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ABSTRACT

Over 200 million people worldwide suffer from diabetes, a disorder of glucose homeostasis. The majority of these individuals are
diagnosed with type 2 diabetes. It has traditionally been thought that tissue resistance to the action of insulin is the primary defect
in type 2 diabetes. However, recent longitudinal and genome-wide association studies have shown that insulin resistance is more
likely to be a precondition, and that the failure of the pancreatic b cell to meet the increased insulin requirements is the triggering
factor in the development of type 2 diabetes. A major emphasis in diabetes research has therefore shifted to understanding the
causes of b cell failure. Collectively, these studies have implicated a complex network of triggers, which activate intersecting execu-
tion pathways leading to b cell dysfunction and death. In the present review, we discuss these triggers (glucotoxicity, lipotoxicity,
amyloid and cytokines) with respect to the pathways they activate (oxidative stress, inflammation and endoplasmic reticulum stress)
and propose a model for understanding b cell failure in type 2 diabetes. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2010.00021.x,
2010)
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INTRODUCTION
Glucose is the primary fuel source for the maintenance of
energy homeostasis, and the production and uptake of glucose
by various tissues is largely regulated by insulin. Disruption of
insulin function, through loss of insulin production and/or
through resistance to insulin action, leads to the development of
all forms of diabetes. Over 200 million people worldwide suffer
from some form of diabetes, and studies predict that this num-
ber will rise to above 350 million by 20301. The diagnosis of
diabetes is typically made by use of American Diabetes Associa-
tion criteria2, which now include hemoglobin A1c as a measure
(‡6.5%). By far, the majority of these individuals are diagnosed
with type 2 diabetes, a disease that has traditionally been defined
by tissue (liver, muscle, fat) resistance to insulin action. Contrib-
uting factors to insulin resistance include both lifestyle (obesity
and inactivity) and rare genetic disorders (e.g. lipodystrophy)3–5.
The increase in insulin resistance leads to an increased demand
for insulin production, thereby resulting in hyperinsulinemia in
these individuals. Importantly, the insulin secretory capacity
appears to be a key factor in determining whether an individual
shows normoglycemia or hyperglycemia. In this regard, pancre-
atic islet b cells are the only source for physiologically-relevant
insulin in mammals, and in recent years b cells have become a
major focus of diabetes research. Several animal models of obes-
ity and insulin resistance show normal to near-normal glucose
homeostasis, primarily because of islet hyperplasia and enhanced

insulin production by b cells, a condition often referred to as
adaptive islet hyperplasia6. A similar situation is believed to
occur in human subjects with obesity and insulin resistance, and
autopsy studies dating back as far as the 1930s showed that
obese subjects without diabetes exhibit adaptive islet hyper-
plasia7,8.

Within the b cell community there is some controversy as
to whether insulin resistance precedes hyperinsulinemia, or
whether early hyperinsulinemia gives rise to initial insulin resis-
tance; it appears, however, that the majority of publications in
the field favor the former mechanism. Regardless of the early
instigating mechanisms, only about 15–30% of obese individuals
with insulin resistance actually carry the diagnosis of diabetes9.
Evidence is accumulating that b cell dysfunction and the conse-
quent inability to maintain appropriately elevated insulin secre-
tion might be the precipitating factor in the development of
diabetes in susceptible individuals. Recent clinical longitudinal
studies have been particularly useful in establishing an impor-
tant role for b cell dysfunction in type 2 diabetes. For example,
a 5-year prospective study carried out in Pima Indians showed
that an insulin secretory defect is a predictor for the transition
from impaired glucose tolerance (or pre-diabetes) to frank dia-
betes10. More recently, a much larger scale study derived from
the Whitehall II cohort of over 6000 non-diabetic subjects
examined the development of diabetes during a follow-up per-
iod of 9.7 years11. In the group that eventually developed diabe-
tes, insulin sensitivity began declining at a faster rate than in the
control cohort 5 years before diagnosis, a decline that was
accompanied by more rapid elevations in blood glucose after an
oral glucose challenge. Notably, in the diabetic cohort, b cell
function (as determined by the homeostasis model assessment,
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HOMA) showed a dramatic decline in the 2 years just before
diabetes diagnosis. Collectively, these and other studies12–14 sug-
gest inverse trajectories of b cell function and glycemia in the
years immediately preceding the diagnosis of diabetes, where the
rapid increase in blood glucose levels coincides with a dramatic
fall-off in b cell function (Figure 1).

