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Abstract: Layer-by-layer (LbL) modification of porous membranes for water filtration has become
an active research field in the past few years. Different mechanisms regarding polyelectrolyte film
growth, swelling and smoothing, transport through these films, etc., have been studied. Although
there are conjectures, it is not yet fully understood where the polyelectrolyte layering takes place
when modifying porous membranes, either within the pores or on top of the porous material. This
study presents a theoretical approach to investigate the dominant layer buildup regime between
pore-dominated vs. layer-dominated growth of polyelectrolytes on porous membranes without
mechanically interfering or damaging the membrane material. For this, fouling mechanism processes
are used as an analogy. The presented approach gives a new insight into layering conformation
and might be helpful to investigate the interaction between the membrane surface and the PE film.
Moreover, the MgSO4 rejection behavior of two types of modified membranes was investigated: one
with an initial pore-dominated layer growth followed by a layer-dominated film growth; the other one
with a completely layer-dominated film growth. The data confirm that a rejection for MgSO4 could
only be achieved in the regime of layer-dominated film growth. Additionally, when layer-dominated
film growth prevails from the early stages of the coating process, permeability values are higher
at similar MgSO4 rejection rates compared to an initial pore-dominated and then layer-dominated
film growth. Accordingly, the interaction between the membrane pore size and molecular weight of
the polyelectrolytes in the coating solutions plays an important role during LbL coating.

Keywords: layer-by-layer assembly; polyelectrolyte multilayers; membrane modification

1. Introduction

Increasing concentrations of dissolved water substances in raw waters for drinking
water production pose an upcoming challenge for water suppliers. Some of these water
constituents (e.g., dissolved organics, sulfate, nitrate) cannot be removed by conventional
treatments such as media filtration. Therefore, different, more advanced treatment tech-
nologies are needed. With the possibility to remove dissolved compounds, for example,
divalent ions such as sulfate (SO4

2−), nanofiltration (NF) and low-pressure reversed os-
mosis (LPRO) are promising and safe alternatives for water treatment [1]. Additionally,
NF and LPRO membrane processes find applications in recovery of industrial wastewater,
treatment of municipal wastewater, or in pharmaceutical and biotechnological applica-
tion [2]. However, these processes require high specific energy demands and a certain raw
water quality. In contrast, porous membranes such as ultrafiltration (UF) or microfiltration
(MF) have larger pores and can often be backwashed due to their material and module
properties. Backwash bears the opportunity to treat waters with particle loads, for example,
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raw waters for drinking water, or industrial and municipal wastewater, and may extend
the membrane lifetime [3]. However, UF and MF are not suitable to retain dissolved
compounds but present a pretreatment for NF and LPRO [4].

1.1. Layer-by-Layer Process and Influences

The layer-by-layer (LbL) coating method offers the option to tailor membranes for
water treatment with desired filtration characteristics [5]. For example, membranes were
tailored successfully by combining the rejection behavior of membranes in the NF range for
divalent ions while keeping the possibility of backwashing [6–8]. During the LbL process,
a membrane with a certain surface charge is exposed to polycation and polyanion solutions
alternatingly. Due to electrostatic interaction, charge compensation, and the release of
counterions into the bulk solution, the polyelectrolytes (PE) adsorb onto the membrane
surface [9,10]. The process is repeated until the desired film characteristics are obtained.

Different research groups studied the impact of different factors during LbL coating;
for example, the impact of ionic strength added to the PE solutions while coating the mem-
brane (also called background ionic strength). Increasing the salt concentration may lead to
an increase in the polyelectrolyte multilayer (PEM) thickness and roughness and appears
to also influence the density of the film [11–15]. These effects studied on membranes have
shown that at similar PE mass adsorptions, lowering the ionic strength of the PE solution
results in a lower permeability. This effect is attributed to the lower solubility and diffu-
sivity of water due to a denser film structure [12,15,16]. These studies refer to completely
coated membrane surfaces. Additionally, the growth behavior of PEM is influenced by
the background ionic strength. Some studies claim that increasing the background ionic
strength above a certain concentration leads to an initial exponential growth compared to
a linear growth observed at low ionic strength [9,14,17]. Besides the concentration, the type
of ions present in the coating solution seems to be another important factor influencing
the thickness, the deposited mass [18], and the roughness of the PEM [19]. The molecular
weight (MW) of the PE in the coating solution might be another factor influencing PEM
growth. According to other studies for the PE pair poly(diallyldimethyl-ammonium chlo-
ride) (PDADMAC) and poly(sodium 4-styrenesulfonate) (PSS) at a MW below a certain
threshold value (80 kDa for PDADMAC and 25 kDa for PSS), the number of double layers
changes when a transition from parabolic to linear growth occurs in the coating process.
The transition appears earlier when the PDADMAC MW is lower than the threshold value
and later when the PSS MW is below the threshold MW. Further, the PEM layer thickness
was observed to be different for these MWs [20,21].

