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Background. Abnormal endothelial shear stress (ESS) is a significant risk factor for atherosclerosis (AS); however, the genes and
pathways between ESS and AS are poorly understood. Here, we screened hub genes and potential regulatory targets linked to the
progression of AS induced by abnormal ESS. Methods. The microarray data of ESS and AS were downloaded from the Gene
Expression Omnibus (GEO) database. The coexpression modules related to shear stress and AS were identified with weighted
gene coexpression network analysis (WGCNA). Coexpression genes in modules obtained from GSE28829 and GSE160611
were considered as SET1. The results were validated in validation set by differential gene analysis. The limma package in R was
used to identify differentially expressed genes (DEGs). The common DEGs of GSE100927 and GSE103672 were regarded as
SET2. Next, Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis was conducted. Protein-protein interaction (PPI) enrichment analysis was assembled, and hub genes were identified
using MCODE and ClueGO in Cytoscape. ROC curve analyses were conducted to assess the ability of common hub genes to
distinguish samples of atherosclerotic plaque from normal arterial. The expression of common hub gene was verified in ox-
LDL-induced foam cells and GSE41571. Results. We identified three gene modules (the blue, tan, and cyan modules) related to
AS and three shear stress-related modules (the brown, red, and pink modules). A total of 129 genes in SET1 and 476 genes in
SET2 were identified. CCRL2, LGALS9, and PLCB2 were identified as common hub genes and validated in the GSE100927,
GSE28829, and GSE41571. ROC analysis indicates the expression of CCRL2, LGALS9, and PLCB2 could effectively distinguish
the atherosclerotic plaque and normal arterial. The expression level of CCRL2, LGALS9, and PLCB2 increases with the
accumulation of lipid increased. Conclusion. We identified CCRL2, LGALS9, and PLCB2 as key genes associated with abnormal
ESS and AS and may provide potential prevention and treatment target of AS induced by abnormal ESS.

1. Introduction

Atherosclerosis (AS) and its complications are the leading
cause of death and disability in the world and China [1, 2].
AS is a long-term chronic inflammatory disease, character-
ized by subintimal lipid deposition, endothelial injury,
inflammatory cell infiltration, and atherosclerotic plaque
formation [3]. However, the current study cannot fully
explain the pathogenesis of AS, which needs further explora-
tion and research. The endothelial cells (ECs), a primary
layer of protection for vascular, is constantly exposed to a
variety of stimuli and insults from circulation [4]. The entire
vasculature is exposed to atherosclerotic risk factors, such as

hyperglycemia, inflammatory cell infiltration, and abnormal
blood flow shear stress, which promote the progress of AS by
inducing endothelial dysfunction, but atherosclerotic pla-
ques tend to form and progress in specific areas of arteries
where disordered flow leads to abnormal endothelial shear
stress (ESS) [5–7].

ESS is a kind of tangential stress generated by the friction
of flowing blood upon the endothelial surface of blood ves-
sels, which depends on blood viscosity and velocity gradient
at the wall and regulates many functions of endothelium [8].
There are two main blood flow patterns, oscillatory shear
(OS) observed at branch points and pulsatile shear (PS)
prevalent in straight segments of arteries. OS promotes the
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endothelial atherogenic phenotype, while PS is associated with
an atheroprotective endothelial phenotype [9]. It has long
been appreciated that OS induced by blood flow is known as
the risk factor with great contribution to the development of
AS [10]. By acting on ECs, abnormal blood flow causes OS
to activate ECs, resulting in the release of inflammatory fac-
tors, and then endothelial dysfunction, which is a significant
contribution in the subclinical stages of AS [11, 12].

Several studies have shown that OS could induce wide-
spread gene expression alterations in ECS that might be
involved in the progression of AS [8, 13–15]. Studies have
demonstrated that vulnerable atherosclerotic plaques prefer-
entially develop in regions with OS, and the fibrous cap was
thinner, and the prevalence rates of thin-cap fibroatheroma
(TCFA) were higher in the vascular segments with persis-
tently OS than in other segments [7, 16]. Although the close
link between OS and AS plaque formation has been recog-
nized, the intimate molecular mechanisms remain unclear.