Do these clinical studies suggest that b cell dysfunction is
causative of type 2 diabetes, or merely coincidental? Compelling,
causative evidence comes from recent advanced genome-wide
association studies, which have identified candidate genomic
variants that contribute to the risk of type 2 diabetes. Interest-
ingly, a number of these variants are located in genes that are
known to regulate b cell function and/or development, including
HNF4A, TCF7L2, IDE, EXT2, HHEX and ALX415–19. Thus,
these studies support a central, and potentially causative, role of
b cell dysfunction in type 2 diabetes. However, the pathogenesis
of b cell dysfunction is only recently coming to light. In the sec-
tions that follow, we summarize what is known about the trig-
gers (or mediators) of b cell dysfunction in type 2 diabetes, and
discuss how these triggers subsequently influence convergent
cellular execution pathways (mechanisms) leading to b cell
failure.

TRIGGERS OF b CELL FAILURE
Although pre-diabetes and diabetes are frequently perceived as
disorders of glucose homeostasis, they should instead be viewed
as a continuum in a ‘syndrome’ in which a host of insulin-
dependent metabolic actions is in disarray. Thus, subjects with
diabetes and pre-diabetes show several metabolic and pathologi-
cal abnormalities, including hyperglycemia, dyslipidemia, ele-
vated serum cytokines and islet amyloid deposition among
others. Therefore, it is likely that the totality and/or cross-talk of

these abnormalities, rather than any single one, contributes to
the development of b cell dysfunction. We view these abnormal-
ities as triggers for the activation of pathways leading to b cell
demise.

Glucotoxicity
Hyperglycemia, as seen in established type 2 diabetes or as seen
post-prandially in pre-diabetes, has long been felt to have a neg-
ative consequence on b cell function. The precise etiology of
glucotoxicity, however, has been the subject of much debate, pri-
marily because the models (in vitro vs in vivo, cell lines vs islets,
human vs rodent etc.) used to study the phenomenon have var-
ied greatly. The topic of glucotoxicity, therefore, has been the
subject of recent reviews20,21. Acutely, glucose has a stimulatory
effect on transcription of the gene encoding preproinsulin (Ins)
and on insulin release. Glucose enters the b cell via facilitated
transport through the Glut2 transporter, after which it is con-
verted to glucose 6 phosphate by the action of the high Km
kinase glucokinase. The flux through the glycolytic cascade, and
the production of adenosine triphosphate (ATP) in this process,
ultimately leads to membrane depolarization and insulin granule
docking and release22. Teleologically, it is understandable that
the repeated and prolonged exposure to hyperglycemia should
lead to b cell degranulation and eventual exhaustion, but the
mechanisms underlying this process are believed to be complex
and not readily explicable. For example, the ultimate effect of
hyperglycemia on b cell function might be related to both the
level of glycemia as well as the duration of glycemic exposure.
Early studies of prolonged hyperglycemia in vivo and in vitro
showed clear reductions in Ins gene transcription, and eventual
reduction in insulin secretion itself. These reductions are
thought to be secondary to reductions in the transcription or
activity of the b cell transcription factors Pdx1 and MafA23–25.
Reductions of several other b cell and islet transcription factors
and proteins have been described in response to prolonged
hyperglycemia, suggestive of a process of b cell ‘dedifferentia-
tion’ or reversion to an embryological equivalent of a less
glucose-responsive cell type26,27. The direct effect of hyperglycemia
on these altered gene expression patterns is supported by studies
in which phlorizin treatment (which reduces glucose levels inde-
pendent of insulin levels in animals) reverses or partially
reverses the gene expression phenotype28,29. Several mechanisms
have been proposed to explain hyperglycemia-induced b cell
dedifferentiation and dysfunction, but a major factor appears to
be oxidative stress, as discussed later. Multiple pathways contrib-
ute to oxidative stress, including the polyol pathway, activation
of advanced glycation end-product receptors, and mitochondrial
dysfunction30,31. Other pathways linked to hyperglycemia
include endoplasmic reticulum (ER) stress and possibly
hypoxia-induced stress32,33.

