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We addressed the underrepresentation of non-European populations in genome-wide association studies (GWASs) 
by building HiGenome, a large-scale genetic resource for the Taiwanese Han population. Using a custom genotyping 
array, we integrated deidentified electronic medical records (2003 to 2021) with genomic data to enable GWASs, 
phenome-wide association studies, and polygenic risk score (PRS) analysis. Among 413,000 participants, 323,397 
passed ancestry and quality control filtering. GWASs covered 1085 traits, focusing on diseases prevalent in Taiwan 
such as type 2 diabetes, chronic kidney disease, gout, and alcoholic liver damage. PRSs were calculated for 238 traits, 
with the strongest associations observed in musculoskeletal disorders. Incorporating PRS into clinical practice sup-
ports early risk prediction and personalized prevention. To further expand translational value, we also conducted 
pharmacogenomic analysis and human leukocyte antigen typing. HiGenome offers a large-scale genetic and clinical 
dataset from the Taiwanese Han population, supporting population-specific analyses and precision medicine devel-
opment in East Asia. The hospital-based design enables continuous follow-up and longitudinal data expansion.

INTRODUCTION
Genome-wide association studies (GWASs) help researchers explore 
the associations between genes and specific diseases or traits (1). A key 
limitation of GWASs is the complex nature of most diseases, which 
result from a combination of genetic and environmental factors (2). In 
terms of genetic contributions, disease development is rarely driven by 
a single gene, but rather by the interplay of multiple genes and environ-
mental influences. Polygenic risk scores (PRSs) serve as a powerful ap-
proach to summarize the cumulative effects of multiple genetic variants 
and can also incorporate environmental factors into the model, aiding 
in the assessment of disease susceptibility (3, 4). Another limitation of 

GWASs is the underrepresentation of non-European populations, 
which hinders the identification of rare variants; these variants mani-
fest as high minor allele frequencies (MAFs) in other populations. 
Typically, individuals’ unique genetic risk factors for diseases are 
predominantly influenced by their ancestry (1, 5). The underrepresen-
tation of non-European populations in GWASs limits research ad-
vancements and exacerbates health disparities, particularly when the 
clinical applications of relevant genetic findings are primarily tailored 
for European populations. Heavy dependence on genetic data from a 
particular ancestry for the evaluation of health and disease outcomes is 
associated with major risks (5, 6).
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Genetic research in Asia began later than in Europe and America, 
leading to relatively fewer large-scale studies. Although several bio-
banks have been established for Han Chinese, Japanese, Korean, and 
Southeast Asian populations, most were developed only in recent 
years and still lack extensive longitudinal clinical data (7). Notable 
examples of existing biobanks in East Asia include the China Kadoorie 
Biobank, the Korea Biobank Array Project (8, 9), the Taiwan Biobank 
(TWB) (10–12), and BioBank Japan (13, 14). In contrast, large-scale 
biobanks such as the UK Biobank (UKBB) (15), FinnGen (16), and 
the Million Veteran Program (MVP) (17) integrate both patient elec-
tronic medical records (EMRs) and questionnaire-based health data, 
providing a more comprehensive dataset. In this study, we specifi-
cally focused on the Taiwanese Han population. Data were collected 
from a single institution—China Medical University Hospital (CMUH) 
and its affiliated branches—through a unified system encompassing 
nearly 19 years of EMRs. This structured and extensive dataset was 
designed to support both hypothesis-driven and exploratory re-
search on various diseases, allowing for in-depth investigations 
across a broad spectrum of medical conditions.

In the following, we describe the design and performance of a 
custom Affymetrix Axiom array called the Taiwan Precision Medi-
cine Version 1 (TPMv1) single-nucleotide polymorphism (SNP) ar-
ray, also referred to as TWB SNP array version 2 (12). This array, 
tailored for the Taiwanese Han population, not only ensures genome-
wide coverage, facilitating the high-quality imputation of both prev-
alent and infrequent variations, but also directly genotypes ~680,000 
presumed variants. In this study, we conducted an imputation analysis by 
using 1463 whole-genome sequencing datasets from the TWB. We 
also used 95 distinct whole-genome sequencing datasets to validate 
the outcomes of our imputation. Our findings were consistent across 
datasets with high MAFs (18). After 14 pharmacogenes of clinical 
significance were curated from the Taiwanese Han population, data 
on medication prescriptions were collected. Approximately 99.9% of 
the population had at least one actionable pharmacogenetic pheno-
type, with 29% prescribed medications to which they may have had a 
nonstandard response (19).

Using the PheCode classification method developed by the Vanderbilt 
University Medical Center (20), we analyzed ~19 years’ worth of EMR 
data for individuals who had participated in a genetic program at 
CMUH. By integrating data corresponding to ~14 million SNPs im-
puted from the TPMv1 chip, we successfully conducted GWASs for 
1085 diseases and PRS analyses for 238 diseases. Concurrently, we per-
formed robust phenome-wide association studies (PheWASs).

In this study, a comprehensive platform was established for GWASs, 
PheWASs, and PRS analyses among Han individuals in Taiwan. 
This initiative effectively addressed the global shortage of extensive 
genetic data from Asian populations by providing valuable insights 
into genetic associations with diseases in Southeast Asia. Our 
study also highlighted genetic differences between our cohort and 
the UKBB.

RESULTS
HiGenome features
HiGenome is a pan-Taiwanese genomic database established by 
CMUH. This database was launched in 2018 with the primary ob-
jective of determining the associations between genes and diseases 
prevalent among the Taiwanese Han population and calculating the 
PRSs for disease incidence prediction in asymptomatic individuals, 

with the ultimate goal of achieving precision in health care. In this 
study, to complete the genomic database, we used the TPMv1 SNP 
array, which is specifically designed for the Taiwanese Han popula-
tion. Whole-genome sequencing data pertaining to Taiwanese Han 
individuals, obtained from the TWB, were used to develop a plat-
form for imputation analysis (18). Various platforms were estab-
lished for pharmacogenomic analysis (19, 21, 22), human leukocyte 
antigen (HLA) typing (23), kinship verification (24), ancestral anal-
ysis, and PRS modeling (25) (Fig. 1).