Detection of gene expression by high-throughput
sequencing technology is a very powerful tool to reveal the
potential genes and biological mechanisms in the process
of atherosclerotic plaque formation, which provides a new
direction for the discovery of cardiovascular disease mecha-
nism [17]. In this study, bioinformatic technology was used
to analyze the relationship between pulsatile or oscillatory
ESS and AS, in order to determine the common molecular
mechanism of AS and ESS. This approach is particularly
useful for revealing the master regulatory or hub genes iden-
tified in the differential coexpression network since the hub
genes are expected to play a key role in regulating the
expression of dozens of other genes in the network. That
may provide potential targets for the prevention and treat-
ment of AS.

2. Materials and Methods

2.1. Microarray Datasets. The GEO database (https://www
.ncbi.nlm.nih.gov/geo), fully known as gene expression
omnibus, incorporates high-throughput gene expression
data proposed by global research institutions [18]. To
explore the effects of abnormal blood flow shear forces on
ECs, we screened in the GEO database according to the fol-
lowing conditions: first, the control group must contain a
control group and experimental groups, and the experimen-
tal group must contain different blood flow shear forces. Sec-
ond, cells used for used for experiments and sequencing
should be ECs. To analyze gene expression changes in ath-
erosclerotic plaques, the enrolled datasets had to contain
atherosclerotic plaque tissues and corresponding control
tissues; all samples must be derived from carotid artery tis-
sues. In addition, these datasets must provide the original
data for our reanalysis. In the present research, to investi-
gate the relationship between pulsatile or oscillatory ESS
and AS, we searched the GEO database and selected data-
sets GS160611, GSE103672, GSE28829, and GSE100927.
GSE160611 contains the gene expression dataset of human
aortic endothelial cells (HAECs) submitted to PS and OS
flows. PS and OS flows were applied to ECs with shear
stresses of 12 ± 4 dyn/cm2 and 0:5 ± 4 dyn/cm2, respec-

tively. For static condition (ST), samples were collected
at 0 hour under no flow [9]. Samples for RNA sequencing
analysis were collected at 1, 4, and 24 hours after exposure
to shear, with three biological replicates for each experi-
mental condition. In GSE103672, PS (12 ± 5 dyn/cm2) or
OS (0:5 ± 5 dyn/cm2) was applied to human umbilical vein
endothelial cells (HUVECs), and samples were collected at 1,
2, 3, 4, 6, 9, 12, 16, 20, and 24 hours after exposure to shear,
and two replicates were used for each condition/time point
[19]. GSE100927 contains the gene expression dataset of 29
atherosclerotic carotid arteries and 12 control arteries [20].
The GSE28829 dataset consists of 13 early and 16 advanced
human carotid atherosclerotic plaque samples [21]. In
GSE41571, genome-wide gene expression profiling was per-
formed on macrophage-rich regions of 6 stable and 5 rup-
tured human atheromatous plaques derived from carotid
endarterectomy samples. GSE41571 was used to validate
the differential expression of hub genes from ruptured and
stable atherosclerotic human plaques. Based on the work-
flow, we analyzed the five datasets and screened and verified
hub genes (Figure 1).

2.2. Coexpression Network Construction with WGCNA.
Weighted gene coexpression network analysis (WGCNA),
as an effective method for detection and exploration of deep
relationships between genes and diseases, allows the identifi-
cation of the gene coexpression modules and genes with
high connectivity within the modules by using a hierarchical
clustering approach [22]. Datasets were downloaded from
the NCBI-GEO public database, and the “WGCNA” package
in R studio software was employed to obtain modules asso-
ciated with both advanced plaque samples and early plaque
samples in GSE28829, and for GSE160611, WGCNA was
carried out to find modules highly correlated with PS and
OS. The first 10000 genes with large variation were involved
in further analysis. The “Hclust” function in R studio soft-
ware was used to perform clustering analysis for excluding
the outlier samples, and the “pickSoftThreshold” function
in the “WGCNA” package, according to the standard of
scale-free network, was used to calculate appropriate soft
power β for further matrix construction, using the soft
power value and the formula amn = jcmnjβ (amn is the adja-
cency matrix between gene m and gene n, cmn represents
Pearson’s correlation coefficient between gene m and gene
n, and β is the soft power value) to create the weighted adja-
cency matrix. Based on an adjacency matrix, the topological
overlap matrix and the corresponding dissimilarity were cre-
ated for detecting gene module. The dendrogram was further
divided into different gene expression modules, and the cor-
relation between different gene expression modules was cal-
culated. The genes in the modules closely related to clinical
characteristics were selected for subsequent analysis. After
selecting modules of interest, the plaque-associated module
and the shear force-associated module were intersected to
obtain the common genes.

