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Abstract
Opioids are known to affect blood glucose levels but their exact role in the physi-
ological control of glucose metabolism remains unclear. Although there are numer-
ous studies investigating the peripheral effects of opioid stimulation, little is known 
about how central opioids control blood glucose and which brain areas are involved. 
One brain area possibly involved is the nucleus accumbens because, as well as being 
a key site for opioid effects on food intake, it has also been implicated in the control 
of blood glucose levels. Within the nucleus accumbens, μ-opioid receptors are most 
abundantly expressed. Therefore, in the present study, we investigated the role of 
μ-opioid receptors in the nucleus accumbens in the control of glucose metabolism. 
We show that infusion of the μ-opioid receptor agonist [d-Ala2, N-MePhe4, Gly-ol]-
enkephalin (DAMGO) in the nucleus accumbens by itself does not affect blood glu-
cose levels, but it enhances the glycaemic response after both an insulin tolerance 
test, as well as a glucose tolerance test. These findings indicate that the nucleus 
accumbens plays a role in the central effects of opioids on glucose metabolism, and 
highlight the possibility of nucleus accumbens μ-opioid receptors as a therapeutic 
target for enhancing the counter-regulatory response.
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1  | INTRODUC TION

Opioids, both synthetic and endogenous, can modulate blood glu-
cose levels [1-7]. Although the first reports of morphine-inducing 
hyperglycaemia date back to the 1920s [7], the exact role of en-
dogenous opioids in the physiological control of glycaemia still re-
mains to be elucidated. For example, both increases and decreases 
in glycaemia upon i.v. infusion of the endogenous opioid β-endorphin 
have been found [4,5,8]. Furthermore, mice lacking the μ-opioid re-
ceptor (which binds opioids such as morphine and β-endorphin) not 
only show improved glucose tolerance [9], but also develop insulin 
resistance more rapidly than wild-type mice [10]. These discrepan-
cies could be explained by the fact that multiple factors, including 
body weight (BW) [11], route of administration [2,3] and blood glu-
cose levels itself,[5,11] can alter the effects opioids have on glucose 
metabolism.

To unravel the physiological role of opioids in glucose control, a 
better understanding of particularly the central effects of opioids on 
glycaemia is needed. The brain is an important site for the produc-
tion of endogenous opioids [12]. Furthermore, the central infusion 
of opioids, in amounts that are insufficient to induce changes when 
infused peripherally, alters glycaemia [2,13]. To investigate central 
opioid stimulation and glucose control, i.c.v. infusion of opioids has 
been used [2,13,14], thereby simultaneously affecting multiple brain 
areas. Because opioid receptors are expressed throughout the brain 
[15], it is unclear which brain areas are responsible for the changes 
seen in glycaemia upon i.c.v. infusion of opioids.

One area of particular interest is the nucleus accumbens (NAC). 
We have shown that the NAC has a glucoregulatory function be-
cause glycaemia was affected by altering NAC activity via deep brain 
stimulation, direct activation of dopamine-receptor 1 expressing 
NAC neurones or increasing NAC extracellular serotonin concen-
trations [16-18]. The NAC is also an important area for the effects 
of opioid transmission. It contains several types of opioid receptors, 
with the μ-opioid receptor showing the strongest expression [15] 
and comprising a key site for the effects of opioids on food intake 
[19]. We therefore hypothesise that the central effects of opioids 
on glucose metabolism are mediated by the NAC. To test this hy-
pothesis, we targeted the most highly expressed opioid receptor 
in the NAC, the μ-opioid receptor [15], using intra-NAC infusion of 
the μ-opioid receptor specific agonist [d-Ala2, N-MePhe4, Gly-ol]-
enkephalin (DAMGO) and assessed the effects of NAC μ-opioid re-
ceptor activation on basal glycaemia, insulin tolerance and glucose 
tolerance.