CMUH is an extensive academic medical center located in Taichung, 
Taiwan. It collaborates with a network of hospitals across the north-
ern, central, and southern regions of the country. In this study, pa-
tients were enrolled from highly populated towns and districts 
across Taiwan from 2018 to 2021 (Fig. 2A). Because both genotypic 
and phenotypic (clinical) data are essential for identifying disease-
gene associations in GWASs, genotypic data were obtained using the 
TPMv1 SNP array, supplemented by whole-genome sequencing 
data obtained from the Taiwanese population, and enhanced using 
imputation algorithms. This approach expanded our dataset from 
~680,000 SNPs to nearly 14 million reference points, consistent with 
the reference sequence of the Taiwanese Han population. Clinical 
data were collected from patient EMRs, which were matched with 
relevant PheCodes. After the participants were categorized into case 
and control groups on the basis of 1085 phenotypes, preliminary 
stratification was performed by age and sex, with each disease as-
signed to either a base or target dataset. After genetic and pheno-
typic data were combined, the base dataset was used to conduct 
GWASs and PheWASs for all phenotypes, and the target dataset was 
used to calculate the PRSs of 238 diseases (fig. S1).

Clinical characteristics of the HiGenome cohort
The ages of our participants ranged from 0 to 111 years, with a male-
to-female ratio of 45.3:54.7. In table  S1, the mean age of male 
(47.89 ± 21.72) participants was slightly higher than that of female 
(46.37 ± 21.07) participants. Retrospective analysis of patient EMRs 
revealed that ~85.9% of the participants were followed up for more 
than 1 year, 65.3% were followed up for more than 5 years, 46.3% 
were followed up for more than 10 years, and 27.9% were followed 
up for more than 15 years (Fig. 2B, left). In 2003, the total number of 
diagnostic instances reached 800,000; this number increased to 
~7 million by 2021 (annual average: 3 million; Fig. 2B, right). Notably, 
43% of the participants received treatment in the hospital’s internal 
medicine departments, including the pediatric (14%) and surgical 
(10%) departments (Fig. 2C). Diagnostic analysis revealed that the 
patients primarily sought treatment for neoplasms and for diseases 
affecting their circulatory, endocrine, metabolic, genitourinary, or 
digestive system (Fig. 2D). Figure 2E depicts the age distribution of 
all 1085 traits. In this figure, the median age of the disease group is 
plotted on the x axis, and the median age of the control group is 
plotted on the y axis. As observed, few traits were distributed along 
the reference line, indicating a consistent age distribution for these 
traits. Notably, most of the traits were associated with a higher me-
dian age in the disease group than in the control group, confirming 
that the incidence of most diseases increased with age and time. Fig-
ure 2F depicts the gender ratio of the traits. At the macro level, traits 
exclusive to males (coordinates at 1-1) or females (coordinates at 0-
0) were observed (Fig. 2F, left). For most traits, the gender ratio of 
male in the control group consistently ranged between 0.49 and 
0.42, reflecting our cohort’s overall gender distribution. In the case 
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group, traits in the endocrine or metabolic categories were less preva-
lent among male participants, and certain neoplasm traits were more 
prevalent among male participants (Fig. 2F, right). For more details, 
please refer to table S1. Overall, these observations prompted us to 
integrate age and gender adjustment into our subsequent GWAS anal-
yses. Notably, our data included long-term follow-up information. 
Patients with chronic hepatitis B virus (HBV) infection had a higher 
incidence of liver cancer compared with those without HBV infection 
(fig. S2A). In addition, long-term diabetes was associated with an in-
creased risk of diabetic retinopathy. Moreover, female participants 
were more susceptible than were male participants to diabetic reti-
nopathy, with a highly significant P value (6 × 10−68; fig. S2B).

Ancestral distribution in the HiGenome cohort
To analyze ancestry, we conducted a principal components analysis 
(PCA), which resulted in the extraction of principal components 1 
and 2. Data from the 1000 Genomes Project were used as a refer-
ence. After aligning the HiGenome cohort with the East Asian 
(EAS) cohort from the 1000 Genomes Project (Fig. 3A), we found 
that a subset of our participants exhibited values exceeding the three 
quartiles of principal components 1 and 2. These participants were 
characterized as a potentially non-EAS subset. To ensure homoge-
neity, these individuals were excluded from further analyses. As 
shown in  Fig.  3B, the quality-controlled subset of the HiGenome 
cohort was consistent with the reference cohort in terms of principal 
component 1 and 2 distribution. Further exploration of the distribu-
tion of EAS individuals revealed a subset of participants exhibiting 
substantial deviations from the typical EAS distribution (Fig. 3C). 

However, after excluding this cohort on the basis of our established 
criteria, we found that the distribution of most participants was con-
sistent with that of EAS individuals, thereby confirming the robust-
ness of our quality control process (Fig. 3D). Predominant ancestral 
lineages were mapped to Southern Han Chinese individuals, fol-
lowed by (in descending order of frequency) Han Chinese individu-
als from Beijing, Chinese Dai individuals from Xishuangbanna, 
Kinh individuals from Ho Chi Minh, Vietnam, Japanese individuals 
from Tokyo, Japan, and a small subset of individuals resembling the 
residents of Utah with northern or western European ancestry 
(Fig. 3E). Although most of the participants exhibited >50% single-
source ancestry (Fig. 3E, top), some did not. These participants were 
of mixed EAS descent, and they were retained in subsequent analy-
ses (Fig. 3E, bottom). These findings prompted us to include PCA 
adjustment in our subsequent GWAS analyses.

Analysis of HLA distribution and 
pharmacogenomic associations
To further explore the distribution of HLA and its subsequent inte-
gration into pharmacogenomic analysis, we established a predictive 
model for HLA. We used the results of HLA typing and chip geno-
typing from the TWB as input for model training. This model is 
capable of identifying various HLA types, including HLA-A with 35 
types (1824 SNPs), HLA-B with 75 types (2007 SNPs), HLA-C with 
34 types (2151 SNPs), HLA-DPA1 with 6 types (816 SNPs), HLA-
DPB1 with 33 types (1713 SNPs), HLA-DQA1 with 17 types (2190 
SNPs), HLA-DQB1 with 19 types (1778 SNPs), and HLA-DRB1 
with 44 types (2277 SNPs). Across these eight subtypes, an average 