2.3. Validation of Gene Expression through DEG Analysis.
Differential gene expression was performed with limma
package with jlog FCj > 0:5 and adjusted P value < 0.05
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[23]. From the GSE100927, we got the differentially
expressed genes (DEGs) between carotid plaque and carotid
control samples. For the GSE103672 dataset, the DEGs of
OS (0:5 ± 5dyn/cm2 12, 16, 20, and 24 hours) compared
with PS (12 ± 5dyn/cm2 12, 16, 20, and 24 hours) were iden-
tified. Both DEGs were introduced into the online tool
(https://www.xiantao.love/products) to obtain common
DEGs (co-DEGs) of GSE100927 and GSE103672.

2.4. Functional Enrichment Analysis. In order to reveal the
underlying biological functions of genes related to shear
stress and atherosclerotic plaque, common genes were
imported into the DAVID database (https://david.ncifcrf
.gov/) for Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses [24].
GO is an international standardized gene functional classifi-
cation system. GO terms were divided into three gene set
libraries: biological process (BP), cellular component (CC),
and molecular function (MF) [25, 26], and KEGG describes
the pathways enriched in gene sets [27].

2.5. Identification of Hub Genes. Both common gene lists were
loaded into the STRING database for protein-protein interac-
tion (PPI) enrichment analysis [28]. According to the PPI net-
work, the molecular complex detection (MCODE) algorithm
in Cytoscape software has been applied to identify the densely
connected subnetwork [29]. To explore potential roles of these
genes in shear stress and AS, the ClueGO plug-in in the Cytos-
cape software was used for functional enrichment analysis and

visualization of the cluster of interest. Clusters of two PPI net-
work were intersected to get common hub genes.

2.6. Receiver Operating Characteristic (ROC) Curve for
Diagnostic Effectiveness Evaluation of Common Hub Genes.
The expression profile of common hub genes was acquired
to visualize the expression profile of common hub genes in
datasets GSE160611, GSE100927, GSE28829, and GSE41571.
To evaluate the diagnostic effectiveness evaluation of common
hub genes, the samples were divided into plaque and control
groups. The pROC package and ggplot2 package were used
to draw ROC curve and calculate the area under the curve
(AUC) to evaluate the capability and sensitivity of common
hub genes to distinguish atherosclerotic samples from control
group [30, 31]. According to the previous studies, AUC = 0:5
indicates no evaluation efficacy, 0:7 ≤AUC < 0:8 indicates
acceptable evaluation efficacy, 0:8 ≤AUC < 0:9 represents
excellent evaluation efficacy, and AUC ≥ 0:9means outstand-
ing evaluation efficacy [32].

2.7. Validate the Expression of Common Hub Genes in Foam
Cells. The human monocytic cell line (THP-1), purchased
from American Type Culture Collection (ATCC), was
grown in complete RPMI-1640 (supplemented with 10%
fetal bovine serum, 1%penicillin/streptomycin, and 2mM
GlutaMAX). The cells were cultured at 37°C in 5% CO2
and subcultured at 80–90% confluence. THP-1 cells were
differentiated into macrophages with a dose of PMA
(Merck) at 100ng/ml for 72 hours. To induce foam cell
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formation, the macrophages were incubated with 25 or
50μg/ml ox-LDL for 24 hours. Foam cells were assessed by
Oil Red O Staining kit (Beyotime, C0158S, China).

2.8. Real-Time Quantitative PCR Assay. RNA was extracted
from foam cells using the RNeasy kit (Qiagen, 74104, Ger-
many) according to manufacturer’s instructions. Total
RNA (500ng) from foam cells was reverse-transcribed into
cDNA using PrimeScript RT Master Mix (TaKaRa,
RR036A, China). The real-time quantitative PCR reaction
was performed on the QuantStudio™ 5 system (Thermo
Fisher Scientific, USA) using qPCR SYBR Green Master
Mix (Vazyme, Q141-02, China). PCR was performed by
the following conditions: hold stage: 95°C for 30 s, PCR
stage: 40 cycles at 95°C for 5 s and 60°C for 30 s, and melt
curve stage: 95°C for 15 s and 60°C for 60 s. The Ct values
were normalized using the housekeeping gene GAPDH,
and the mRNA expression levels were calculated as the 2-
ΔΔCt value. Primers used for real-time quantitative PCR were
included in Supplementary Table 5.

