of-stage”, represented 
by ”U” for ”unclassifiable”. SuStaIn stage generally showed good correspondence with 
previous pathological staging systems.  
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Figure 4: Pathology-based disease classification. All three diagnostic models were 
applied to all individuals regardless of TDP-type or genetic group, and the probability of the 
maximum likelihood stage was recorded. This probability represents a proxy for how well the 
individual’s regional TDP-43 pattern fit the model trajectory for LATE-NC/ALS/FTLD-TDP. 
Boxplots in (A-C) show the distribution of probabilities for each of the three diagnostic 
models (x-axis), stratified by pathological diagnosis (TDPDx on the x-axis), for (A) the ALS 
model, (B) the FTLD-TDP model and (C) the LATE-NC model. Note that each graph (A-C) 
includes a probability for every subject. Note also that probabilities were derived using 10-
fold cross-validation for within-diagnosis assessments (e.g. ALS cases tested using the ALS 
model) to avoid over-fitting. Each individual is colored in accordance with their clinical 
diagnosis. Generally, individuals showed a high probability in models trained on their 
diagnosis, and a low probability in others. (D) A confusion matrix showing agreement 
between pathological diagnosis and maximum likelihood (ML) subtype model. True 
pathological diagnosis labels are represented on the y-axis, while predicted labels are shown 
on the x-axis. Individual pathological profiles tended to agree best with models fit to their 
clinical diagnostic group, but this was not true in all cases. (E) A logistic regression (LR) 
model was trained on the probabilities, plus ML SuStaIn stage and age at death, using 100 
iterations of train/test splits. The confusion matrix shows the average agreement between 
pathological diagnosis and predicted subtype in the 100 left-out test groups. (F) Distribution 
of classification statistics for performance of the ML model across the 100 train/test splits, 
stratified by pathological diagnosis. See Table S3 for further statistics and comparison with 
ML model.  
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Figure 5: Comparing LATE-NC and FTLD-TDP. A) Histograms showing the proportion of 
individuals assigned to each stage, separately for FTLD-TDP, ALS and LATE-NC 
models/individuals. Nearly all LATE-NC individuals were assigned to stages 16 or lower, 
while nearly all FTLD-individuals were assigned to stages 16 or higher. B) SuStaIn tends to 
confuse LATE-NC and FTLD-TDP particularly the stages of the cross-over noted in A. The 
top plot represents the probability of being classified as FTLD-TDP among LATE-NC 
individuals, whereas the bottom plot represents the probability of being classified as LATE-
NC for FTLD-TDP individuals. For both sets of patients, probability of misclassification is 
very low, except between stages 12-16. C) Comparison of FTLD-TDP and LATE-NC at 
Stage 12, with colors representing the amount of pathology using the same scale as Figure 
1, ranging from white (no pathology) to red (light pathology) to purple (moderate pathology) 
to blue (severe pathology). See Figure 1 for abbreviations. 
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Figure 6: Subtypes of primary TDP-43 proteinopathies. T-maps showing regions that are 
significantly different between ALS subtypes (top) and FTLD-TDP subtypes (bottom), after 
controlling for SuStaIn stage and multiple comparisons. A positive t-value (red) indicates 
more severe TDP-43 pathology in Subtype 1 and a negative t-value (blue) indicates more 
severe TDP-43 pathology in Subtype 2. See Figure 1 for abbreviations. 
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