Fig. 1. Analysis platforms for our genotyping chip. The center of the schematic depicts our foundational data derived using the TPMv1 chip, revealing variants identified 
using blood DNA samples. We conducted an imputation analysis to enhance the data’s richness, preparing the dataset for future integrative analyses for other databases. 
Around the center are our extended analytical platforms: pharmacogenomics, human leukocyte antigen typing, parentage testing, ancestry analysis, and PRS modeling.
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out-of-bag accuracy of 96.86% was detected, ranging from a mini-
mum of 92.14% (HLA-B) to a maximum of 99.69% (HLA-DPA1), 
with a high accuracy observed in HMC class II (fig. S3A and table S2). 
Haplotype analysis of HLA revealed that HLA-A*11:01 (33.16%), 
HLA-B*40:01 (26.50%), and HLA-C*07:02 (20.87%) were the most 
frequent combinations, and diplotype analysis revealed that HLA-
A*11:01/24:02 (12.94%), HLA-B*40:01/46:01 (8.47%), and HLA-
C*01:02/07:02 (8.68%) were the most frequent combinations (fig. S3, 
B and C, and table S3). Our model also revealed varying association 

distances between each HLA subtype. For instance, HLA-A*01:01 
and HLA-A*68:01 exhibited the most distant relationship, with 
HLA-B*15:13 and HLA-B*27:05 being the farthest apart. Addi-
tional associations are detailed in fig. S4. Given our previous ances-
try analysis results (Fig. 3), we observed significant differences and 
a higher proportion of certain HLA subtypes in Southern Han Chi-
nese individuals than in Han Chinese individuals from Beijing, in-
cluding HLA-A*11:01(P < 7 × 10−8) and HLA-B*40:01(P < 7 × 
10−70) (fig. S5 and table S4).

Fig. 2. HiGenome cohort clinicodemographic data. (A) HiGenome contains data from individuals residing in densely populated residential areas in Taiwan. These data 
were primarily collected by CMUH and its affiliated institutions. (B) The left part presents the duration of follow-up, indicating a predominance of patients who were fol-
lowed up for less than 1 year up to 18 years. The right part presents the annual distribution of diagnoses identified from the patients’ EMRs, indicating a gradual increase 
in the number of diagnoses. (C) In terms of patient recruitment, most patients were enrolled from the hospital’s internal medicine department. (D) Diagnoses were classi-
fied using PheCodes. Most diagnoses were related to the circulatory system. (E) Age distribution for each trait, with the x axis representing the median age of the case 
group and the y axis representing the median age of the control group. Each color represents a unique category, with the size of the legend reflecting the number of 
participants. The reference line indicates equal age proportions between groups; the right half demonstrates the gender distribution for each trait. (F) The right half is an 
enlarged view focusing on the control group with a male proportion ranging between 0.4 and 0.54. The x axis indicates the male proportion in the case group, whereas 
the y axis indicates the male proportion in the control group. The left half indicates traits with exclusively female (lower left) or male (upper right) participants. This focused 
view on the right half clearly demonstrates gender proportion disparities. The male proportion in the control group ranges between 0.5 and 0.42, with notable variances 
in the case group due to disease characteristics.
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Fig. 3. PCA and ancestral analysis of data from the HiGenome cohort and 1000 Genomes Project. (A) Scatterplot depicting the PCA results for principal components 
1 and 2. This analysis was conducted using data from both the HiGenome cohort and the 1000 Genomes Project. Most patients in the HiGenome cohort were clustered 
within the EAS cohort of the 1000 Genomes Project. (B) Visualization after the exclusion (from the EAS cohort) of data points with deviations exceeding an IQR of 
3. (C) Focused view of the EAS region, with data points excluded because of deviation. (D) Subset of the HiGenome cohort juxtaposed with the EAS cohort. (E) Pri-
mary ancestral components for each individual. Most individuals in the HiGenome cohort belonged to the EAS population, which comprised Southern Han Chinese indi-
viduals, Han Chinese individuals from Beijing, and Kinh individuals from Ho Chi Minh, Vietnam. Postvisualization of ancestry for all participants; those with >50% from 
a singular ancestry are depicted in the upper section, whereas those without >50% from a single ancestry are depicted in the lower section, with different colors indicat-
ing varying origins.
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Analysis of drug metabolism genes revealed that the intermedi-
ate metabolizers for CYP2C19 (49.72%) and CYP3A5 (43.10%) were 
the most common genes, with the least common genes being the 
ultrarapid metabolizers for CYP2C19 and MT-RNR1:m.1494C>T, 
both at a rate of 0.003% (fig. S6 and table S5). In many genetic data-
bases, results pertaining to drug metabolism genes are rarely pre-
sented, primarily because questionnaire-based clinical data do not 
cover the extensive use of various drugs. Overall, our genetic data-
base is capable of tracking changes in drug dosages throughout the 
course of treatment with drugs such as warfarin (21) and aminogly-
cosides (22), making it particularly valuable.

Atlas of GWASs conducted using PheCodes available 
in HiGenome
To examine the genetic bases of common diseases, we analyzed 
our patients’ diagnostic data. The case group comprised patients 
with diseases confirmed by three or more diagnostic instances 
conforming to the PheCode definition, whereas the control group 
comprised patients with at least a single diagnosis not conforming 
to the PheCode definition. After the extracted phenotypes were 
stratified (with a distribution of 8:2) into base and target datasets, 
the base dataset was used for GWASs on disease associations, 
whereas the target dataset was used for PRS calculation. For the 
case group, a patient threshold of more than 150 was exceeded; 
therefore, we examined the disease-gene associations for all 1085 
traits (table S6), depicted in a circular Manhattan plot (Fig. 4, outer 
ring). In this plot, the 10 most significant genes for each trait are 
highlighted. Among these associations, the most significant per-
tained to traits associated both with the musculoskeletal, hemato-
poietic, circulatory, endocrine, or metabolic systems and with 
mental disorders (P < 1 × 10−70). Of the 187 traits with a P value 
of <1 × 10−10, the most prevalent disease classifications were re-
lated to the circulatory system, neoplasms, and the endocrine/
metabolic. The predominant disease groups for which the number 
of patients exceeded 10,000 (across 13 traits) were found to be 
those affecting the circulatory, endocrine, metabolic, digestive, or 
genitourinary systems (Fig. 4, middle ring). Traits with a signifi-
cant gene count of 10 or more were predominantly related to the 
endocrine, metabolic, circulatory, or integumentary (dermatolo-
gy) systems (Fig. 4, inner ring). Table S2 presents detailed infor-
mation on each trait. Each of 101 traits was associated with four or 
more significant genes. Diseases for which the sample was larger 
were associated with a larger number of significant genes. Given 
these findings, we stratified significant gene loci (P  <  5 × 10−8) 
into three categories on the basis of the number of genes: strong 
association (more than eight loci), moderate association (four to 
eight loci), and weak association (fewer than four loci). Predomi-
nant associations were observed for traits related to neoplasms and 
the endocrine, metabolic, circulatory, integumentary, or genito-
urinary systems (fig.  S7). However, weak associations were ob-
served for most traits included in our database.