3. Results

3.1. GEO Dataset Information. We selected four GEO data-
sets for analysis; datasets GSE100927 and GSE28829 contain
the sequencing results of atherosclerotic plaque samples;
GSE160611 and GSE103672 contain flow shear force-
induced sequencing data for endothelial cell samples. For
WGCNA analysis, we selected GSE28829 and GSE160611
as discovery set. GSE100927 and GSE103672 were paired
as validation sets for DEG analysis (Table 1). A schematic
diagram of our workflow is shown in Figure 1.

3.2. The Coexpression Modules Related to Atherosclerotic
Plaque and Shear Stress in Discovery Set. We performed a
WGCNA of discovery set and identified a series of gene
modules associated with atherosclerotic plaque and shear
stress. For GSE28829, WGCNA identified modules that were
highly correlated with atherosclerotic plaque by plotting a
heatmap of module-trait relationships, with each color rep-
resenting a specific module (Figures 2(a) and 2(c)). Among
the 18 modules identified, three modules “blue,” “cyan,”
and “tan” exhibited significant positive correlations with
atherosclerotic plaques (blue module: r = 0:80, p = 2e − 07;
cyan module: r = 0:71, p = 2e − 05; and tan module: r =
0:65, p = 2e − 04) and were selected for further analysis
(Figures 2(a) and 2(c)).

There were 1184, 77, 119 genes in the blue, cyan, and tan
modules, respectively (Figure 2(e)). Similarly, WGCNA
identified 10 modules of coexpressed genes in GSE160611

(Figures 2(b) and 2(d)). Of the 10 modules of highly cor-
related genes identified in this analysis, red modules
(r = 0:65, p = 2e − 04) were positively correlated with OS
(exposure to OS shear for 24 h). With the increase of stimu-
lation time, the positive correlation between pink module
(exposure to OS shear for 24 h: r = 0:64, p = 0:002) and OS
stimulation gradually increased. The brown module
(r = 0:92, p = 4e − 09) was positive correlated with PS (expo-
sure to PS shear for 24h). There were 410, 282, 861 genes in
the red, pink, and brown modules, respectively (Figure 2(e)).
Figure 2(e) shows the number of genes in the individual
modules and their intersection by pairwise. The 129 over-
lapped genes of modules obtained from GSE28829 and
GSE160611 were identified as SET1 (Figures 2(e) and 2(f)
and Supplementary Table 1).

3.3. Differentially Expressed Genes Associated with
Atherosclerotic Plaque and OS in Validation Set. In the pres-
ent research, we searched the GEO database and selected
datasets GSE100927 and GSE103672 to identify DEGs.
GSE100927 contained samples of atherosclerotic lesions
and control arteries without atherosclerotic lesions. 1955
DEGs were identified from carotid atherosclerotic plaque
samples based on the gene expression of control group,
which were considered as AS-related genes (Figures 3(a)
and 3(c)). We identified 3680 DEGs in OS (0:5 ± 5dyn/
cm2) compared with physiological ESS (12 ± 5 dyn/cm2)
from GSE103672, and these DEGs were regarded as OS-
related genes (Figures 3(b) and 3(c)). A total 476 intersection
genes were selected as SET2 from both AS-related genes and
OS-related genes (Figure 3(c) and Supplementary Table 1).

3.4. Functional Enrichment and Pathway Analysis. GO and
KEGG pathway analyses were performed by importing
SET1 and SET2 obtained from discovery set and validation
set to the DAVID online database. GO-BP, GO-CC, and
GO-MF pathways with top 10 and top 20 gene counts of this
module were selected to be shown in Figure 4 and Supplemen-
tary Table 2-3, respectively. Notably, functional enrichment
analysis showed a highly significant similarity between the
pathways enriched in the two gene sets (SET1 and SET2).
For GO-BP, five items of “cell adhesion,” “intracellular signal
transduction,” “inflammatory response,” “angiogenesis,”
and “cytokine-mediated signaling pathway” are significantly
enriched in both SET1 and SET2 (Figures 4(a) and 4(b)).
Similarly, GO-CC analysis (Figures 4(c) and 4(d)) shows
that a variety of terms are enriched exclusively in both
SET1 and SET2 (“plasma membrane,” “cytosol,” “integral
component of membrane,” “cytoplasm extracellular
exosome,” “membrane,” and “integral component of

Table 1: GEO dataset information.