Lipotoxicity
The term ‘lipotoxicity’ is often applied to the phenomenon in
which elevated free fatty acid (FFA) levels in the setting of

Figure 1 | Trajectories of b cell function, insulin sensitivity and post-
prandial glucose during the progression from normal glucose tolerance
to diabetes. The general trajectories depicted and the relative timelines
with respect to one another are taken from data from the Whitehall II
study.
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insulin resistance contribute to b cell dysfunction. In actuality,
the effect of FFA on b cell function is much more complex, and
includes both beneficial and detrimental effects34,35. The concen-
tration of FFA, chronicity of exposure to elevated FFA and the
coexistence of hyperglycemia all determine the extent to which
FFA contribute to b cell function. Under physiological concen-
trations, FFA are crucial to the maintenance of glucose-stimu-
lated insulin secretion (GSIS), and early studies showed that
depletion of intra-islet FFA leads to impaired GSIS, which is
restored on exogenous FFA administration36. The mechanisms
by which healthy concentrations of FFA promote GSIS have
been studied extensively, and at least two distinct pathways
have emerged. The first is through the FFA receptor 1 (or
Gpr40)37,38; Alquier et al. recently showed that the knockout of
GPR40 led to impairments in glucose and FFA-stimulated insu-
lin secretion in islets without affecting intra-islet glucose or
palmitate metabolism39. The second pathway is through intra-
cellular FFA metabolism (to generate lipid signaling molecules)
and glycerolipid/FFA cycling40. In the aggregate, these mecha-
nisms are believed to maintain glucose-responsive insulin secre-
tion under normal circumstances, and possibly contribute to the
early hypersecretion of insulin in the initial stages of high-fat
diet-induced obesity41,42.

In contrast to the GSIS-promoting effect of FFA in the short-
term, chronic exposure of b cells to FFA appears to have the
opposite effect. In several models in vitro and in vivo, exposure
to FFA in the long term leads to impaired Ins gene transcrip-
tion, impaired GSIS and eventual b cell apoptosis43–46. Impor-
tantly, the deleterious effects of FFA in virtually all of these
circumstances have been observed in the presence of elevated
glucose concentrations47–49, and hence the term ‘glucolipotoxic-
ity’ is perhaps more appropriate in describing the phenomenon.
The ‘permissive’ effect of glucose on FFA toxicity in the b cell
has been suggested to be secondary to a partitioning effect on
lipid metabolism, such that elevated glucose and FFA levels
results in the accumulation of long chain acyl CoA esters in the
cytosol, which are detrimental to b cell function50. The nature
of the FFA themselves also appears to be relevant to glucolipo-
toxicity, whereby saturated fatty acids (e.g. palmitic acid) confer
the greatest toxicities and monounsaturated fatty acids (e.g. pal-
mitoleic acid) might actually have a neutral or protective effect
because they are more readily esterified into triglycerides48,51,52.