GWASs of diseases prevalent in the HiGenome cohort
The HiGenome database contains data on the following four traits: 
type 2 diabetes (T2D, 250-2), chronic renal failure or chronic kidney 
disease (CKD, 585-3), gout (274-1), and alcoholic liver damage (ALD, 
317-11; Fig. 5). These traits are prevalent in Taiwan. For T2D, 57 sig-
nificant gene loci were identified (P < 5 × 10−8; Fig. 5A, top). The 

most significant variant was rs2237897 (KCNQ1, P =  2.9 × 10−93), 
with an MAF of 0.34. As indicated by the region plot, a strong asso-
ciation was observed between rs2237897 and its adjacent variants in 
the EAS population (r2 > 0.6; Fig. 5A, middle). This variant was pri-
marily associated with diseases affecting the endocrine or metabolic 
systems, such as diabetes mellitus and hyperlipidemia (Fig. 5A, bot-
tom). For CKD, nine significant gene loci were identified (P < 5 × 
10−8; Fig. 5B, top). The most significant variant was rs56094641 (FTO, 
P = 9.3 × 10−12), with an MAF of 0.13. As indicated by the region plot, 
a strong association was observed between rs56094641 and its adja-
cent variants in the EAS population (r2 > 0.8; Fig. 5B, middle). This 
variant was primarily associated with diseases affecting the circulato-
ry, endocrine, metabolic, or genitourinary systems, such as hyperten-
sion, diabetes mellitus, or CKD, respectively (Fig. 5B, bottom). For 
gout, 11 significant gene loci were identified (P < 5 × 10−8; Fig. 5C, 
top). The most significant variant was rs4148155 (ABCG2, P = 9.7 × 
10−187), with an MAF of 0.32. As indicated by the region plot, a strong 
association was observed between rs4148155 and its adjacent variants 
in the EAS population (r2 > 0.8; Fig. 5C, middle). This variant was 
primarily associated both with diseases affecting the endocrine, meta-
bolic, or genitourinary systems and with various symptoms, such as 
gout, abnormal blood chemistry, CKD, and calculus (Fig.  5C, bot-
tom). For ALD, four significant gene loci were identified (P <  5 × 
10−8; Fig. 5D, top). The most significant variant was rs3782886 (BRAP, 
P = 1.2 × 10−43), with an MAF of 0.32. As indicated by the region plot, 
a strong association was observed between rs3782886 and its adjacent 
variants in the EAS population (r2 > 0.8; Fig. 5D, middle). This variant 
was primarily associated with mental disorders and diseases affecting 
the endocrine, metabolic, or circulatory systems, such as ALD, hyper-
tension, and gout (Fig. 5D, bottom). Although only four diseases are 
presented here, we conducted GWASs for all 1085 traits by using the 
PheCode definition. The results are available on HiGenome for inter-
ested researchers.

Comparative genetic analysis of disease variability in the 
Taiwanese Han and European populations
To explore the differences between Taiwanese Han and European 
populations, we conducted a meta-analysis of two databases to ex-
amine the weighted effects [odds ratio (OR)] on four diseases. Data 
from the PheWeb database of the UKBB were used. With the same 
PheCode definitions used, T2D (250-2) and gout (274-1) were 
found to exhibit similar outcomes, unlike CKD (585-3) and ALD 
(317-11; fig. S8A). According to our meta-analysis, the significance 
of the genetic associations for T2D (250-2) and gout (274-1) in-
creased. However, the outcomes of CKD (585-3) and ALD (317-11) 
were similar to those of CMUH, and they were not rendered signifi-
cant by the UKBB data (fig. S8B). As shown in table S7, no SNPs 
were significant in our CKD data, in the UKBB, or after our meta-
analysis. Although certain SNPs were significant across all three 
datasets for ALD, their number was smaller than that associated 
with gout and T2D. For common diseases such as T2D, the data 
of CMUH exhibited the same significant associations with the 
CDKAL1 and FTO genes as in the UKBB. However, the RSPO3 and 
AUTS2 genes exhibited significant associations only in the CMUH 
database. For more details, please refer to table S8 (A to D). Together, 
our findings confirm the distinct genetic SNP profiles associated 
with diseases in our population and in European populations, par-
ticularly in those with CKD and ALD.
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PRSs for diseases prevalent in the HiGenome cohort
To calculate PRSs, we refined our initial group of 1085 traits on 
the basis of the following criteria. More than 1000 patients had to 
have a specific trait and at least one significant gene locus (P < 5 × 
10−8). This screening procedure yielded 238 traits, whose PRSs 
were calculated. Area under the curve (AUC) values were calcu-
lated for these PRSs. Even when a prediction was exclusively 
made using a PRS, most traits did not achieve an AUC of >0.6. 
This threshold was exceeded by only 15 traits, including ankylos-
ing spondylitis, type 1 diabetes, and psoriasis. Notably, when the 

regression models were adjusted for confounders such as age, sex, 
and PCA results, the number of traits with an AUC of >0.8 
reached 51 (table S9). We identified 31 traits for which neither the 
PRS alone nor its combination with clinical features achieved an 
AUC value of >0.6 (Fig. 6, left). By contrast, we identified nine 
traits for which the PRS alone achieved an AUC value of >0.6, 
with its combination with clinical features achieving an AUC value 
of >0.7. These traits were predominantly related to neoplasms and 
the endocrine, metabolic, circulatory, and musculoskeletal sys-
tems (Fig. 6, right).