2  | MATERIAL S AND METHODS

2.1 | Animals

Male Wistar rats (Charles River Breeding Laboratories, Sulzfeld, 
Germany) weighing 240–280 g at arrival were used in the animal facil-
ity of The Netherlands Institute for Neuroscience (NIN; Amsterdam, 

The Netherlands). Rats were housed under a 12:12  h light/dark 
photocycle (lights on 7.00 am) at 21 ± 2˚C) and 60% ± 5% relative 
humidity rooms with background noise (radio) during the entire ex-
periment. During a 1 week acclimatisation, rats were group-housed 
and had free access to a container with nuggets of a nutritionally-
complete high-carbohydrate control diet (chow; Teklad Global Diet 
2918; 24% protein, 58% carbohydrate and 18% fat; 3.1  kcal  g-1; 
Envigo, Horst, The Netherlands) and a bottle of tap water. All proce-
dures were approved by the Animal Ethics Committee of the Royal 
Dutch Academy of Arts and Sciences (KNAW, Amsterdam, The 
Netherlands) and were performed in accordance with the guide-
lines on animal experimentation of The Netherlands Institute for 
Neuroscience.

2.2 | Surgeries

Rats were anaesthetised with an i.p. injection of a mixture of 
80 mg kg-1 ktamine (Eurovet Animal Health, Bladel, The Netherlands), 
8 mg  kg-1 Rompun® (xylazine; Bayer Health Care, Mijdrecht, The 
Netherlands) and 0.1 mg kg–1 atropine (Pharmachemie B.V., Haarlem, 
The Netherlands). A silicone catheter was implanted in the jugular 
vein, according as described previously [20], for i.v. infusion of in-
sulin or glucose, as well as for blood sampling. After catheter im-
plantations, rats were fixed in a stereotact (Kopf®; David Kopf 
instruments, Tujunga, CA, USA) and two 26-gauge stainless steel 
guide cannulas (C315G-SPC 8 mm; Plastics One, Bilaney Consultants 
GmbH, Düsseldorf, Germany) aimed bilaterally at the NAC were im-
planted with a 10° angle (anteroposterior +1.4  mm, mediolateral 
±2.8 mm, dorsoventral −7.1 mm). Catheters and cannulas were fixed 
on the skull with dental cement and anchor screws. Rats received 
Carprofen (5  mg  kg-1 BW, s.c.) during surgery and the first post-
surgery day. After surgery, rats were housed individually. During the 
recovery period of 14 days, food, water intake and BW were meas-
ured daily. Jugular vein catheters were flushed twice a week.

2.3 | Experimental procedures

After the recovery period and 1 week before the experiment itself, 
all rats received a bilateral NAC infusion with vehicle (0.3 µL 0.9% 
phosphate-buffered saline [PBS]; Fresenius Kabi GmbH, Zeist, The 
Netherlands) to habituate all rats to the handling and NAC infusion 
procedure.

The evening before the experiment, rats were connected to a 
multichannel fluid infusion swivel (Instech Laboratories, Plymouth 
Meeting, PA, USA) to adapt. Food was restricted to 20 g of chow 
to avoid differences in the nutritional state and basal blood glu-
cose concentrations of the rats. On the day of the experiment, left-
over food was removed at 8.00 am and rats were connected to the 
blood-sampling catheter. Five minutes before intra-NAC infusion, 
a baseline blood sample was collected. At mid-day, rats received 
a bilateral intra-NAC infusion of either vehicle (0.3 µL 0,9% PBS; 
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Fresenius Kabi GmbH) or DAMGO (0.25 μg in 0.3 μL of 0.9% PBS; 
Sigma-Aldrich, St Louis, MO, USA). Injectors were left in the guide 
cannula for 1 min after completion of the infusion to allow for dif-
fusion. During intra-NAC infusion, rats were removed from cages 
and received infusion while being handled, whereas insulin/glucose 
injection and blood sampling (200 μL per sample, an equivalent 
amount of saline was administered after each sample) occurred in-
side their home cages when the rats were freely moving.