Several mechanisms have been proposed to explain the
chronic effects of FFA on GSIS and b cell apoptosis. Prolonged
exposure to palmitic acid diminishes Ins gene transcription and
GSIS in isolated rat islets, accompanied by attenuated binding of
the b cell transcription factors Pdx1 and MafA on the Ins pro-
moter53,54. The underlying cause for the diminished activities of
Pdx1 and MafA was shown in studies in vivo, in which islets
from intralipid-infused Wistar rats showed a shift in Pdx1 local-
ization from the nucleus (where it normally regulates gene tran-
scription) to the cytosol55. Unlike its effect on Pdx1, palmitic
acid appears to diminish MafA transcription, leading to lower
MafA protein levels53. Other mechanisms of glucolipotoxicity

include palmitic acid-induced activation of protein kinase C d
(a mediator of apoptosis)56, palmitic acid-induced synthesis of
ceramides (which inhibits the anti-apoptotic protein Bcl-2 and
downregulates IRS-1/2 signaling)52,57–59, FFA-induced upregula-
tion of UCP2 (and subsequent reduction of glucose-stimulated
ATP generation)60–62, and activation of oxidative stress58,63 and
the unfolded protein response64 pathways.

Emerging data additionally implicate a possible role for cho-
lesterol metabolism in b cell lipotoxicity. Oxidized low density
lipoprotein particles appear to diminish Ins gene transcription
and promote apoptosis in isolated b cells65. Disruption of the
ABCA1 reverse cholesterol transporter in mice results in defects
in cholesterol efflux from the b cell, and subsequent accumula-
tion of intra-islet cholesterol; this accumulation leads to
impaired GSIS and glucose intolerance66. In this regard, recent
studies by our group suggest that activation of ABCA1 in
human islets by LXR agonists might be one approach to dimin-
ish islet cholesterol burden and improve GSIS67.

Islet Amyloid Polypeptide
Islet amyloid polypeptide (IAPP), also known as amylin, is a
small 37 amino acid peptide that is synthesized in the islet b cell
and co-secreted with insulin68–70. Although the physiological
role of IAPP is unclear, its presence as ‘amyloid’ deposition
within the islet was seen more frequently in pancreatic speci-
mens from humans with type 2 diabetes compared with obese,
non-diabetic control subjects71–73. Species differences in IAPP
are particularly significant in terms of the consequences of amy-
loid deposition in islets, such that the human, monkey, dog and
cat orthologs possess amyloidogenic potential (i.e. the ability to
oligomerize and form intracellular fibrils), whereas mouse and
rat orthologs do not74. Whether or not amyloid deposition is a
cause or consequence of type 2 diabetes has been the subject of
much controversy, but more recent studies of transgenic rodents
harboring the human form of IAPP seems to strongly suggest a
causal role for human IAPP in the development of islet dysfunc-
tion. Islet specific expression of human IAPP in transgenic mice
and rats leads to amyloid fibril deposition, b cell apoptosis and
diabetes75,76. Interestingly, pharmacological inhibition of fibril
formation fails to prevent IAPP-induced b cell apoptosis, sug-
gesting that the IAPP oligomers are the likely nature of the det-
riment77. Because IAPP is co-secreted with insulin, the insulin
hypersecretory state of early insulin resistance is thought to pre-
dispose to IAPP hyperproduction and possibly intracellular
accumulation78. Intracellular accumulation of IAPP has been
correlated with oxidative stress79, Fas-associated death receptor
signaling80 and the unfolded protein response/ER stress81–83.