Despite several studies and conjectures, it is not yet fully understood where the ad-
sorption of the PE takes place during membrane modification. Harris et al. (2000) observed
that during the buildup of PAH/PSS films on porous membranes, although the molecular
weight of the PE is in the range of the molecular weight cut-off (MWCO) of the membrane,
only a small part of the inner porous structure is coated, while the major buildup hap-
pens on top of the membrane’s active material [22]. As the used measurement technique,
field emission scanning electron microscopy (FESEM), requires a mechanical interference,
the membrane might not be usable after analysis. Therefore, this technique does not allow
further use of the investigated membrane. In contrast, Malaisamy et al. (2005) investigated
the buildup of poly(acrylic acid) (PAH) and PSS thin films on a PES support without
mechanically damaging the membrane substance. They observed that above a certain
MWCO of the virgin membrane, the rejection for sulfate decreases while the permeability
remains in a similar range. This behavior in permeability along with the rejection was
attributed to a layering of PE within instead of above the porous structure, suggesting
the permeability and rejection rate as indications of the layering location [23]. Additionally,
membranes were modified using the dynamic layering process, where PE are deposited
under applied pressure of the coating solution. These membranes appear to be more stable
against hydraulic backwashing and show higher rejections for divalent ions compared to
membranes coated without applied pressure. These effects are attributed to the PE layering
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within the porous structure enhancing the interaction between the membrane’s material
and the PEM [24]. Besides the interaction between PE with each other, the interaction be-
tween PE on the membrane’s surface and their adsorption location obviously play a major
role in the performance of LbL-coated membranes.

De Grooth et al. (2015) and Menne et al. (2016) also focused on the permeability
as an indicating parameter for the layering location using the so-called odd-even effect. This
effect describes a zig zag pattern for the permeability when coating single PDADMAC/PSS
PE layers on top of a membrane surface [6,12], which is attributed to the outermost PE
layer of the LbL coating. This layer plays a major role on film growth, water mobility,
density, and PEM thickness [12,15,16,25–27]. De Grooth et al. (2015) and Menne et al. (2016)
coated membranes with PE in low-ionic strength solutions. They observed at low layer
numbers that permeability increases when adding an additional PSS layer on an existing
PDADMAC/PSS film. This observation is attributed to the PE layering within the porous
structure. As the film is claimed to be thinner with PSS as the outermost PE layer, the pore
diameter becomes larger compared to PDADMAC as the outermost layer, even though
another layer is added. When coating at a higher ionic background strength, which leads
to an overall thicker PEM structure, the odd-even effect reverses after a certain number
of layers; permeability decreases with an additional layer of PSS. This reversal of the odd-
even effect is attributed to a PEM buildup above the porous structure instead of within,
as the film structure of the PEM on top of the membrane surface becomes denser [6,12].
To describe the different locations of PEM growth, de Grooth et al. (2015) introduced
the expressions of pore- vs. layer-dominated growth regimes for LbL-coated membranes
(Figure 1). While the former refers to whether the PE adsorbs onto the inner surface of
the membrane, successively decreasing the membrane pore diameter (pore-dominated),
the latter refers to PE adsorption on top of the membrane surface, building up a film layer
(layer-dominated) [12].

Figure 1. Schematic of pore-dominated (left) and layer-dominated (right) polyelectrolyte multilayer (PEM) buildup.

1.2. Membrane Fouling and Modeling

During membrane filtration processes of natural water, fouling occurs due to accu-
mulation of substances on the membrane surface. These substances are either sterically
rejected or adsorbed on the membrane material due to physical or physiochemical inter-
action [28]. Internal fouling expresses deposits of foulants within the porous structure
of the membrane. External fouling refers to the fouling that occurs on top of the active
membrane surface [29].

Multiple studies have investigated and described the fouling processes mathematically.
Throughout these studies, four main blocking laws were established to describe the fouling
of porous membranes during filtration: (i) complete pore blocking, (ii) standard pore
blocking, (iii) intermediate pore blocking, and (iv) cake filtration [30]. The standard
pore blocking model assumes that the foulants accumulate within the porous structure,
reducing the pore diameter evenly. The complete pore blocking model describes that during
fouling, substances adsorb onto the membrane surface, completely blocking available pores.
The intermediate pore model describes a similar layering of foulants onto the membrane,
while clogging a pore completely. In contrast to the complete pore blocking model, it
assumes that foulants deposit also on top of other foulants and do not necessarily block
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open pores. The cake filtration model suggests that a uniform cake layer is formed on
top of the membrane active surface throughout the whole membrane filtration area [29].
Lee et al. (2008) further investigated three of these four models, namely, standard pore
blocking, complete pore blocking, and cake layer formation, to describe the fouling of
submerged microfiltration hollow fiber membranes [31]. Davis (1992) described several
models for the cake layer formation of microfiltration membranes. One of these addresses
the cake layer buildup on capillary membranes [32]. The present work assumes that PE
multilayer films are particle-free and show a more gel-like film structure. Consequently, we
neglect models where particles block the pores of the membranes completely. Therefore,
only the standard blocking model and the cake formation model are considered and further
evaluated. The resulting model adapts to the standard blocking law of Lee et al. (2008) [31]
and the cake layer buildup of Davis (1992) [32].

Generally, for both models, the permeate flux at a specific location and a specific
filtration time of the membrane process J(x, t) is assumed to be proportional to the trans-
membrane pressure ∆p(x, t) and the hydraulic resistance Rt(x, t) of the process according
to Darcy’s law [32]:

J(x, t) =
∆p(x, t)
ηRt(x, t)

(1)

η: dynamic viscosity.