For the insulin tolerance test (ITT), rats received an intra-NAC 
infusion (VEH, n = 10; DAMGO, n = 8), and straight after a blood 
sample for t = 0 was collected and insulin bolus was injected i.v. 
(0.1 IU kg-1 BW; Actrapid; Novo Nordisk, Bagsværd, Denmark). For 
the basal glycaemia measurements, the intra-NAC infusion (VEH, 
n  =  5; DAMGO, n  =  8) occurred at mid-day and blood sampling 
started directly after. To test whether DAMGO needed 20  min 
to exert its effects, in the same rats, 7 days after testing for ef-
fects on basal glycaemia, an ITT was performed where vehicle or 
DAMGO was infused 20 min prior to insulin bolus. Rats received 
intra-NAC infusion (VEH, n = 6; DAMGO, n = 5) at mid-day and, 
at 12.20  pm, a blood sample was collected for t  =  0 and insulin 
bolus was injected. Rats receiving DAMGO during the basal gly-
caemia measurements received vehicle in the ITT. For the glucose 
tolerance test (GTT), right after intra-NAC infusion (VEH, n = 8; 
DAMGO, n = 8), a blood sample for t = 0 was collected and a glu-
cose bolus was infused i.v. (500 mg kg-1 BW; Sigma-Aldrich). At the 
end of the experiment (t = 60), animals were anaesthetised with a 
CO2/O2 mixture (6:4) and killed by decapitation. Brains and part of 
the liver were then rapidly removed, frozen on dry ice and stored 
at −80℃.

2.4 | Glycaemia and hormone measurement

Blood glucose concentrations were measured directly during the 
experiment, using a glucose monitor device (Freestyle Freedom 
Lite; Abbott, Hoofddorp, The Netherlands). Blood samples were 
immediately chilled on ice and centrifuged (4000 g for 15 min). 
Plasma samples were stored at −20℃ until further analysis. 
Plasma concentrations of insulin, glucagon and corticosterone 
were measured in duplo using radioimmunoassay kits (Millipore, St 
Charles, MO, USA, and MP Biochemicals, Costa Mesa, CA, USA, 
respectively).

2.5 | Cannula placement

Brain tissue sections were cut at 35 μm and mounted on Superfrost Plus 
slides (Fisher, Gerhard Menzel GmbH, Germany), fixed with a 4% para-
formaldehyde solution and stained for Nissl staining with thionine. Stained 
sections were examined under the microscope to determine the place-
ment of the cannula (see Supporting information, Figure S1), and animals 
with unilateral or bilateral misplacement were excluded from the analysis.

2.6 | Glycogen measurement

A small piece (approximately 10 mg) was dissected from frozen liv-
ers, 200 μL of Milli=Q (Merck Millipore, Burlington, MA, USA) was 
added and tissue was homogenised using an ULTRA THURRAX ho-
mogeniser (IKA, Staufen, Germany). Glycogen was measured using 
an Glycogen Assay kit (Abcam, Cambridge, UK). Glycogen concen-
trations were normalised by total protein concentration measured in 
liver homogenates using BioRad Protein Assay for spectrophotom-
etry (Bio-Rad, Hercules, CA, USA).

2.7 | Statistical analysis

Data are shown as the mean ± SEM. For all experiments, except when 
intra-NAc infusion occurred 20 min before an ITT, data are shown 
relative to baseline (as measured at t = 0). For effects on glycaemia 
and hormone concentrations, a repeated-measure analysis of vari-
ance (rmANOVA) was performed using Prism (GraphPad Software 
Inc., San Diego, CA, USA) and, when appropriate, a post-hoc Fisher’s 
least significant difference test was used to compare individual time 
points. A Student's t test was performed to compare glycogen con-
centrations. p < .05 was considered statistically significant.