GEO ID Platform Samples Group

GSE28829 GPL570 Atherosclerotic plaque (16 advanced and 13 early) Discovery set

GSE160611 GPL20301 HAECs (pulsatile shear and oscillatory shear) Discovery set

GSE100927 GPL17077 Carotid artery (29 plaque and 11 control) Validation set

GSE103672 GPL11154 HUVECs (pulsatile shear and oscillatory shear) Validation set
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plasma membrane”). SET1 and SET2 share “Protein
binding” pathways in GO-CC module (Figures 4(e) and 4(f
)). KEGG enrichment analysis also revealed genotype-
specific enriched KEGG terms (Figures 5(a) and 5(b)).
While the SET1 and SET2 were both enriched in “Calcium
signaling pathway” terms, each gene set contained also a
variety of specifically enriched KEGG terms.

3.5. Construction of Protein-Protein Interaction (PPI)
Network and Identification of Hub Genes. After pathway
enrichment analysis, PPI network was constructed, and
hub genes were screened using Cytoscape software. In order
to constructed PPI network, we introduced SET1 and SET2

into STRING databases, respectively, for PPI analysis. Both
string interaction networks were imported to Cytoscape
software, and the MCODE algorithm was applied to identify
densely connected network components.

For SET1, we got 22 hub genes in two densely connected
gene cluster 1 and cluster 2 (Figures 6(a) and 6(b) and Sup-
plementary Table 4), and 27 hub genes in cluster 3 were
obtained from SET2 (Figure 6(c) and Supplementary
Table 4). Significantly, CCRL2 (C-C motif chemokine
receptor-like 2), LGALS9 (also known as galectin-9), and
PLCB2 (phospholipase C beta 2) were identified as
common hub genes, indicating their key roles in shear
stress and atherosclerotic plaque (Figure 6(d)).
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We then explored the potential role of these genes in
three clusters. ClueGO, a plug-in of Cytoscape that can be
used to classify and visualize nonredundant GO terms as
networks with functional groupings, was used here for bio-
logical analysis of these genes. Genes in cluster 1 and cluster
2 were combined for analysis, and they mainly focused on
pathways related to “regulation of blood vessel endothelial
cell migration” and “cell migration involved in sprouting
angiogenesis” (Figure 7(a)). Cluster 3 was mainly related to
“positive regulation of mononuclear cell migration” and “T

cell migration” (Figure 7(a)). As a whole, these genes in three
clusters are predominately involved in cell migration.

3.6. Validation of Common Hub Gene Expression in Dataset.
To confirm and validate the expression of the three common
hub genes in HAECs under different shear stress and athero-
sclerotic plaque, the expression of the three common hub
genes was then validated using GSE160611, GSE100927,
GSE28829, and GSE41571. For all three common hub genes,
PS and OS conditions resulted in significant changes in gene
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Figure 6: The PPI network and clusters analysis of SET1 and SET2. (a) The cluster was identified by Cytoscape MCODE algorithm from
STT1. The dots represent the hub genes identified by the MCODE algorithm. (b) Another cluster identified from STT1. (c) The cluster
identified from STT2. (d) The shared genes between the clusters.
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expression at 3 time points (1, 4, and 24 hours). After 24
hours of physiologic shear stress, the expression levels of
CCRL2 and LGALS9 were significantly increased, while
PLCB2 shows no significant change (Figures 8(a) and
8(b)). A 24-hour OS force significantly reduced expression
of CCRL2 and PLCB2 in ECs (Figures 8(a) and 8(c)).

After the application of pulsatile or physiologic shear
stress for 24 hours, the expression levels of all three genes
showed significant statistical differences (Figures 8(a)–
8(c)). The three common hub genes increased in the athero-
sclerotic plaque compared with control tissue in GSE100927
(Figure 8(d)). Further mRNA analysis in GSE28829 showed
that these genes were also increased in advanced plaques
compared to early plaques (Figure 8(e)). In ruptured pla-
ques, the expression of the three common hub genes, includ-

ing CCRL2, LGALS9, and PLCB2, significantly increased
compared to stable human plaques, suggesting their correla-
tion with plaque progression (Figure 8(f)).