Cytokines
Adipose tissue, which used to be thought of as ‘passive’ fat stor-
age tissue, is now recognized as an ‘active’ endocrine organ
whose secretions have profound effects on other tissues. Just as
importantly, the nature of the adipose tissue (e.g. visceral vs sub-
cutaneous) has profound implications for the types of factors
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secreted and their ultimate effects on glucose homeostasis (with
visceral being more detrimental than subcutaneous)84–86. The
many bioactive cytokines (or adipocytokines) released by adi-
pose tissue include leptin, adiponectin, resistin, tumor necrosis
factor-a (TNF-a), interleukin-6 (IL-6) and MCP-1 86–92. Obesity
(with increases in visceral adipose tissue) is associated with
lower secretory rates of beneficial adipocytokines (adiponectin)
and higher secretory rates of leptin and pro-inflammatory
adipocytokines (TNF-a, IL-6, MCP-1)87,88,93–95. TNF-a signaling
in the islet is particularly detrimental; TNF-a negatively regu-
lates both IRS-2 function (through JNK-mediated IRS-2 Ser
phosphorylation) and stability (through enhancement of IRS-2
degradation) in b cells96,97. NF-jB, a major downstream media-
tor of the TNF-a response in b cells, induces proinflammatory
responses and inducible nitric oxide synthase activation, both of
which might trigger the unfolded protein response/ER stress98.
Recent studies suggest that another adipocytokine, leptin, might
affect islet function in the setting of obesity. Islet b cells express
the full-length leptin receptor ObR, which activates the JAK-
STAT3 pathway in response to leptin binding99. Leptin signaling
inhibits GSIS in b cell lines and in normal mice99–103, suggesting
that leptin signaling might serve as a ‘brake’ for insulin release
in normally functioning b cells. Interestingly, however, leptin
signaling in the islet appears to be required for the adaptive islet
hyperplasia as seen in high-fat diet feeding102. Thus, it appears
that impaired leptin signaling in some states of obesity might be
detrimental to islet function and might therefore contribute to
glucose intolerance and diabetes.

IL-1b is another cytokine that has been shown to directly
contribute to b cell dysfunction in type 2 diabetes. Recent clini-
cal studies104,105 show a positive effect of IL-1b receptor antago-
nists on glycated hemoglobin and b cell function in type 2
diabetes, with durable effects even after discontinuation. The
source of IL-1b in type 2 diabetes has remained controversial,
but could include production by locally infiltrating macrophages
into islets or adipose tissue, or possibly production by islets
themselves106,107.

MECHANISMS LEADING TO b CELL FAILURE
Whereas the triggers discussed earlier (glucose, lipid, IAPP and
cytokines) can be viewed as distinct entities that variably exist in
states ranging from insulin resistance to frank type 2 diabetes,
the end result of these triggers are convergent pathways that
lead to b cell dysfunction and eventual death. An increase in
apoptotic b cells is evident in pancreata of type 2 diabetic sub-
jects, whereas numbers of replicating b cells are unchanged7; this
finding suggests that the net balance in type 2 diabetes favors b
cell loss. The mechanisms by which the above described triggers
lead to initial b cell dysfunction, then eventual death, are dis-
cussed below.

Oxidative Stress
An abundance of evidence now suggests that chronic exposure
of b cells to elevated glucose (glucotoxicity), and likely also FFA

and IAPP, leads to the production of reactive oxygen species
(ROS). The sources for ROS are numerous, and include oxida-
tive phosphorylation (mitochondria), protein kinase C activation
and sorbitol metabolism, among others (see reference 30 for a
review). Ironically, b cells possess less anti-oxidative capacity
compared with other highly oxidative cells, with diminished
activities of protective enzymes including Cu/Zn-superoxide
dismutase (SOD), Mn-SOD, catalase and glutathione peroxi-
dase108,109. A marker of oxidative stress, 8-hydroxy-2¢-deoxygu-
anosine (8-OHdG), is observed in islets of type 2 diabetic
subjects110, and is also seen in animal models of type 2 diabetes
(e.g. the Goto-Kakizaki or GK rat)111.

Several studies suggest that attenuation of oxidative stress
might lead to recovery of b cell function. Oxidative stress can be
prevented by treatment of islets with the antioxidant N-acetyl
cysteine or by overexpression of glutathione peroxidase112,113.
Notably, a recent study by Robertson et al. showed that trans-
genic overexpression of glutathione peroxidase in islets of obese
diabetic db/db mice led to restoration of islet function, glucose
homeostasis and MafA nuclear localization114. Similarly, reduc-
tions in oxidative stress might underlie the islet protective effect
of thiazolidinediones (PPAR-c agonists) in humans and diabetic
mouse models115–117, although this effect might also involve
reductions in ER stress pathways118 (signaling a possible link
between oxidative stress and ER stress119).