3  | RESULTS

3.1 | DAMGO infusion into the NAC does not affect 
basal glycaemia

We first investigated whether bilateral infusion of DAMGO into 
the NAC affected basal glycaemia (Figure 1A). We observed a main 

F I G U R E  1   [d-Ala2, N-MePhe4, Gly-
ol]-enkephalin (DAMGO) infusion does 
not alter basal glycaemia. A, Experimental 
outline, with time (min). VEH, vehicle; 
S, blood sample taken. B, Glucose 
measured in blood, relative to t = 0. C, 
Corticosterone measured in plasma, 
relative to t = 0. For statistical outcomes, 
see Table 1. Data are shown as the 
mean ± SEM. *p < .050 20 40 60
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effect of Time (Table 1), but no Infusion or Time × Infusion inter-
acting effect, indicating that DAMGO infusion did not alter basal 
glycaemic levels (Figure  1B). The DAMGO infusion did increase 
plasma corticosterone levels (Time ×  Infusion, p  <  .0001), lead-
ing to significantly higher concentrations in DAMGO-infused rats 
compared to vehicle-infused rats from 20 min after infusion on-
wards (Figure 1C).

3.2 | Intra-NAC DAMGO infusion enhances the 
glycaemic response after an i.v. insulin injection

To test the involvement of NAC μ-opioid receptors in insulin sen-
sitivity, we infused DAMGO in the NAC, right before an i.v. ITT 
(Figure 2A). A significant Time × Infusion interaction (p = .0014) was 

found for glycaemia (Table 1), indicating that the intra-NAC DAMGO 
infusion altered the response to an insulin bolus. Post-hoc testing 
revealed that DAMGO prolongs the insulin-induced drop in glycae-
mia because DAMGO-treated rats had lower glycaemic values at 
t = 10 min (Figure 2B). These changes are possibly due to a larger 
decrease in glucagon secretion (Time × Infusion, p = .0136) because 
glucagon concentrations were significantly lower in DAMGO-treated 
animals at t  =  5 (Figure  2D). Moreover, at t  =  30–60 min, we ob-
served higher glycaemic values in the DAMGO-treated animals, in-
dicating an enhanced counter-regulatory response (Figure 2B). Again, 
DAMGO infusion in the NAC increased plasma corticosterone levels 
(Time × Infusion, p < .0001), specifically t = 30–60 min (Figure 2C). 
To test whether the increased glycaemia is a result of glycogen break-
down, we measured glycogen content in liver samples. No differences 
were seen between vehicle or DAMGO-treated animals, indicating 

TA B L E  1   rmANOVA outcomes

Time effect Infusion effect Time × Infusion effect

Basal glycaemia Glucose p = .0018 F5,65 = 4.443 p = .1863 F1,13 = 3.435 p = .2800 F5,65 = 1.524

Corticosterone p = .1685 F5,65 = 1.899 p = .0122 F1,13 = 14.59 p = .0014 F5,65 = 6.687

ITT Glucose p < .0001 F5,80 = 47.21 p = .2259 F1,16 = 1.586 p = .0014 F5,80 = 4.385

Glucagon p < .0001 F5,80 = 9.430 p = .5525 F1,16 = 0.3682 p = .0136 F5,80 = 3.078

Corticosterone p = .0880 F5,85 = 1.992 p = .0062 F1,17 = 9.727 p < .0001 F5,85 = 6.961

ITT −20 Glucose p < .0001 F5,45 = 66.48 p = .1010 F1,9 = 3.336 p = .3022 F5,45 = 1.250

Glucagon p < .0001 F5,45 = 8.262 p = .5322 F1,9 = 0.4219 p = .4589 F5,45 = 0.9491

Corticosterone p = .2394 F5,45 = 1.409 p = .1252 F1,9 = 2.857 p = .2365 F5,45 = 1.417

GTT Glucose p < .0001 F5,80 = 205.0 p = .0417 F1,16 = 6.977 p = .1932 F5,80 = 1.604

Insulin p < .0001 F5,75 = 160.5 p = .3548 F1,15 = 0.7168 p = .1747 F5,75 = 1.345

Corticosterone p < .0001 F5,80 = 8.420 p = .1351 F1,16 = 1.196 p < .0001 F5,80 = 15.17

Abbreviations: GTT, glucose tolerance test; ITT −20, insulin tolerance test where [d-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) was administered 
20 min prior to the insulin tolerance test; ITT, insulin tolerance test.