1.3. Standard Blocking Model

If the foulants are small enough to adsorb onto the pore walls, the available pore
diameter is reduced. This reduction is related to the mass adsorbed on the pore walls,
thus leading to a reduction in the effective pore size and membrane permeability. With
the assumptions of a uniform pore size distribution, cylindrical shape, and universal
fouling rate for all pores, Lee et al. (2008) described the mass deposited (md) over time
related to the pore radius (rp) as [31]

− 1
ρd

δmd
δt

= N′
(
2πrp

)
l
δrp

δt
(2)

N′: number of pores, l: pore length, ρd: density of deposits.
With the standard blocking constant Ks = Am

πN′ lρdr2
p,0

and the active membrane surface

(Am), this leads to the reduction in pore diameter with the mass deposited on the membrane
surface as [31]

rp(x, t)
rp,0

=

(
1− Ksmd(x, t)

Am

) 1
2

(3)

Using the Hagen–Poiseuille equation for flow through the pores, the permeate flux
J(x, t) results as [31]

J(x, t) =
1

Am

π r4
p(x, t) N′

8ηl
∆p (4)

1.4. Cake Layer Formation

For the cake layer formation, it is assumed that substances depositing onto the mem-
brane surface build up a uniform cake layer. This cake layer causes an additional local
hydraulic resistance (Rc) to the present membrane resistance (Rm). For flat membranes,
the cake resistance is proportional to the cake thickness or cake mass deposited. For capil-
lary membranes, the overall cake resistance is not only dependent on the film thickness,
but also on the decrease in the active surface area due to the curvature. The resistance due
to the formation of a cake layer on a cylindrical form is according to Davis (1992) [32]:

Rc = ρd(1− εd)R′cdcln
(

dc

dc − δc

)
= R̂cdcln

(
dc

dc − δc

)
(5)
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εd: void fraction of the cake; Rc
′: specific cake resistance per unit mass per area; dc :

capillary diameter; δc: thickness of the cake layer; R̂c: specific cake resistance per unit
depth.

The overall membrane resistance at a certain time and location (Rt(x, t)) is given
by [31]:

Rt(x, t) = Rs,n + Rc(x, t) (6)

2. Materials and Methods
2.1. Materials

Poly(diallyldimethyl-ammonium chloride) (PDADMAC; MW < 100,000 g/mol, 20
wt % solution; MW = 400,000–500,000 g/mol, 20 wt % solution, MW = 40 kDa, 20 wt %
solution) and poly(sodium 4-styrenesulfonate) (PSS, MW = 70,000–80,000 g/mol, pow-
der; MW = 1,000,000 g/mol, powder) were purchased from Sigma Aldrich (Taufkirchen,
Germany). PSS-Rhodamin (PSS-Rho, MW = 70 kDa) was synthesized by Surflay Nan-
otec GmbH (Berlin, Germany). Sodium chloride (NaCl; MW = 56,488 g/mol, powder)
and magnesium sulfate (MgSO4·7H2O; MW = 246.48 g/mol, powder) were purchased
from Carl Roth (Karlsruhe, Germany). All solutions were prepared in deionized water
(Milli-Q, Millipore Corporation, Billerica, MA, USA). Silica particles with two different
pore diameters (7 and 30 nm) were purchased from Silicyle Inc. (Quebec, QC, Canada).

2.2. Membrane

Multibore® Polyethersulfone (PES) hollow fiber UF membranes (DuPont/Inge GmbH,
Greifenberg, Germany) with two different pore sizes/MWCOs were used (Table 1, Fig-
ure S1, Supplementary Material). The membranes with seven capillaries (0.9 mm inner
diameter) in one fiber, were operated inside-out. To prevent axial leakage, the membranes
are potted into PVC connections. For this, the manufacturer uses a special potting resin,
which allows a permeation of the resin into the support structure but does not clog the cap-
illaries. The overall length of the membrane fiber was 30 cm, leading to a total surface area
of approximately 60 cm2. Data on the capillary diameter, the MWCO, and the porosity are
according to the manufacturer’s information. The resulting pore diameter was derived
from the MWCO. Porosity was fitted to initial flux values. The thickness of the membrane
active separation layer was derived from scanning electron microscopy (SEM) pictures of
the 100 kDa membrane. Membranes were rinsed by filtration with deionized water before
usage to remove all residues on the surface and in the porous structure.

Table 1. Membrane parameters for two different membranes used in the experiments.

Parameter Abbreviation Unit MB220 MB100
Active layer thickness/pore length l µm 2 2

Capillary diameter dc mm 0.9 0.9
Molecular weight cut-off MWCO kDa 220 100

Initial pore diameter dp,0 nm 36 22
Number of pores per unit of active area N′ 1014 2.85 7.63

Porosity ε % 29 29

2.3. Modification

The membranes were coated using the Surflay Nanocoater (Surflay Nanotec GmbH,
Berlin, Germany; Figure 2b). First, the capillaries of the membrane fiber were filled with
PDADMAC solution (1 g/L in 0.1 M NaCl). After a contact time of 5 min for membranes
with an MWCO of 220 kDa and two minutes for membranes with an MWCO of 100 kDa,
the capillaries were rinsed and filled again with fresh PE solution. Conducting the rinsing
with fresh solution assured that no potential adsorption sites of the membrane were missed.
After another 5 min contact time, the capillaries were rinsed with DI water to remove excess
PE solution. The whole procedure was repeated analogously with PSS solution (1 g/L
in 0.1 M NaCl). One cycle for PDADMAC and PSS together is referred to as one double
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layer. After the modification step, DI water permeability was tested, and the coating was
repeated accordingly.

Figure 2. Schematic figure of the (a) filtration setup (1: feed tank; 2: feed pump; 3: membrane module;
4: retentate valve; 5: permeate tank) and (b) coating setup (1: pressurized solution containers;
2: nanocoater; 3: membrane module; 4: waste disposal).