Fig. 4. Atlas of GWASs depicting significant genetic associations across traits. The outermost circle presents the most significant genes for each trait, plotted on the basis 
of their P values on a Manhattan plot. On this circle, the 10 most significant genes for each disease category are marked and color coded in accordance with disease classification. 
The middle circle depicts the number of individuals affected by each trait. The innermost circle depicts the number of significant genes (P < 5 × 10−8) associated with each trait.
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Fig. 5. Comprehensive GWASs of selected diseases. Manhattan plots (top) of significant gene loci associated with various diseases: (A) T2D, (B) CKD, (C) gout, and 
(D) ALD. The x axis represents the absolute chromosomal positions of the genes, and the y axis represents the corresponding P values. Region plots (middle) of the most 
significant variant loci adjacent to those associated with the EAS population; variant associations are color coded to indicate the degree of correlation. Results of PheWASs 
(bottom) for the most significant variant loci associated with each disease, color coded in accordance with disease classification.
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A total of 19,486 variants were selected for the T2D PRS model. 
Differences were observed between the case and control groups in 
terms of PRS distribution. Specifically, the median PRS was signifi-
cantly higher in the case group than in the control group (Fig. 7A, 
top left). A forest plot revealed that the ORs for PRS, sex, and age 
were 1.31 [95% confidence interval (CI),  1.28 to 1.33], 0.65 (95% 
CI, 0.62 to 0.67), and 1.06 (95% CI, 1.06 to 1.06), respectively, all 
with significant between-group differences (P < 0.001). No significant 
between-group difference was observed in any principal component 
(principal components 1 to 4; Fig. 7A, bottom). Cross-validation re-
vealed median AUC values of 0.57 [interquartile range (IQR) = 0.565 
to 0.575], 0.789 (IQR = 0.786 to 0.793), and 0.793 (IQR = 0.793 to 
0.8) for PRS, clinical features, and their combination, respectively 
(Fig. 7A, top right). A total of 23,191 variants were selected for the 
CKD PRS model. The median PRS was significantly higher in the 
case group than in the control group (Fig. 7B, top left). The ORs for 
PRS, sex, and age were 1.17 (95% CI, 1.15 to 1.19), 0.61 (95% CI, 0.59 
to 0.64), and 1.07 (95% CI, 1.06 to 1.07), respectively (all P < 0.001). 
No significant between-group difference was observed in any prin-
cipal component (Fig.  7B, bottom). The AUC values were 0.537 
(IQR  =  0.532 to 0.542), 0.812 (IQR  =  0.809 to 0.816), and 0.814 
(IQR = 0.811 to 0.818) for PRS, clinical features, and their combina-
tion, respectively (Fig. 7B, top right). A total of 32 variants were se-
lected for the gout PRS model. Significant differences were observed 
in the distribution patterns of the PRS between the case and control 
groups. The median PRS was significantly higher in the case group 
than in the control group (Fig. 7C, top left). The ORs for PRS, sex, 
and age were 1.38 (95% CI, 1.35 to 1.4), 0.26 (95% CI, 0.25 to 0.27), 
and 1.04 (95% CI, 1.04 to 1.04), respectively (Fig. 7C, bottom). The 
AUC values were 0.599 (IQR = 0.594 to 0.604), 0.771 (IQR = 0.767 
to 0.775), and 0.783 (IQR = 0.78 to 0.787) for PRS, clinical features, 
and their combination, respectively (Fig. 7C, top right). A total of 23 
variants were selected for the ALD PRS model. Differences were ob-
served between the case and control groups in terms of PRS distri-
bution. Specifically, the median PRS was significantly higher in the 
case group than in the control group (Fig. 7D, top left). The ORs for 
PRS, sex, and age were 1.14 (95% CI, 1.12 to 1.16), 0.26 (95% CI, 0.25 
to 0.27), and 1.04 (95% CI, 1.04 to 1.04), respectively (Fig. 7D, bot-
tom). The AUC values were 0.539 (IQR  =  0.534 to 0.543), 0.718 
(IQR = 0.714 to 0.722), and 0.722 (IQR = 0.718 to 0.727) for PRS, 

clinical features, and their combination, respectively (Fig. 7D, top 
right). For the four diseases, the AUC values for the PRS models 
were ~0.6. Among all clinical features, only age and sex had signifi-
cant effects; however, no contributions from principal components 
were observed. Notably, the AUC value for clinical features reached 
0.8, and the AUC value for the combination of PRS and clinical fea-
tures occasionally exceeded this threshold, indicating the strong 
predictive ability of the combined model. For more information on 
the PRS results, please refer to HiGenome. Together, our findings 
underscore the benefits of incorporating clinical features with PRSs 
to increase the accuracy of predicting diseases prevalent among the 
Taiwanese Han population. This integrated approach holds promise 
for precision medicine.

DISCUSSION
Supported by CMUH, the HiGenome database was developed as a 
specialized resource for the Taiwanese Han population. This data-
base sets a benchmark through its integration of deidentified EMRs 
and genomic data, providing a comprehensive longitudinal dataset 
for genetic research. Major international biobanks, such as the 
UKBB, FinnGen, TWB, and the MVP, incorporate both clinical 
data and questionnaire-based self-reported information. Although 
UKBB and MVP include EHRs from hospitals and clinics, much of 
their phenotype data relies on baseline health assessments and self-
reported medical questionnaires, which are subject to recall bias. 
Questionnaire responses are typically more accurate for recent medi-
cal events, but may be less reliable for conditions with variable onset 
or long latency periods (26–28). In contrast, HiGenome eliminates 
reliance on self-reported data by integrating detailed physician-
documented EMRs. This approach enhances data accuracy and dis-
ease classification, particularly for chronic and progressive diseases 
where multiple clinical visits refine the diagnosis over time. In addi-
tion, HiGenome benefits from up to 19 years of longitudinal follow-
up, making it one of the most extensive EAS genetic datasets with 
deeply integrated clinical records. Another key distinction of the 
HiGenome cohort is its age distribution as a significant proportion 
of participants are under 45 years of age. This younger demographic 
provides early insights into disease manifestation and enhances PRS 
validation, offering a predictive advantage for early intervention in 

Fig. 6. Statistical analysis of PRS models across traits. (Left) AUC value for each trait. Traits in blue indicate AUC values derived exclusively from the PRS, where traits in 
yellow indicate AUC values derived from the model incorporating both the PRS and clinical features. Each symbol indicates unique disease classification. Most traits ini-
tially exhibited an AUC of <0.6; however, with the addition of clinical features, most traits exhibited an AUC of >0.6. (Right) High-performance PRS models. Traits with a 
PRS AUC of >0.6 and PRS+clinical features AUC of >0.7 are highlighted in blue. These traits are predominantly related to endocrinological, musculoskeletal, and other 
relevant diseases. AUC, area under the curve; PRS, polygenic risk score.
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Fig. 7. Detailed PRS analysis of key diseases. The top-left panel displays the distribution of PRSs in the case and control groups for (A) T2D, (B) CKD, (C) gout, and 
(D) ALD. The x axis represents the normalized PRSs. The top-right panel displays the results of 10-fold cross-validation for AUC values; the outcomes of models including 
PRS, clinical features, or their combination are indicated using different colors. The bottom panel presents a forest plot for each feature, offering insights into patient count, 
OR, and statistical significance. PRS, polygenic risk score.
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precision medicine. By combining longitudinal clinical data with 
genomic insights, HiGenome serves as a valuable resource for ad-
vancing genetic research in the Taiwanese Han population and con-
tributes to global efforts in expanding non-European representation 
in genetic studies.