3.7. ROC Curve Analyses of the Common Hub Genes in
Atherosclerotic Disease. ROC curve analyses were conducted
to assess the ability of common hub genes to distinguish
samples of atherosclerotic plaque from normal arterial.
Their ROC curves indicated that the expression of CCRL2
(AUC = 1), LGALS9 (AUC = 0:974), and PLCB2 (AUC = 1)
could effectively distinguish the atherosclerotic plaque and
normal arterial (Figure 8(g)). Moreover, we confirmed the
powerful discrimination ability of these three mRNA in
GSE28829 with an AUC of 0.957 in CCRL2, AUC of 0.952
in LGALS9, and AUC of 0.964 in PLCB2 (Figure 8(h)). They
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Figure 7: ClueGO enrichment analysis of three clusters. (a) The interaction network of GO terms of cluster 1 and cluster 2 generated by the
Cytoscape plug-in ClueGO. The significant term of each group is highlighted. (b) The interaction network of GO terms of cluster 3.
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also demonstrated strong discriminatory power for
advanced and early atherosclerotic plaques. We further eval-
uated the diagnostic efficacies of each independent parame-
ter to discriminate the rupture plaque and stable plaque in
GSE41571 (Figure 8(i)).

3.8. Increased Expression of Common Hub Genes in
Macrophage-Derived Foam Cells. The results showed that ox-
LDL promotes the formation of foam cells frommacrophages;
Oil Red O staining and quantitative analysis showed the accu-
mulation of lipid in red (Figures 9(a)–9(d)). The RT-qPCR
results showed that the mRNA expressions of CCRL2,
LGALS9, and PLCB2 were significantly increased, following
ox-LDL stimulation in macrophages (Figure 9(e)). Moreover,
the results revealed that as the accumulation of lipid increased,
the expression level of common hub genes increases
(Figures 9(d) and 9(e)).

4. Discussion

It is known that vascular ECs first sense variations of the OS,
a known activator of ECs that promote the formation and
development of atherosclerotic plaque mainly in bifurcated
vessels such as carotid arteries [33–35]. In fact, vascular
injury and endothelial dysfunction induced by OS are often
regarded as a hallmark for AS initiation. Continuous low-
grade injury to ESs, induced by disturbed flow at arterial
branch points and curvatures, could lead to apoptosis and

inflammation, causing endothelial cell dysfunction which
was considered critical initiating step in the pathogenesis
of AS. Therefore, further studies are necessary to fully
understand the potential mechanisms. In the present study,
we focused on alterations in EC gene expression that result
from OS, which are capable of inducing atherosclerotic pla-
que progression.

Earlier studies showed that excessively low blood flow
shear is able to induce the change of the gene expression pat-
tern of ECs, leading to the progression of atherosclerotic
lesions [6, 14]. Studies have reported that shear stress may
regulate the growth characteristics of vascular smooth mus-
cle cells by altering the EC and inflammatory regulation and
then contribute the formation of atherosclerotic lesions [13,
15]. Based on the above researches, we further studied the
specific molecular mechanism of atherosclerotic plaque pro-
gression induced by OS using bioinformatics technology. In
this study, we analyzed the changes of gene expression pro-
files of ECs exposed to PS and OS (GSE160611 and
GSE103672). Using bioinformatics techniques, we identified
three AS-related modules and three shear stress-related
modules from GSE28829 and GSE160611 in discovery set
and identified 129 significant genes (SET1) from six mod-
ules. Differential gene analysis of the validation set yielded
1955 atherosclerosis-related DEGs and 3680 shear stress-
related DEGs, from which 476 key genes (SET2) were iden-
tified. To search for preventive and therapeutic targets for
AS induced by OS, three co-hub genes were screened out:
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Figure 8: (a–c) The expression levels of CCRL2, LGALS9, and PLCB2 in the GSE160611. (d) The expression levels of three common hub
genes between the plaque and control tissue in GSE100927. (e) The expression levels of common hub genes between the advanced
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Figure 9: (a–c) Representative Oil Red O staining of macrophage. (d) Quantitative measurement of Oil Red O staining using ImageJ. (e)
The expression levels of common hub genes in ox-LDL-induced macrophage.
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CCRL2, LGALS9, and PLCB2. In addition, the expression of
these genes in advanced atherosclerotic plaques was also
studied. Compared with their expression levels in control
tissues, the expression of three genes was significantly
increased in atherosclerotic plaques. ROC analysis demon-
strates that the differential expression of these three genes
had reliable value in differentiating plaques and even identi-
fying advanced stages. The three promising mRNAs, pro-
posed by this study, could provide some clues to reveal the
potential molecular mechanism of OS and AS. These data
will also help to predict the clinical deterioration of patients
with advanced and ruptured AS plaque and may also pro-
vide potential targets for treatment.