2.4. Filtration Setup

The DI water permeability was measured in a lab-scale filtration setup (Figure 2a)
using deionized water. The solution was pumped into the capillaries of the membrane. One
part of the feed was recirculated through a retentate valve back into the feed tank. Permeate
was filtered through the membrane and measured gravimetrically. The transmembrane
pressure (TMP) was maintained throughout the filtration process. When possible, the TMP
was set to approximately 2.5 bar. Due to the high permeabilities at the low coating numbers,
a TMP of 2.5 bar was not always achievable. In this case, the pressure was reduced, so
membranes were always filtrated in a cross-flow condition (u = 0.25 m/s). For comparison,
all flux data were normalized to a TMP of 1 bar to achieve DI water permeability data.

For sulfate rejection measurements, a solution containing 100 mg/L SO4
2− from

MgSO4 was used. A volume of 400 mL was used as feed from which a volume of 100 mL
permeate was collected, simulating a water conversion of 25%. Similar to DI water filtration,
the filtration was carried out preferably at a constant pressure of 2.5 bar. Further, in these
experiments, the pressure of 2.5 bar could not always be maintained, due to high flux rates.
The rejection rate (R = 1− cp

c f
) was calculated based on conductivity values for the feed

and permeate.

2.5. Fluorescence Measurement

To further visualize whether the assimilation of PE is on top or within porous struc-
tures, fluorescence measurements were conducted. Porous silica particles with two different
pore diameters were coated with fluorescent PSS. According to the equation from Critten-
den et al. (2012) (dp = 0.11 ·Mw0.46 [33]), both, particles with a smaller pore diameter
(dp = 7 nm; equivalent MW ~ 8.3 kDa) than the coating PE MW and particles with a much
bigger pore diameter (dp = 30 nm; equivalent MW ~ 200 kDa) than the PE MW were used.
The particles with a defined pore size were first rinsed with DI water to remove all possible
residuals. As the silica particles show a negative zeta potential at pH 7, the particles were
first immersed in 0.1 g/L PDADMAC (MW = 40 kDa) in 0.1 M NaCl for ten minutes. After
three times of rinsing with DI water, the particles were then immersed in 0.1 g/L PSS-Rho
(MW = 70 kDa) in 0.1 M NaCl. The particles were rinsed again with DI water to remove
excess PE from the surface. Particles were then cut and analyzed with a confocal laser
scanning microscope (Leica, Wetzlar, Germany) at an extinction wavelength of 530 nm for
rhodamine.

3. Development of the Layering Model

During the LbL coating process, the PE adsorbs onto the membrane material. This
process can be compared to adsorptive fouling during membrane filtration. To describe
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the layering of PE during LbL coatings, the previously described equations for the standard
blocking model from Lee et al. (2008) (within the pores) and cake filtration from Davis (1992)
(above the porous structure) are adapted [31,32]. The behavior of the flux and the hydraulic
resistance could be evaluated by means of a layering pattern analogous to both fouling
models and by regarding the adsorption location. It is assumed that the pores are cylindrical
and the PE layer formed is constant in thickness. It is also assumed that no pores are
completely blocked and thus dead for filtration during LbL coating. This means that the PE
layer deposition either takes place within the porous structure, reducing the pore diameter,
or on top of the active layer, forming a uniform cake layer. Due to the combination of both
models, both processes can occur at the same time. We also assume an equal wetting of
the membrane surface with the PE solution and a uniform charge distribution. This means
that the layering occurs similarly throughout the whole membrane material; therefore,
the factor of the tangential location along the membrane can be neglected.

Additionally, a new introduced share factor, which is explained later, can visualize
where the PEM buildup takes place. It shows the transition from pore- to layer-dominated
buildup of the PE film, giving insight into the layering location.

The standard blocking model is dependent on the mass deposited on the membrane
and the pore blocking constant Ks. As Ks in Equation (3) is not changing throughout
time, the only factor influencing the decrease in pore diameter is the mass deposited.
As the reduction in pore radius is happening during the LbL coating procedure, the radius
of the pores decreases with the double layer number n.

rp,n

rp,0
=

(
1− Ksmdn

Am

) 1
2
=

1−
ˆ
Ksn
Am


1
2

(7)

ˆ
Ks: standard blocking constant per unit mass.

The resulting flux is calculated analogous to Equation (4) and the resulting hydraulic
resistance Rs,n is calculated according to Equation (1).

For the cake layer formation, the additional hydraulic resistance is mainly dependent
on the layer thickness δc. As the layer thickness per double layer of PE during formation
is assumed to be constant, the specific cake layer resistance after each double layer is
calculated according to Equation (5):

Rc,n = R̂cdc ln
(

dc

dc − δ′c · n

)
(8)

δc
′
: specific double layer thickness; R̂c

(
= ρd(1− εd)R′c

)
: specific cake resistance per

unit depth.
The total resistance (Rt) of the membrane including the cake layer formed on top of

the membrane is according to Equation (6), where Rs,n is assumed to be the resistance of
the membrane when the transformation from standard blocking to cake layer formation
takes place.

Rt = Rs,n + Rc,n (9)

As these equations each only focus on one of the deposition phenomena, we introduce
a new factor fs to combine both processes. The factor fs expresses the share of the standard
blocking model on the overall flow through the membrane. Therefore, it describes the shift
from the standard to the cake layer blocking model according to its value. The course of this
factor is therefore crucial for the determination of the layering location. When the value
is close to one, a pore-dominated layer buildup prevails as PE formation is analogous
to the standard blocking model. Values close to zero indicate a layer-dominated PEM



Membranes 2021, 11, 106 8 of 18

formation as the equation analogous to the cake layer buildup describes the resulting flux
behavior of the membrane. The share factor is calculated according to

fs =
1

1 + esb ·n−sa
(10)

sb: transition sharpness; sa: transition factor.
Therefore, the overall membrane resistance at a certain number of coated double

layers is calculated as
Rm,n = fs · Rs,n + (1− fs) · Rc,n (11)

The corresponding flux is calculated according to Equation (1).
Overall, with initial assumptions, and fitted values according to experimental data,

the model visualizes the predominant layering location, expressed by the share factor fs
(Figure 3).