F I G U R E  2   [d-Ala2, N-MePhe4, Gly-ol]-
enkephalin (DAMGO) infusion enhances 
the glycaemic response after an i.v. 
insulin infusion. A, Experimental outline, 
with time (min). VEH, vehicle; S, blood 
sample taken. B, Glucose measured in 
blood, relative to t = 0. C, Corticosterone 
measured in plasma, relative to t = 0. 
D, Glucagon measured in plasma, 
relative to t = 0. E, Glycogen content in 
liver standardised to total protein. For 
statistical outcomes, see Table 1. Data are 
shown as the mean ± SEM. *p < .05
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that glycogen breakdown is not the main source of the increased gly-
caemic levels seen in DAMGO treated animals (Figure 2E).

Because we primarily find effects of DAMGO 20 min after in-
fusion, we investigated whether we missed an effect on the earlier 
stage of the response (t = 0–20 min) as a result of DAMGO needing 
20 min to exert its effects. We therefore repeated the ITT, but in-
fused DAMGO earlier (i.e., 20 min before the i.v. insulin injection) 
(Figure 3A). Because DAMGO infusion affected glucagon and cor-
ticosterone levels at t  =  0 (Table  2), we report absolute levels of 
glucose and hormones and do not express any measures relative to 
t = 0 min. DAMGO infusion 20 min prior to insulin infusion had no 
effect on glycaemia (Figure 3B and Table 1), plasma corticosterone 
levels (Figure 3C and Table 1), plasma glucagon levels (Figure 3D and 
Table 1) or liver glycogen content (Figure 3E).

3.3 | Intra-NAC DAMGO infusion also affects the 
glycaemic response after i.v. glucose injection

Lastly, we tested whether intra-NAC infusion of DAMGO also af-
fected glucose tolerance. When DAMGO was administered prior 
to an i.v. GTT, we found significant effects of Infusion (p =  .0178) 
and Time (p  <  .0001) on glycaemia, but no significant Infusion or 
Interaction effects of DAMGO on insulin secretion were observed 
(Figure 4B, C and Table 1). Post-hoc testing revealed no differences 
in the initial peak in glycaemia (Figure 4B), but, again, glycaemic lev-
els were significantly increased during the counter-regulatory phase 
(20–60 min after the glucose injection) (Figure 4B). rmANOVA also 
showed a significant Time × Infusion effect (p < .0001) of DAMGO 
on corticosterone release (Table 1) as a result of initially lower levels 

F I G U R E  3   [d-Ala2, N-MePhe4, 
Gly-ol]-enkephalin (DAMGO) infusion 
20 min prior to insulin infusion, does not 
alter the glycaemic response after an i.v. 
insulin infusion. A, Experimental outline, 
with time (min). VEH, vehicle; S, blood 
sample taken. B, Glucose measured in 
blood. C, Corticosterone measured in 
plasma D, Glucagon measured in plasma. 
E, Glycogen content in liver standardised 
to total protein. For statistical outcomes, 
see Table 1. Data are shown as the 
mean ± SEM. *p < .05
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Basal glycaemia Glucose 4.82 ± 0.29 4.84 ± 0.17 0.956