Through functional enrichment analysis of SET1 and
SET2, we found that, regardless of which genetic screening
modality (DEG or WGCNA) was employed, GO analysis
showed significant enrichment of “cell adhesion,” “intracellu-
lar signal transduction,” “inflammatory response,” “angiogen-
esis,” and “cytokine-mediated signaling pathway.” The broad
similarity of the functional categories of genes of SET1 and
SET1 underscored the vital role of these signaling pathways
in OS stress-induced atherosclerotic plaque progression.

To further identify hub genes and key signaling path-
ways, MCODE plug-in of Cytoscape was conducted to iden-
tify the densely connected clusters from PPI networks of
SET1 and SET2. We then evaluated biological pathways
enriched in respective cluster using ClueGO. Genes in clus-
ter 1 and cluster 2 were mainly involved in cell migration,
especially vascular ECs. Endothelial cell damage caused by
OS is the first step in the formation of atherosclerotic lesions
[36]. Endothelial cell proliferation and migration are of great
importance in the pathological process of early atherosclero-
tic plaque formation. Migration of leukocytes and mono-
cytes into the endothelial cell layer is an important event
in the pathogenesis of AS [37]. Earlier studies showed that
strong shear stress resulting from fluid flow under normal
conditions would impede leukocyte adhesion and subse-
quent migration; it is well documented that localized OS
stress would facilitate this process and promotes atheroscle-
rotic plaque development, although these arterial shear sizes
would still be larger than venous wall shear sizes [38, 39].
The gene in cluster 3 is mainly focus mononuclear cell and
T cell migration. Despite the macrophages are the key cells
in AS, T cell subpopulations are thought to be important
in triggering atherosclerotic inflammatory processes [40,
41]. Additionally, T cell-mediated immune function imbal-
ance plays an important role in the pathological process of
AS [42]. T helper (Th) 1 profile is the most abundant path-
ogenic T cells in AS which plays a proatherogenic role by
activating monocytes/macrophages and dendritic cells
(DCs) through secretion of proinflammatory cytokines
[43]. The role of Th2 in AS is still controversial and relates
to the site and stage of the atherosclerotic plaque [44]. Our
findings provide a further demonstration of the regulation
of the OS on cell migration (endothelial cell, mononuclear
cell, and T cell) and the consequences for the formation
and progression of early atherosclerotic plaques.

The three co-hub genes (CCRL2, LGALS9, and PLCB2)
identified from the clusters are likely to be key genes

involved in these regulatory processes and novel therapeutic
targets to prevent or treat AS. Interestingly, when OS or PS
force was applied for 24 hours, the common hub genes in
OS shear force-induced ECs were expressed at much lower
levels than those in PS-induced ECs, and this difference
was statistically significant. On the other hand, we detected
that the expression of three common hub genes appears to
correlate with the progression of atherosclerotic plaques,
and its expression increased with disease progression.

CCRL2, originally cloned from LPS-activated macro-
phages, is a 7-transmembrane domain nonsignaling atypical
receptor with functional similarity to the atypical chemokine
receptor family [45, 46]. Studies have shown that CCRL2,
which is widely expressed by endothelial and epithelial cells
and by a variety of leukocytes, including macrophages, den-
dritic cells, and neutrophils, regulates immune responses
under several inflammatory conditions [45, 47]. Previous
studies have shown that CCRL2 sequesters secreted che-
merin, promptly concentrate it, and conjugate with
ChemR23-expressing dendritic cells (DCs) and promote
the transmigration of DCs across the endothelial cell mono-
layer [46, 47]. CCRL2, as a receptor of chemerin, binding to
chemerin activates the nuclear factor kappa B (NF-κB) and
Janus kinase (JAK)/STAT pathways in ECs and increases
VCAM-1 expression, promoting lymphocyte-EC adhesion
[48]. In this study, the hub gene enrichment analysis results
indicated that “regulation of blood vessel endothelial cell
migration” and “regulation of lymphocyte migration” signal-
ing pathways were significantly enriched in hub genes. Com-
bining the results of the enrichment analysis with earlier
published CCRL2 studies, we surmise that CCRL2 regulates
monocyte adhesion to ECs, a key step in the initiation and
progression of abnormal ESS-induced AS.