Figure 3. Ingoing assumptions for the model, fitted values during modeling, and result of the model.

4. Results and Discussion

Results are assigned to the following designation: M/E_220/100–PSS/PDADMAC
(model/experimental results_MWCO of the virgin membrane–PE of the outermost layer).

The model fitting was performed so that a maximal correlation coefficient R2 was
reached regarding both data, the membrane resistance and membrane permeability. The cor-
relation coefficient for the membrane resistance is calculated as follows:

R2 =
Σ
(

RE − RE
)(

RM − RM
)√

Σ
(

RE − RE
)2Σ

(
RM − RM

)2
(12)

RE: experimental resistance data; RM: model resistance data; Ri: mean values
The normalized flux values are calculated analogously.
Additionally, a chi-squared value (X2, Equation (9)) is calculated due to the non-linear

form of the model. According to Usman et al. (2018), it indicates the bias between model
and experimental results. Therefore, in addition to R2, the X2 value was also minimized
for both the normalized flux and the membrane resistance [34].

X2 = Σ
(

RE − RM
RM

)2
(13)

4.1. Normalized Flux, Hydraulic Resistance, and Share Factor

First, the described model (M_220-PSS) is compared to experimental values of mem-
branes with a 220 kDa nominative MWCO coated with PE of low molecular weight
(PDADAMA < 100 kDa, PSS 80 kDa) and PSS as the outermost layer (E_220-PSS). The mem-
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brane properties are displayed in Table 1. Further required assumptions are listed in Table
2 together with the fitted model parameters. Flux data, membrane resistance, and the re-
spective model values are displayed in Figure 4a,b, respectively. The experimental data
show a good reproduction as displayed by the small error bars. Both experiments show
drastic flux decreases with each double layer in the early stages of the coating process,
indicating the successful deposition of PE on the membrane. After a certain number of
double layers, the gradient of the flux decline becomes less pronounced. The increase in
membrane resistance appears to be rather exponential for the early stages of the coating,
although initial values are comparably small. The increase in hydraulic resistance then
shifts to a rather linear course as the coating proceeds. With the right fitting parameters,
the model (line) is in good agreement with the experimental data (markers).

Table 2. Assumed and fitted parameters for the models describing the coating process of low-
molecular weight (MW) polyelectrolytes (PE) on higher-molecular weight cut-off (MWCO) mem-
branes and a determining layer of poly(sodium 4-styrenesulfonate) (PSS) (M_220-PSS), and the coat-
ing process of high-MW PE on lower-MWCO membranes and a determining layer of PSS (M_100-PSS)
and poly(diallyldimethyl-ammonium chloride) (PDADMAC) (M_100-PDADMAC).

Assumed Parameters Unit M_220-PSS M_100-PSS M_100-PDADMAC
Dynamic viscosity (η) kg

ms 1.002·103

Thickness per double layer (δn) nm 4.0
Mass deposited per layer (

.
md) kg 0.25

Fitted parameters
Standard blocking constant (Ks) m2

kg 7.9·104 4.0·104 2.5·104

Specific cake resistance (R̂c) 1019

m2 46.2 20.6 7.3
Transition coefficient a (sa) 10.5 4.0 4.0
Transition coefficient b (sb) 3.0 4.5 4.5

Resulting correlation coefficient and chi-squared value
Correlation coefficient

resistance (RJw
2) 0.999 00.994 0.992

Chi-squared value (X2
Jw

) 0.86 0.75 0.62
Correlation coefficient

resistance (R2
R) 0.995 0.994 0.991

Chi-squared value (X2
R) 1.33 0.25 0.37

The share factor fs is displayed in Figure 4c. For the experimental data, the standard
blocking model is the dominating model to describe the decrease in flux with each double
layer until the second, as fs is close to one. Therefore, it indicates that the PE mainly adsorb
within the membrane structure, indicating a pore-dominated layer buildup of the PE film
in the early stages of the coating.

The decrease in fs between the second and fifth double layers indicates the shift from
standard blocking to cake layer formation. From the fifth double layer onwards, as fs is
close to zero, the change in resistance and flux is best described by the cake formation,
which indicates that the PE form a dense layer on top of the membrane and therefore a layer-
dominated film buildup is present. This shift after a certain double layer number agrees
with expectations. The MW of PE is lower than the MWCO of the membrane. Therefore, it
is evident that PE would deposit within the porous structure as they are not large enough
to cover the pores completely. With this, the pore diameter is successively reduced, so that
at some point the pores are so small that PE accumulate on top. According to the model,
this would happen at a pore radius of 10–12 nm. This is according to the equation from
Crittenden et al. (2012) (dp = 0.11 · Mw0.46) [33] in the MW range of approximately
80–120 kDa. As this is the range of the used MW of the PE, the shift appears to be plausible.
To investigate if the model can be applied when relations of the MWCO and PE MW
are vice versa, membranes with an MWCO of approximately 100 kDa were coated with
PE with a higher MW (MWPSS = 1000 kDa; MWPDADMAC = 400–500 kDa). In addition,
these membranes were tested after each single layer to investigate the odd-even effect on
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permeability. Membrane properties are listed in Table 1. Further assumptions and resulting
fitted values are listed in Table 2.