In addition to its primary characteristics, the CMUH database 
exhibits significant growth potential, including longitudinal track-
ing for up to 19 years (and ongoing). It also seamlessly integrates 
into the Golden Baby Project, a project run by the children’s division 
of CMUH to start tracking participants since birth. This collabora-
tion enables long-term monitoring of genetic effects on health. In 
addition, the CMUH database has potential for future integration 
with Taiwan’s National Health Insurance Database, which would 
provide comprehensive records of medical visits and causes of 
death. These capabilities position the CMUH database as an excep-
tionally promising hospital-based database with major potential for 
advancing medical research.

When comparing our findings with those from the UKBB, sev-
eral key differences emerge (fig. S8 and table S8). These include vari-
ations in case numbers (which affect statistical power), differences in 
MAFs across ancestries, and variations in effect sizes. Notably, we 
observed that some associations present only in Taiwanese Han pop-
ulation were absent in UKBB, likely due to the corresponding vari-
ants being extremely rare in European cohorts. For example, rs671 in 
ALDH2, a well-known variant associated with alcohol dependence 
(ALD), is common in the Taiwanese Han population (MAF = 0.28) 
but extremely rare in Europeans (MAF < 0.001 not reported in the 
PheWeb), making it likely to be excluded from UKBB analyses due to 
low MAF thresholds (table S8D). Similarly, we found significant dif-
ferences in effect sizes for certain variants between the two populations, 
emphasizing the need to consider ancestry-specific genetic architec-
tures in PRS models. For example, rs6546932 in the SELENOI gene 
showed a notable discrepancy: In the Taiwanese Han population, 
it had an OR of 1.58, whereas in the UKBB, the effect size was 
BETA = 0.189 (corresponding to OR = 1.21) (table S8D). This differ-
ence, as demonstrated in our previous study (29), highlights the po-
tential impact of population-specific genetic backgrounds on disease 
associations and underscores the importance of tailoring PRS models 
to different ancestries.

In this study, many variations were observed in the variants se-
lected for different diseases. PRS models were constructed using 
variants identified automatically by PRSice-2 (30). For certain dis-
eases, only one variant was selected, whereas for others, up to 35,295 
variants were selected (table  S9). Notably, no correlation was ob-
served between the number of variants and model efficacy. Instead, 
the predictive power of each model was accurately reflected by the 
cohort size (31, 32). Generally, to establish PRS models, PRSice-2 is 
used to identify the most significant disease-associated variant com-
binations through linkage disequilibrium calculations. Given the 
varying heritability of different diseases, AUC values are not typi-
cally robust for all diseases. In addition, the performance of PRSice-
2 is typically limited when the sample size is small (30). In this study, 
when we used the PRS alone in our disease models, we consistently 
obtained AUC values of <0.7. When we adjusted our models for age 
and sex, the AUC values rarely exceeded 0.9 (table S3). These find-
ings are consistent with those of other studies demonstrating the 
effects of multiple factors on polygenic diseases (15, 16). Given that 
the prevalence of most diseases increases with age, incorporating 
age invariably increases model accuracy (Fig. 6). In addition to age 

and sex, other clinical features, such as body mass index, blood pressure, 
glycated hemoglobin level, various biomarkers, and environmental 
factors (e.g., exercise, diet, alcohol consumption, and smoking), can 
be included to achieve further increases in model accuracy, thereby 
offering a promising direction for future research. Recently, many 
researchers have started to acknowledge the effect of ancestry on PRS 
accuracy (29). In ethnically diverse countries, a key challenge arises 
when models primarily designed for European cohorts are applied to 
other ethnic groups; this challenge may lead to suboptimal outcomes 
(5). Therefore, in future studies, PRS models should be adjusted for 
ancestry factors to increase their applicability across populations. 
These adjustments should align with our findings (Fig. 7), which em-
phasize the importance of incorporating multiple clinical features 
and ancestry factors to increase the accuracy and applicability of 
PRS models, particularly in multiethnic contexts. Early application 
of PRSs may limit unnecessary screenings (33).

Overall, the diseases selected in this study largely represent those 
of significant concern among the Taiwanese Han population. Given 
the importance of PRS models in research, in a previous study, we 
identified variants associated T2D (34,  35). In Asian populations, 
rs2237895, rs2237897, and rs2237892 are identified as three linked 
SNPs located on KCNQ1 and significantly associated with T2D (35). 
These SNPs are implicated in the modulation of insulin secretion 
(36). In this study, we found that our findings for gout, a condition 
characterized by sex-specific prevalence, are consistent with those of 
previous studies (Fig.  7C), indicating the importance of ABCG2, 
particularly when sex is adjusted for (37, 38). CKD is prevalent in 
Taiwan, as evidenced by the high rate of dialysis, and has attracted 
major attention (39, 40). In this study, we found an association be-
tween the FTO gene and CKD, linking FTO with the so-called triad 
of diabetes, hypertension, and hyperlipidemia. In addition to FTO, 
genes such as CHRM3, STAB1, WDR72, BHLHE22, ABCG2, ZMAT4, 
MAT2B, and RABGAP1 were found to be associated with CKD, indi-
cating the high predictive power of PRS models for CKD (41, 42). 
Overall, ALD represents an intriguing case for Taiwan, with the 
ALDH2 variant rs671 being highly prevalent among the Taiwanese 
Han population (43). In this study, we identified a significant associa-
tion between ALD and the BRAP variant rs3782886, which was 
found to be strongly linked to rs671 (Fig.  5D). This association is 
consistent with that observed between rs671 and alcohol-related 
diseases in Taiwan.

Several HLA-associated diseases were identified, including anky-
losing spondylitis, psoriasis, eye inflammation, chronic sinusitis, 
acute sinusitis, Graves’ disease, asthma, hepatitis B, type 1 diabetes, 
palindromic rheumatism, systemic lupus erythematosus, hypothy-
roidism, rheumatoid arthritis, and primary liver malignancy (table S6). 
These diseases are predominantly related to autoimmunity, immu-
nity, or viral infection. In previous studies, we explored the associa-
tions of Graves’ disease (23) and rheumatoid arthritis (44) with 
HLA. Further comprehensive research is required to explore the as-
sociations between various HLA subtypes and these diseases.