Inflammation
The role of inflammation in the pathogenesis of islet dysfunc-
tion was thought to be largely confined to type 1 (autoimmune)
diabetes. However, with the recognition that adipose tissue
serves as a major source for cytokines and chemokines also
comes the realization that inflammatory signaling pathways
within the islet might contribute to b cell dysfunction. A large
body of literature points to the role of the proinflammatory
cytokines IL-1b TNF-a, and interferon-c (IFN-c) in activating
several signaling cascades, including NF-jB, mitogen activated
protein kinase (MAPK), and janus kinase/signal transducer and
activator of transcription (JAK/STAT)120. Another important
cascade induced by cytokine signaling in the b cell is arachido-
nate metabolism. In response to cytokines, 12/15-lipoxygenase
(12/15-LO) is strongly induced to cause the breakdown of ara-
chidonic acid to highly active metabolites (e.g. 12-hydroxyeico-
satetraenoic acid), which themselves are believed to lead to
oxidative stress and mitochondrial dysfunction121–125. Recent
work by Nadler et al. showed that islets of 12/15-LO knockout
mice are protected from the cytokine-induced deterioration of
high-fat diet feeding126, suggesting a potentially proximal role
for arachidonate metabolism in the islet response to systemic
cytokines.

Collectively, the multiple cascades induced by cytokines lead
to further production of inflammatory cytokines and cell death
signals resulting in b cell dysfunction and ultimately death.
Whereas in the case of type 1 diabetes, the source of proinflam-
matory cytokines is thought to be primarily the immune system
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(activated T cells and macrophages), the scenario in type 2 dia-
betes is more complex. Certainly, as discussed earlier, visceral
adipose tissue is thought to be a major source. However, a role
for the immune system might well be possible. Macrophage
infiltration into islets is increased in several type 2 diabetes
animal models, such as high-fat fed C57BL/6 mice, GK rat and
db/db mouse127. Consistent with these animal model studies,
macrophage number is also increased in islets of type 2 diabetic
subjects compared with non-diabetic subjects128. Several small
clinical studies showed that administration of high doses of the
anti-inflammatory drug, salicylate, improved glycemic control in
diabetic subjects129.

As discussed earlier, IL-1b is another candidate cytokine that
is known to trigger the inflammatory cascade in islets. Mature
IL-1b is produced though cleavage by caspase-1, which itself is
activated by the NLRP3 inflammasome. The inflammasome is
composed of the Nod-like receptor protein NLRP3, CARDI-
NAL, ASC and caspase-1130. In recent studies, it was shown that
thioredoxin-interacting protein (TXNIP) interacts with NLRP3
and contributes hyperglycemia-responsive IL-1b production131.
TXNIP binds to the redox-domain of thioredoxin to block
reductase activity, and releases thioredoxin in response to oxida-
tive stress. Interestingly, TXNIP transcription is increased by
glucose stimulation in islets132,133, suggesting that TXNIP might
serve as a signaling molecule to link glucose-induced oxidative
stress to inflammation.