Figure 4. (a) Permeability and (b) hydraulic resistance for the coating of a membrane with a nominative molecular weight
cut-off (MWCO) of 220 kDa coated with polyelectrolytes (PE) with high molecular weight (MW); (c) share factor fs of
the model indicating the share of the standard blocking model and therefore the share of pore-dominated layer buildup;
n = 2.

Permeabilities and the hydraulic resistance of the experimental values are displayed
in Figure 5a,b: half numbers stand for PDADMAC and whole numbers stand for PSS as it
is the outermost layer (E_100-PSS/PDADMAC). In these experiments, there is a sharp
decrease in flux during the first few coatings (Figure 5a). The decline in permeability is
even more drastic than observed in experiments with E_220-PSS (Figure 4a). The odd-
even effect is clearly visible as results show a zig-zag pattern for the development of
flux and hydraulic resistance vs. the number of layers. The flux with PDADMAC is
generally higher in the same range of double layers compared to PSS as the outermost layer.
The hydraulic resistance is accordingly lower with PDADMAC as the final layer. This is
in agreement with previous studies when the coating was assumed on top of the porous
structure [6,12].
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Figure 5. (a) Permeability and (b) hydraulic resistance for the coating of a membrane with a nominative MWCO of 220 kDa
coated with PE with high molecular weight; (c) share factor fs of the model indicating the share of the standard blocking
model and therefore the share of pore-dominating layer buildup; n = 2.

To be able to describe both situations, models were examined separately for the course
of PDADMAC (M_100-PDADMAC) and PSS (M_100-PSS) as the determining layer. With
the fitted values from Table 2, both models can describe the respective experimental data
(Figure 5). The odd-even effect is, in addition to flux and resistance values, also expressed
in the values of K̂s and R̂c. From Equations (7) and (8), it can be seen that the layer density
is the only parameter influencing both processes, deposition within and above the pores.
This leads to the assumption that films with PDADMAC as the outermost layer are less
dense (lower K̂s and R̂c), supporting the conclusions from previous studies [12,16].

Figure 5c shows the share factor fs for both cases, PSS (full line) and PDADMAC (dot-
ted line). The share factors for both models decrease sharply from the beginning, indicating
that a deposition of PE within the pores is, if at all, only happening in the early stages of
the coating. Already after two double layers, the cake formation model is dominating com-
pletely, which indicates that deposition of PE occurs overall on top of the porous substrate.
This is expected as the PE molecular weight is larger than the MWCO of the membrane.
The initial pattern of standard blocking could be due to an adsorption of parts of the PE
molecular chain within the porous structure.

Both graphs of the respective share factors overlap throughout the whole regarded
double layer range. This is expected as the same layer buildup is displayed and therefore
the same layering location must result.
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Overall, these results show that the model can display the shift from the standard
blocking to cake formation regardless of the outermost layer and therefore, enables the in-
sight into the layering location.

4.2. Plausibility of the Model

The applied models used as the foundation of the developed model were initially
derived by investigating the flux of pressure-driven experiments. As both models attribute
the flux and resistance behavior to the additional foulant substance accumulating within
the structure or on the surface of the membrane, the analogy between LbL PEM formation
and fouling deposition is given, even though the conducted LbL coating is a non-pressure-
driven process. One double layer therefore compares to one temporary moment during
the analogous fouling process of pressure-driven membrane filtration.

The assumed layer thickness of 4 nm per bilayer for the cake layer buildup is in agree-
ment with the literature [9,13,14], though there are contrary statements on the linearity of
the overall film thickness increase. Guzmán et al. (2009) observed that up to a concentration
of approximately 0.3 M NaCl, the multilayer growth appears to be linear in film thickness
with increasing layer number. Exceeding this background ionic strength leads to a shift to
a rather exponential growth [9,14]. Tang et al. (2016), on the contrary, observed a rather
parabolic growth, implying a growth regime between linear and exponential growth, al-
ready at 0.1 M NaCl [17]. Additionally, the first double layers (DL) also have an impact
on the growth pattern of PEM. However, at concentrations of 0.1 M NaCl, the influence of
the virgin membrane material is stated to be low [13]. Furthermore, PDADMAC as the first
layer was observed to lead to a linear growth of the PEM [35]. Overall, even if the layer
buildup with a background ionic strength of 0.1 M would follow a parabolic tendency,
the used assumption of a linear growth would be appropriate, as the increment of the layer
thickness increase with the number of double layers would be low up to 10 DL [17]. For
an exponential growth, for example, at high ionic strength, the model would have to be
adapted to the increment in the thickness per bilayer.

Next to the impact of the ionic strength of the PE solution, the chemistry and structure
of the membrane material play a role in the modification process, as membrane properties
might differ. The pore size distribution is one such critical parameter as the shift from
pore-dominated to layer-dominated film buildup might happen over several coating steps.
Properties such as charge density, zeta potential, hydrophilicity, or porosity might also
influence the layering process [5].

Another impact is the coating technique—dynamic vs. static coating influences
the layer buildup of the membrane. In this study, the membranes were statically coated
as there was no pressure applied to the PE coating solution. Dynamic coating might lead
to higher adsorption rates of PE in the pore, as other studies report high rejection rates
at lower layer numbers [15].

Therefore, in addition to changing the parameters of the coating solution, the model
would have to be adapted and fitted accordingly for different membrane materials and pro-
cess parameters, in order to determine the predominant layering location.