This study has several limitations. First, this study relied on EMR 
data collected from a single center. Second, the study involved unre-
corded comorbidities, which may have led to false-negative out-
comes in our case and control groups. However, given the generally 
low prevalence of many diseases in the study population, the rate of 
false-negative results may have been negligible (45). Our GWAS re-
sults are largely consistent with the literature (25, 38, 46–48), indi-
rectly confirming the minimal effects of false-negative results. Last, 
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in Taiwan, diagnostic recording is influenced by the health care sys-
tem. Many diagnoses depend on physicians’ decisions to order spe-
cific tests, resulting in the documentation of unconfirmed diagnoses. 
To minimize this effect, we implemented a criterion of three or more 
diagnoses when selecting patients for the case group, thereby limit-
ing the inclusion of patients with a single diagnosis. This approach 
effectively reduced the number of false-positive results, as evidenced 
by the consistency observed between our findings and those of pre-
vious studies (25, 46, 48–50). In future studies, we recommend the 
implementation of stricter and more comprehensive criteria, with a 
combination of diagnosis, medication history, and laboratory test 
results, to yield clearer outcomes, similar to our single-disease GWASs 
(25, 38, 44, 46, 48). Because HiGenome is a hospital-centric data-
base, a major challenge is the absence of subhealthy individuals, 
meaning that virtually all participants have at least one documented 
ailment. In actual scenarios, no individual is entirely free of disease; 
problems arise from either underinvestigation or a lack of docu-
mentation. Therefore, our methodology of excluding conditions 
strongly associated with the control group can be regarded as a fea-
sible approach for research (20, 51, 52).

PRS models are developed for clinical applications, such as the 
prediction and prevention of diseases before their onset. These PRSs 
have multifaceted clinical applications. In addition to disease pre-
diction and prevention, they can increase the predictive power of 
medical imaging or electrophysiological reading models within smart 
health care systems. In addition, integrating PRSs into artificial in-
telligence models is regarded as a promising approach. Together, 
our findings underscore the importance of integrating EMRs with 
genomics to provide valuable insights into disease predisposition 
among the Taiwanese Han population. Considered a pioneering ef-
fort in Taiwan, the HiGenome database not only bridges the gap 
between clinical practice and genomic research but also lays the 
foundation for advancements in personalized medicine. Our find-
ings, particularly in the context of multifactorial diseases, empha-
size the need for a holistic approach, one that incorporates genetic 
and nongenetic factors, to increase the accuracy of predictive models. 
Overall, the strength of our research lies in its integrative approach, 
extensive follow-up period, and focus on diseases prevalent among 
the Taiwanese population. This study sets the stage for future tar-
geted interventions.

MATERIALS AND METHODS
Databases
The individuals in this study were divided into two cohorts. One 
cohort comprised individuals who had participated in a precision 
medicine project at CMUH. The primary objective of this project, 
which was launched in 2018, was to explore genetic predisposition 
to common diseases within the Taiwanese Han population and es-
tablish a refined system for predicting and preventing these diseases. 
The project focused on patients treated at CMUH and was approved 
by the Institutional Review Board of CMUH. The second cohort 
comprised patients whose data were extracted from EMRs covering 
the period from 2003 to 2021. This dataset included patients’ anam-
nesis and laboratory data, such as DNA SNP microarray findings, 
which are essential for investigating drug-induced side effects. At 
the Department of Laboratory Medicine of CMUH, which is ac-
credited by the American College of Pathologists, the TPMv1 array 
is used to identify single-nucleotide variants, such as HLA types, 

associated with drug-induced side effects. This array is also used to 
facilitate GWASs of common diseases.

As of the time of this study, a total of 413,210 patients were en-
rolled. After excluding twin pairs, first-degree relatives, and indi-
viduals who were not of EAS ancestry, the final study cohort 
comprised 323,397 participants. Recruitment is still ongoing.

To ensure patient confidentiality, personal medical details were 
encrypted, and patient data were used exclusively for research pur-
poses. In our case-control study, EMR data obtained from CMUH 
were used as the foundational dataset. This dataset included patient 
demographics, laboratory results, medical procedures, and diagnos-
tic codes as outlined by the International Classification of Diseases, 
Ninth Revision, Clinical Modification (ICD-9-CM) and International 
Classification of Diseases, Tenth Revision, Clinical Modification (ICD-
10-CM). CMUH archives disease data by using ICD-9-CM and ICD-
10-CM codes, with the ICD-9-CM codes automatically converted 
into their corresponding ICD-10-CM codes. In this study, EMR data 
corresponding to the period from 2003 to 2021 were analyzed. Med-
ical diagnoses were established in accordance with the PheCode cri-
teria, which were applied on at least three distinct occasions. To 
establish a control group, we applied the PheCode criteria, including 
individuals who did not have PheCode-defined diseases (20). This 
study was approved by the Institutional Review Board of CMUH 
(approval nos. CMUH110-REC3-005 and CMUH111-REC1-176).

Genotyping
Blood samples were collected from all participants. Genomic DNA 
was extracted from 200-μl blood samples by using a MagCore Ge-
nomic DNA Whole Blood Kit (RBC Bioscience, New Taipei City, 
Taiwan) in accordance with the manufacturer’s instructions, fol-
lowed by elution at a final volume of 60 μl. An Affymetrix Axiom 
genotyping platform was used to obtain genetic information from 
the samples; specifically, we used a custom Axiom TPMv1 SNP ar-
ray (Thermo Fisher Scientific, Santa Clara, CA, USA), which in-
cludes 714,457 SNPs across the entire human genome. Genotype 
analysis was conducted using PLINK 1.9. After SNPs with a call rate 
of <0.95 (–geno 0.05) were excluded, samples and SNPs with miss-
ing rates (–geno 0.02 for SNPs and –mind 0.02 for samples) were 
removed. Subsequently, monomorphic SNPs with a count of <10 
(–mac 10) and multiallelic SNPs were eliminated. Variants with 
Hardy-Weinberg equilibrium (HWE) P values of <1 × 10−6 and 
MAF values of <1 × 10−4 were also excluded. We incorporated the 
following analysis criteria into our study methodology: heterozy-
gous outliers exceeding a standard deviation value of 5, PCA outli-
ers exceeding an IQR of 3, and mismatches between genotypic and 
actual sex. We also used the KING-robust kinship estimator (PLINK 
2.0) (53) to remove duplicate samples and first-degree relatives from 
our cohort and ensure that the genetic data were free from inflation-
ary effects. SHAPEIT4 was used to phase the TPM arrays. Imputa-
tion was performed using Beagle 5.2, which is more effective and 
accurate than other imputation tools. The imputed data were filtered 
on the basis of the following criteria: an R2 alternate allele dosage of 
<0.3 and a genotype posterior probability of <0.9 (18). Ultimately, a 
total of 14,181,206 applicable variants were obtained.