Corticosterone 70.88 ± 30.81 87.89 ± 36.01 0.750

ITT Glucose 4.82 ± 0.07 4.74 ± 0.13 0.584

Glucagon 112,50 ± 5,78 118,13 ± 7,58 0,565

Corticosterone 94,25 ± 33,45 44.14 ± 8.87 0.151

ITT −20 Glucose 5.20 ± 0.31 5.24 ± 0.30 0.826

Glucagon 90.57 ± 9.48 107.00 ± 11.55 0.026

Corticosterone 55.36 ± 48.75 83.50 ± 21.22 0.258

GTT Glucose 5.15 ± 0.12 5.04 ± 0.08 0.451

Insulin 1.59 ± 0.32 1.55 ± 0.25 0.920

Corticosterone 100.63 ± 36.32 96.72 ± 36.52 0.941

Note: Data are shown as the mean ± SEM.
Abbreviations: GTT, glucose tolerance test; ITT −20, insulin tolerance test where [d-Ala2, N-
MePhe4, Gly-ol]-enkephalin (DAMGO) was administered 20 min prior to the insulin tolerance test; 
ITT, insulin tolerance test.

TA B L E  2  Plasma levels of glucose and 
hormones at t = 0, prior to administration 
of insulin or glucose
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of corticosterone at t = 10, followed by significantly higher plasma 
corticosterone concentrations from t  =  30–60  min in DAMGO-
treated compared to vehicle-treated animals (Figure 4D).

4  | DISCUSSION

In the present study, we found that activation of NAC μ-opioid re-
ceptors enhanced the glycaemic response after an insulin or glucose 
tolerance test, whereas it did not affect basal glycaemia. These re-
sults indicate a role for the NAC in the central control of opioids on 
glucose metabolism.

Previous studies have investigated the effects of i.c.v. infusion of 
the endogenous opioid β-endorphin [13], the synthetic μ-opioid re-
ceptor agonist morphine [3] or DAMGO [14] on blood glucose levels. 
In line with our findings, all three studies reported an increase in gly-
caemia upon opioid stimulation [3,13,14]. Unlike our findings, i.c.v. 
infusion of morphine and β-endorphin caused hyperglycaemia in the 
absence of any glycaemic challenge [3,13]. Because i.c.v. infusions 
reach many multiple brains areas, it appears that, although NAC μ-
opioid receptor activation specifically affects the counter-regulatory 
response, activation of μ-opioids receptors in other brain areas may 
increase glycaemia even in the absence of a glycaemic challenge. 
Alternatively, this difference could be a result of the nature of the 

agonists used. Although β-endorphins, morphine and DAMGO all 
bind to the μ-opioid receptor, they have different affinities and po-
tencies [21,22]. Intracerebroventricular infusion of DAMGO similarly 
increased glycaemia in response to an ITT or GTT [14], underlining 
the role of the μ-opioid receptor in the control of the response to a 
glycaemic challenge. However, i.c.v. infusion of DAMGO also altered 
insulin release in response to a glucose injection, which we did not 
observe after intra-NAC DAMGO infusion. Again, this effect could 
be mediated by other μ-opioid receptor expressing brain areas, such 
as the hypothalamus [23]. Overall, we conclude that the NAC plays 
an important role in the central control of opioids with respect to 
the counter-regulatory response, although additional brain areas are 
likely involved in the other central effects that opioids can have on 
glucose metabolism.

Intra-NAC infusion of DAMGO activates a neural network that 
includes several brain areas associated with the control of glycae-
mia [24]. For example, intra-NAC infusion of DAMGO increases the 
activation marker cFos in the lateral hypothalamus [24], specifically 
in orexin expressing neurones [25]. Orexin neurones are implicated 
with the control of glycaemia because they are activated by hypo-
glycaemia [26] and activation of orexin neurones increases glucose 
production in the liver [27]. Another brain region that is activated 
upon intra-NAC infusion of DAMGO is the nucleus of the solitary 
tract (NTS) in the hindbrain [24]. This nucleus contains neurones 
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Gly-ol]-enkephalin (DAMGO) infusion 
enhances the glycaemic response after 
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measured in blood, relative to t = 0. C, 
Corticosterone measured in plasma, 
relative to t = 0. D, Insulin measured in 
plasma, relative to t = 0. For statistical 
outcomes, see Table 1. Data are shown as 
the mean ± SEM. *p < .05
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sensitive to changes in glycaemia and can modulate glucagon release 
[28]. In the present study, we observed both increased glycaemia 
and changes in plasma glucagon levels, although whether NTS neu-
rones and lateral hypothalamic orexin neurones are involved remains 
to be determined in future experiments.