Endoplasmic Reticulum Stress
The ER is a dynamically active organelle that plays a central role
in the translation and proper folding of mRNA and their
encoded proteins, respectively. The role of the ER is central to
the function of the b cell, which relies heavily on this organelle
to process proinsulin. In addition to its role in protein folding,
the ER is also crucial for intracellular Ca2+ homeostasis and
mobilization through the function of the ER-embedded sarco/
endoplasmic reticulum Ca2+ ATPase (SERCA)134. In the setting
of adaptive islet hyperplasia, the role of the ER is especially cru-
cial, as the increased demand for insulin production and release
requires mobilization of chaperone proteins and SERCA activity.
When insulin demand exceeds ER capacity, the consequent
accumulation of misfolded proteins leads to the induction of a
process known as the unfolded protein response (UPR). The
UPR has two primary functions; first, to halt protein synthesis
to mitigate accumulation of unfolded proteins and second, to
generate chaperone proteins to aid in the folding of intraluminal
proteins135,136. Three major transmembrane proteins serve as
the transducers of the UPR: (i) inositol requiring enzyme 1
(IRE1); (ii) activating transcription factor 6 (ATF6); (iii) and
protein kinase-like endoplasmic reticulum kinase (PERK). Acti-
vation of the UPR causes these three proteins to dissociate from
the protein BiP/Grp78, which is then available to chaperone fur-
ther protein folding137,138. In cases of prolonged stress (e.g.
unmitigated insulin resistance), the UPR shifts from this ‘sur-
vival’ mode to apoptosis mode (ER stress), which correlates to

expression of the protein CHOP (CCAAT/enhancer-binding
protein homologous protein)139–141. b cell ER stress has been
observed in several animal models. Akita mice, which bear the
C96Y proinsulin mutation, show misfolded proinsulin accumu-
lation in the ER and develop islet failure and diabetes142,143;
deletion of the CHOP protein in heterozygous Akita mice
results in delayed development of diabetes144. Islets from 10 to
12-week-old obese db/db mice show evidence of ER stress,
including activation of CHOP, and deletion of CHOP on this
background results in massive islet compensation and signifi-
cantly reduced hyperglycemia119. From a clinical perspective,
type 2 diabetic subjects showed greater CHOP expression in
islets compared with non-diabetic controls83. Taken together,
these findings suggest that activation of programmed cell death
pathways through unmitigated ER stress might lead to islet loss
during the transition from insulin resistance to frank type 2
diabetes.

Islet dysfunction and death, which have traditionally been
viewed as hallmarks of type 1 diabetes, are now gaining
increasing attention in the pathogenesis of type 2 diabetes. The
present discussion of both the triggers and mechanisms of islet
dysfunction and death is admittedly incomplete, as the diversity
of signaling pathways is as great as the genotypic heterogeneity
of type 2 diabetes itself. Importantly, also, the direct demon-
stration that any of these pathways play a direct role in the
dysfunction of human b cells is largely lacking. Thus, much of
our knowledge of islet dysfunction must come from rodent
data. Nonetheless, the model shown in Figure 2 might serve as

Figure 2 | Triggers of b cell dysfunction impinge on intercommunicat-
ing pathways. b cell dysfunction is depicted as emanating from specific
extracellular (glucotoxicity, cytokines and lipotoxicity) and intracellular
(IAPP) signals, which then activate an intercommunicating network of
pathways (oxidative stress, ER stress and inflammatory stress) leading to
b cell dysfunction and demise. The figure is intended to be descriptive
of the events observed in models in vitro and in vivo, and is not inten-
ded to suggest that those mechanisms depicted are the only mecha-
nisms that occur. FFA, free fatty acid.
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a framework for understanding the pathways that ultimately
lead to the demise of the b cell in type 2 diabetes. We propose
that specific mediators (glucotoxicity, lipotoxicity, IAPP and
cytokines) serve as triggers for multiple different, often inter-
communicating, pathways within the islet (oxidative stress, ER
stress and inflammatory stress). Although several additional
pathways not described in detail in the present review (e.g. Fas
ligand signaling145, mitochondrial dysfunction146–149, defective
IRS-2 signaling150 and epigenetic alterations151) likely also con-
tribute to b cell dysfunction, what remains to be determined
from a therapeutic perspective is whether any one pathway is
more relevant than another at a given timepoint in the pro-
gression of disease, or in a given individual overall. In this
regard, ongoing genomic and epigenomic profiling studies
might eventually allow for correlation to specific pathways, and
perhaps the eventual development of directed individualized
therapies.
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