Genome-wide association studies
To identify disease-associated genetic variants, summary statistics 
were derived from the dataset of Taiwanese Han individuals. These 
summary statistics were derived using PLINK 2.0 (54). After relevant 
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data were extracted from patient EMRs, the participants were di-
vided into a case group and a control group on the basis of their 
PheCode classification. For details on participant distribution, please 
refer to table S1. Logistic regression was used to determine the cor-
relations between various traits. Regression models were adjusted 
for several confounders, such as age, sex, and PCA results. To min-
imize the influence of pronounced linkage disequilibrium, which 
can lead to overestimation, we examined the most significant vari-
ant within each genomic region. A stringent P value (<5 × 10−8) 
was adopted to identify significant associations between the case 
and control groups. The results were visualized using Manhattan, 
region, and quantile-quantile plots. A regional visualization high-
lighting the variants of interest was constructed using the PheWeb 
platform (55).

PCA and ancestry analysis
After integrating our dataset with that of the 1000 Genomes Project, 
we performed SNP pruning. For this purpose, we used PLINK, ad-
opted a window of 200 SNPs and an r2 threshold of >0.1, and ad-
vanced in steps of 100 SNPs. This process enabled us to retain 66,728 
variants that were common between our dataset and that of the 1000 
Genomes Project. Ancestry analysis was conducted using ADMIXTURE 
in a supervised manner (56).

HLA imputation
To impute HLA alleles at a four-digit resolution, HLA genotype im-
putation was conducted using HiBAG (57) with attribute bagging 
analysis. After combining the results of the TWB2 chip from the 
TWB (approval no. TWBR11208-04) with targeted sequencing data 
for the HLA region, we used a cohort of 861 individuals to train our 
model. During the training phase, quality control measures were ap-
plied to the TWB2 chip, and 41,857 SNPs located in the HLA gene 
region on chromosome 6 were extracted. These SNPs were subse-
quently input into the HiBAG software to generate an HLA training 
model. After quality control, the SNP results of the TPMv1 chip 
were also input into the model to obtain corresponding HLA pre-
dictions. Default settings were used for analysis. HLA genes includ-
ing HLA-A, HLA-B, HLA-C, HLA-DRB1, HLA-DQA1, HLA-DQB1, 
HLA-DPA1, and HLA-DPB1 were imputed, with an imputation 
posterior probability of >0.9 regarded as reliable (23).

Pharmacogene allele construction
After imputation, variants with an INFO R2 of ≥0.3, an MAF of 
>0.0001, and an HWE P value of >1 × 10−7 in variant call format 
were included for analysis. With the default settings for PGxPOP 
used (58), pharmacogenomic phenotypes were generated from the 
imputed variant call format file, with GRCh38 as the reference ge-
nome. These tools are typically used to extract gene variants and 
infer star allele haplotypes for each individual in accordance with 
Clinical Pharmacogenetics Implementation Consortium (CPIC) al-
lele definitions. A total of 10 genes, namely, CYP2B6, CYP2C19, 
CYP2C9, CYP3A5, CYP4F2, DPYD, NUDT15, SLCO1B1, TPMT, 
and VKORC1, were included for analysis. In cases where multiple 
pharmacogenomic phenotypes were inferred by PGxPOP for a sin-
gle individual, the phenotype was recorded as “NA.” To enhance the 
results of drug metabolism for HLA genes, we used the results of 
HiBAG analysis.

Meta-analysis using UKBB data
A meta-analysis was conducted using data from TOPMed-imputed 
PheWeb (59) (https://pheweb.org/UKB-TOPMed/), with corre-
sponding PheCode matching. This analysis was conducted using 
METAL software (60) (https://genome.sph.umich.edu/wiki/METAL_ 
Documentation; version: generic-metal-2011-03-25).

PRS calculation and model construction
To calculate patient PRSs, data from the CMUH cohort was ran-
domly divided into base and target datasets. The base dataset was 
used to investigate the associations between study variables and dis-
eases delineated by PheCodes; this investigation was conducted using 
PLINK 1.9. After variants with MAF values of >0.01 were filtered, 
PRSs were compiled from the target dataset by using PRSice2, with 
the dataset of the 1000 Genomes Project (Phase 3), which is specific 
to the EAS population, selected as the reference standard. PRSs were 
calculated using z-score normalization. These scores, along with 
their clinical features, were used to construct logistic regression 
models, which were subsequently adjusted for confounding factors 
such as age, sex, and PCA results.

Phenome-wide association studies
A total of 58,257,251 ICD-9-CM or ICD-10-CM diagnostic codes 
were combined into 1791 PheCodes (61). Because of the limited 
variation in data and the insufficient number of participants in cer-
tain categories, the final categorization was narrowed down to 1085 
PheCodes for subsequent analyses. Logistic regression was used to 
analyze the associations between variants and each PheCode by us-
ing the “PheWAS” package in R software (R Foundation for Statisti-
cal Computing, Vienna, Austria) (62). All summary statistics from 
PheWASs are publicly available on the HiGenome website, which 
provides interactive Manhattan plots, region plots, and PheWAS vi-
sualizations from the PheWeb platform (55).

Statistical analysis
Baseline continuous and categorical variables were analyzed using 
Wilcoxon rank sum test and Pearson’s chi-square test, respectively. 
Between-group comparisons were conducted using one-way analy-
sis of variance (ANOVA) followed by Tukey’s post hoc test. A two-
sided P value of <0.05 was considered statistically significant. The 
false discovery rate was adjusted using the Benjamini-Hochberg 
method. All statistical analyses were conducted using IBM SPSS Sta-
tistics version 22 (IBM, Armonk, NY, USA) and R software ver-
sion 4.1.0.
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