The brain can increase glycaemia via two main output mech-
anisms: either through activation of the hypothalamic-pituitary-
adrenal axis, resulting in the release of corticosterone, or through 
an increase in sympathetic nervous system (SNS) activity [29]. In all 
but one of our experiments, intra-NAC DAMGO infusion increased 
corticosterone levels, although these increased levels did not consis-
tently correlate with the effects on glycaemia. When DAMGO was 
infused under basal conditions, corticosterone increased similarly 
to that when DAMGO was injected right before an ITT or GTT, al-
though a difference in glycaemia was evoked only in the latter con-
ditions. Therefore, corticosterone does not appear to be the crucial 
mediator for the observed changes in glycaemia in the ITT or GTT. 
Accordingly, corticosterone is not known to affect short-term fluctu-
ations in glycaemia: multiple reports indicate that infusion of cortisol 
(the human variant of corticosterone) does not change glycaemia 
[30,31] or only mildly increases glycaemia after 4 h [32]. Likewise, 
we have previously shown that deep brain stimulation of the nucleus 
accumbens at a low frequency significantly increased corticosterone 
but had no effect on glycaemia [17]. Overall, we conclude that the 
increased corticosterone after intra-NAC DAMGO infusion is a side 
effect of DAMGO infusion, and is not likely to mediate the changes 
in glycaemia. Future experiments will aim to further decipher the 
exact role of corticosterone in the effects on glycaemia seen upon 
NAC opioid stimulation.

Another possible mediator of the increased glycaemia seen after 
DAMGO infusion is the SNS. The SNS can influence glycaemia by 
altering pancreatic hormone release, glucose uptake in muscle and/
or glucose production in the liver [33]. Indeed, the increased corti-
costerone release could also be mediated by the SNS because SNS 
activation enhances adrenal sensitivity to adrenocorticotrophic hor-
mone, thereby increasing corticosterone release [34]. Previously, 
the effects of i.c.v. DAMGO infusion on glycaemia have been shown 
to be dependent on SNS activity [14] and we therefore hypothe-
sise that the NAC-dependent effects of DAMGO on glycaemia 
could be mediated by the SNS, which will have to be tested in future 
experiments.

Interestingly, we only observed changes in glycaemia when 
DAMGO was administered during an ITT or GTT. We found that, in 
the absence of a glycaemic challenge, intra-NAC infusion of DAMGO 
has no effects on glycaemia. The possible DAMGO-induced activa-
tion of the SNS will likely cause an increase in serum epinephrine 
levels. Interestingly, the hyperglycaemic effects of epinephrine are 
found to be largely a result of the inhibitory effect of epinephrine 
on insulin action [35] and are therefore observed to be more pro-
nounced during hyperinsulinemic conditions (such as during an ITT, 
or GTT) [35,36]. For example, i.v. doses of epinephrine that only 
cause a mild increase in basal glycaemia will induce a much greater 
increase in glycaemia when administered before a GTT [36]. The 

effects of these increased levels of epinephrine specifically affect 
the counter-regulatory phase, but not the initial change in glycaemia 
during the ITT or GTT. Potentially, the bolus of insulin or glucose has 
more pronounced effects on glycaemia than the subtle changes in 
SNS output as a result of intra-NAC DAMGO administration. Timing 
appears to be crucial because no significant effects were observed 
when DAMGO was administered 20  min prior to the ITT. These 
findings are consistent with the known short half-life (15 min) of 
DAMGO [37].