For the initial flux reduction in the standard blocking model, Ks is the dominating
parameter. Compared to literature data from Lee et al. (2008), our fitted Ks values are
in the same range. A direct comparison of these values is critical though, because Lee
et al. (2008) regarded the fouling process in a time-and flux-dependent process instead
of a layer- and adsorption-dependent process [31]. Values for R̂c are higher compared to
the literature of Davis (1992). This is, however, not surprising, as Davis was observing
cakes formed from micro-sized rigid spheres [32]. We can assume that the void volume
between these particles is much higher than for dense PEM, thus causing PEM to result
with higher specific hydraulic resistance.

So conclusively, the model, as it is now, provides a systematical method to gain insight
on the adsorption location during LbL modification of porous membranes. This knowledge
can further give a better understanding of the interaction between PE and membrane



Membranes 2021, 11, 106 13 of 18

surfaces. The insight could help, for example, when, on the one hand, the internal structure
shall be coated, while retaining a porous membrane, or, on the other hand, only having
a PEM on top of the porous structure as the only hydraulic resistance acting as the active
separation layer.

4.3. Rejection for MgSO4

Figure 6 shows the rejection values for MgSO4 with each full double layer. For both
virgin membranes, a rejection for MgSO4 of ca. 10% is visible. This could be attributed
to electrostatic and charge effects of negatively charged membrane surfaces and SO4

2−.
The MgSO4 rejection rates for membranes modified with a molecular weight smaller than
the membrane’s MWCO remain low with increasing layer number in the range until about
three double layers. From the fourth double layer onwards, there is a steep increase in
sulfate rejection from ca. 20 to about 60% after seven double layers. After this, the increase
in the rejection rate flattens out until the tenth DL.

Figure 6. (a) Rejection rates for MgSO4 with increasing double layer (DL) number and (b) MgSO4 rejection rates vs.
the permeability for the last four DLs for membranes coated with PE smaller than the membrane’s MWCO (Circles)
and with PE bigger than the membrane’s MWCO (Squares); n = 2.

When modifying the membrane with a PE molecular weight higher than the mem-
brane’s MWCO, a direct increase in rejection for MgSO4 can be observed, even with the first
DL. The rejection rate then increases nearly linearly until the fifth DL. An increasing re-
jection tendency with each DL until the eighth DL is observed, but this is less severe with
additional layers.

These results additionally indicate that the porous structure of the membrane remains
when membranes are coated with a lower molecular weight, as pores are not yet narrow
enough to reject divalent ions. In addition, rejection rates start to increase directly when
the PE molecular weight is higher than the MWCO, indicating a cake layer formation.
Correlating results from the share factor models and rejection rates, we can see that the re-
jection of divalent ions only starts to occur when the transition from pore-dominated to
layer-dominated layering happens. From this point onwards, the membrane could be
considered as a dense membrane, where ion transport is based on the solution diffusion
processes. With increasing layer thickness, as more double layers are applied, the rejection
increases. This is attributed to the diffusive resistance of the material on ion transport.
From this, we can further conclude that rejection for divalent ions only takes place when
there is an overlay of PE on top of the porous substrate of the membrane. At a certain
number of DLs, the rejection stabilizes, which cannot be seen in flux rates and hydraulic
resistance values. Both transport mechanisms through a uniform separation layer, hy-
draulic water flux and ion diffusion, mainly depend on the layer thickness of the film.
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When both parameters change proportionally with the layer thickness, a certain retention
adjusts. This stabilization of the rejection rate (Figure 6) happens at later coating stages
than the linearization of the hydraulic resistance (Figures 4b and 5b). A reason for this can
be that the flux rate directly influences concentration polarization and with it the permeate
quality and diffusion rate of ions. Structural inhomogeneity within the film, for example,
as a result of membrane pore size distribution, can be another factor. The zeta potential also
has an influence on the separation effect. Several studies on the PDADMAC/PSS system
have shown that with an increasing layer number, the zeta potential shifts and influences
the rejection behavior [12,15,36,37].

Overall, observed rejections are rather low compared to other studies for the PE system
PDADMAC/PSS [6–8,12,16]. Reasons for this are likely retention experiments between
each coating step. These filtrations in between the modification steps could lead to a more
open layer structure and with it a reduced rejection rate. When coated in one consistent
series, we could achieve comparable rejection rates (Figure S2, Supplementary Material).
An increase in sulfate rejection rates could be achieved adjusting the coating ionic strength,
coating under dynamic conditions, or post-modifying the resulting membrane using ion
solutions and re-exposure to PSS [12,15,16].

Figure 6b displays rejection rates for the last four DLs of the modified membrane
in relation to their permeability. Values show that although rejection rates are similar,
the permeability is lower when membranes are coated with a lower PE molecular weight
than the MWCO, even though the initial permeability of the virgin material is much
higher. This, again, indicates that the PE reduce the pore diameter initially before its
buildup on top of the substrate occurs. The support material just before cake buildup has
a higher hydraulic resistance, which again results in lower overall membrane permeability.
The ratio between the PE molecular weight and membrane MWCO is therefore another
critical parameter for the filtration characteristics of the modified membrane.