Previously, we have shown that serotonin and dopamine trans-
mission can modulate the glucoregulatory function of the NAC. 
Specifically, increasing NAC serotonin levels also raised glycaemia. 
Although intra-NAC DAMGO infusion does not appear to increase 
serotonin release in the NAC [38], the insulin that is increased during 
both the ITT and GTT could potentially mediate changes in sero-
tonin release. In vitro application of insulin on a NAC slice prepara-
tion showed no effects on serotonin release [39], although another 
study reported that, in vivo, an i.v. injection of insulin does increase 
serotonin release in a number of brain areas [40]. Unfortunately, that 
previous study did not investigate the NAC, and thus the in vivo ef-
fects of insulin on NAC serotonin release are yet to be determined. 
Because a strong connection has been found between central sero-
tonin and the counter-regulatory response to hypoglycaemia [40,41], 
a possible role for serotonin in the effects seen upon DAMGO infu-
sion appears likely, and will have to be investigated further.

By contrast to the effects of intra-NAC DAMGO infusion, acti-
vation of dopamine receptor-1 neurones in the NAC lowers glycae-
mia [16]. The effects of DAMGO on NAC dopaminergic signalling 
are two-fold. On the one hand, DAMGO infusion increases extracel-
lular dopamine in the NAC [42] but, because μ-opioid receptors are 
present on the same NAC neurones that dopamine binds to, it also 
lowers the activity of these dopamine receptor-1 expressing neu-
rones (which are typically activated by dopamine) [43]. Because we 
find opposing effects of intra-NAC DAMGO infusion compared to 
NAC dopamine-related effects on glycaemia, we hypothesise that 
the increase in dopamine release seen after DAMGO infusion is 
outweighed by direct inhibitory effects of DAMGO on dopamine-
receptor neurones. In line with this hypothesis, when both DAMGO 
and a dopamine receptor-1 agonist were applied to slice prepara-
tions, DAMGO overruled the effects of dopamine on the intracellu-
lar pathway activated by the dopamine receptor-1, causing an overall 
inhibition of this pathway [44].

Because activation of NAC μ-opioid receptors enhances the 
response to hypoglycaemia, it would be an interesting therapeutic 
target to further investigate in the context of hypoglycaemia un-
awareness in insulin-dependent type 1 diabetes mellitus patients, 
a phenomenon where the body's ability to adequately respond to 
hypoglycaemia is impaired [45]. Interestingly, i.v. administration 
of a μ-opioid receptor antagonist, naloxone, is being investigated 
for its therapeutic abilities to enhance the counter-regulatory re-
sponse to hypoglycaemia [46-48]. Although it may appear to be 
surprising that both μ-opioid receptor agonism and antagonism 
can beneficially affect the counter-regulatory response, opioids 
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are known to act differently centrally compared to peripherally. 
For example, i.v. infusion of naloxone increases glycaemia [6], 
whereas it lowers blood glucose levels when administered i.c.v. 
[49]. Likewise, central μ-opioid receptor activation decreases insu-
lin sensitivity [14], whereas peripheral μ-opioid receptor activation 
can improve insulin sensitivity [50]. Deciphering these differential 
central and peripheral effects of opioid stimulation will be crucial 
for the use of opioid signalling as a therapeutic target for T1DM 
patients.

Overall, we found that activation of NAC μ-opioid receptors 
enhances the glycaemic response after an ITT or GTT, without af-
fecting basal glycaemia. We show for the first time that the NAC 
is involved in the central effects of opioids on glucose metabolism. 
Because the effects of μ-opioid receptor activation in the NAC are 
specific to the response to a glycaemic challenge, this highlights the 
possibility to further investigate the involvement of NAC μ-opioid 
receptors in the defective counter-regulatory response during hypo-
glycaemia unawareness.
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