4.4. Fluorescence Measurement

As PES membranes show an auto-fluorescence in the regarded wavelength of PSS-Rho
(MW = 70 kDa), fluorescence measurements were conducted using porous silica particles
as a model system. The particles come with a defined pore diameter of 7 nm (equivalent
to approximately 8 kDa) and 30 nm (equivalent to approximately 200 kDa). These pore
sizes stand exemplary for membranes with either a lower MWCO or membranes with
a higher MWCO than the PE MW. After coating, the particles were cut, and cross-sections
of the particles were analyzed. Results of fluorescence measurements of different particles
with a pore diameter of 7 and 30 nm are displayed in Figure 7a–f, respectively.

Results show that, when coating porous particles with a small pore diameter, the re-
sulting intensity of the fluorescence signal and the visible thickness are low, indicating
that a low amount of the PE mass is adsorbed onto the available surface. The narrow peak
shapes signify a low penetration depth of the PE into the porous structure of the particles
and suggest a layering above or at least close to the particle surface.

Coating porous particles with a larger pore diameter results in a much higher signal
intensity, even above detection limits. This indicates that a high amount of PE is adsorbed
onto the virgin material. The broad signal intensity peak and the comparatively high
intensity even close to the center of these particles further show that PE penetrate deep
into the particle structure. As no convectional PE transport takes place during immersion,
diffusion is the major mechanism for PE penetration.

Although the wavelength of the confocal laser microscope is much larger than the es-
timated and expected film thickness, which means that the resolution of this method is too
low to give detailed information about the actual quantitative depth of penetration, results
can be seen as an indication of the layering location.

So overall, relating the results for both silica pore sizes to the membrane experiments,
they support the interpretation of results. When PE are smaller than the pore diameter, they
seem to penetrate into the particle structure, indicating a pore-dominated film buildup,
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while PE tend to accumulate on top or close to the particle surface when PE are bigger,
indicating a layer-dominated film buildup.

Figure 7. Confocal laser scanning microscope images of cross-sections of coated particles with a pore size smaller than
the PE MW (a,b) and bigger than the PE MW (d,e); (c,f) show the detected signal intensity against the distance through
the regarded particles.

5. Conclusions

We have introduced a model for the systematic determination of the layering location
of PEM on membrane surfaces. For this, fouling analogies to standard pore blocking
and cake layer formation models were used. To connect these individual models, we
introduced a share factor fs. This factor indicates the share of pore reduction on the overall
layer buildup of the PEM and can thus visualize the predominant PE layering location:
either within or above the membrane pores.

Porous membranes were coated with PDADMAC/PSS with a lower MW than the
MWCO of the membrane. The model fits experimental filtration data well. For the first
DL, the share factor fs close to one indicates a layering of the PE double layers within
the porous structure. Subsequently, after a few DLs, fs shows a sharp decrease close to
zero, indicating that the layer formation shifts to a uniform buildup of the PE multilayer
above the pores of the membrane.

Membranes were single layer-coated also with an MW larger than the membrane’s
MWCO. The two models could be fitted to both PE, cations and anions, as the outermost
layer (odd-even effect). Although fitted values differ for these two models, the course of fs
for both models is overlapping throughout the whole double layer range. This means that
the model can describe the shift from pore- to layer-dominated PE growth, independent
of the outermost PE layer. For both models, fs is instantly shifting from one to zero,
designating a direct shift from pore-dominated to layer-dominated PEM growth, indicating
that PE with a larger MW than the membrane’s MWCO directly form a PE multilayer
above the pores, instead of layering within.

Furthermore, the modified membranes were tested on rejection rates for MgSO4.
Results support the conclusions from the hydraulic model. If the PE molecular weight is
lower than the membrane’s MWCO, there is no initial increase in rejection as pores are
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still too large. When PE start to accumulate on top of the membrane surface, forming
an even layer, MgSO4 rejection increases. This increase in rejection is in agreement with
the decrease in fs and with the start of layer-dominated PEM growth. Therefore, these
results also support the idea that the model can visualize the layering location, expressed
by the share factor.

Additionally, at comparable rejection rates, the permeability is lower for modified
membranes with the PE MW lower than the membrane’s MWCO, even though the initial
permeability of the virgin material is much higher. Therefore, in addition to the results
supporting the model, the relationship between the PE MW and the membrane MWCO is
identified as another critical parameter for LbL modification of membranes.

Confocal laser scanning microscopy gave a visual indication of the PE layering loca-
tion on porous particles as a model system. These results once more support data from
the filtration experiments and visualization by the share factor. Layering occurs on top of
porous substrates when PE are bigger than the pore diameter. When PE are smaller than
the pores of the substrate, a deep penetration of PE into the particle structure takes place.

Overall, the introduced model gives the possibility to systematically describe and visu-
alize the shift from a pore-dominated to a layer-dominated film buildup. Therefore, it can
give insight into the layering location of PE on porous membranes. With this knowledge,
one can specifically modify membranes either to maintain a porous membrane surface
and coat the internal membrane structure or build up a dense layer film on top of the mem-
brane from the early stages on. Knowing the layer buildup location may also help to gain
further insight into the mechanical stability of PEM on membranes.

Supplementary Materials: The following are available online at https://www.mdpi.com/2077-037
5/11/2/106/s1, Figure S1: Scanning electron microscopy (SEM) pictures of the 100 kDa hollow fibre
membrane. (a) Crosssection and (b) surface of a dried uncoated membrane, and (c) Surface of a dried,
8 double layer coated membrane (taken from [1]). Figure S2: Rejection rate vs. permeability for
experimental data in this study (E-100-PSS, E-220-PSS) and other conducted experiments (Consistent
Coating Experiments, n = 5). Membranes of “Consistent Coating Experiments” were modified in one
consistent coating process without rejection experiments between each coating step. General coating
and filtration parameters were comparable.
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