LGALS9 (galectin-9) was firstly characterized as a che-
moattractant for eosinophils. Recent lines of evidence have
implicated that LGALS9 is a multifaceted immune regulator
in multiple cell types [49]. LGALS9, as a ligand of T cell
immunoglobulin mucin 3 (Tim-3), can regulate the function
of a variety of AS-associated immune cells, including effector
T cells and macrophages, especially regulatory T cells [49].
By enhancing Foxp3 expression, LGALS9 promoted the dif-
ferentiation of naïve T cells into regulatory T (Treg) cells,
which was also supported by the study that the number of
Tregs was decreased in Gal-9 knockout mice [50, 51].
Expression of Gal-9 by LGALS9 on the cell surface may
enhance the suppressive activity of these cells on Th1 and
Th17 cells, exerting a proatherogenic effect [52]. Recent
studies have shown that LGALS9 signaling regulates autoim-
munity through Tim-3, accompanied by promoting macro-
phage phenotypic transition to anti-inflammatory type,
increasing the number of Tregs, and decreasing in numbers
of effector T cells [53, 54]. Tim-3 exhibited an antiathero-
sclerotic effect through various mechanisms, including NF-
κB inhibition and reduction of vascular smooth muscle cell
proliferation and migration [55].

Previous studies indicated that LGALS9 has an impor-
tant role in AS. Our study shows that LGALS9 is closely
associated with cell migration which agrees with recent stud-
ies by O’Brien et al., who pointed out that LGALS9 induces
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monocyte migration and significantly increases inflamma-
tion [56]. The results of enrichment analysis of three densely
connected clusters suggested that cell migration may be an
important mechanism of ESS-induced AS. As a hub gene
screened from densely connected clusters, the increased
expression of LGALS9 may play an important role in ESS-
induced AS by regulating the migration of cells.

PLCB2 is a protein coding gene, and its downstream pro-
tein phospholipase C (PLC)-β2 plays a major role in platelet
activation [57]. PLC-β2 catalyzes the hydrolysis of phos-
phatidylinositol 4,5-bisphosphate to the second messenger
inositol 1,4,5-trisphosphate (IP3) and diacylglycerol and a
critical regulator role in platelet responses to activation of
Gαq-coupled receptors by thromboxane A2, thrombin, and
ADP [58]. NF-κB has a regulatory effect on the transcription
of this gene, and its protein product plays an important role
in platelet responses. Similar finding was confirmed by Mao
et al.: knockdown of NF-κB p65 subunit by siRNA decreased
PLCB2 expression, and PLCB2 expression was increased by
p65 overexpression [58]. NF-κB appears to play a central
role in the proinflammatory activation in atherogenesis,
and the role of platelet activation in AS has been highlighted
since increased platelet production accelerates atherogenesis
[59, 60]. However, to the best of our knowledge, no PLCB2
studies on AS have been reported so far at all. Our data pre-
liminarily show that PLCB2 plays an essential role in AS and
abnormal ESS, and further studies are needed to elucidate its
mechanism of action.

We think that a series of genome-wide, unbiased screens
for identifying hub genes would be of considerable value for
revealing mechanisms and potential therapeutic targets. Our
present findings have demonstrated that CCRL2, LGALS9,
and PLCB2 play vital roles in abnormal ESS and AS. These
genes may warrant as valuable targets for prevention and
treatment of AS induced by abnormal ESS.

This study has some limitations. First, due to the small
sample size of datasets, larger studies are required to confirm
our findings. Second, different sample sources and detection
microarray platforms may contribute to some of the differ-
ences in gene expression. In addition, GSE160611 and
GSE103672 contain only sequencing results from in vitro
cultured ECs, and no clinical specimens were obtained for
further validation. In the future, to verify our hypothesis,
more research that includes larger samples, randomized trial
designs, further mechanistic studies, and even more clinical
trials is needed.

5. Conclusions

This preliminary study provides evidence linking altered ESS
to AS and atherosclerotic plaques. Specifically, we identified
CCRL2, LGALS9, and PLCB2 as key genes associated with
abnormal ESS and AS and initially explored the roles of
these genes in endothelial dysfunction and AS, thus high-
lighting the possibility of new preventive and therapeutic
strategies for AS by targeting these genes. These genes were
correlated with cell migration, thereby promoting plaque
progression, and it may even contribute to plaque rupture
as it facilitates the recruitment of immune cells. Whereas

the role played by PLCB2 in AS is not clear, we speculate that
its expression may affect AS by regulating platelet activation.

Hemodynamic shear stress is essential for endothelial
homeostasis under physiological or pathological conditions.
The impact of abnormal shear stress on the ECs and its fur-
ther impact on AS are a very complex multifactorial process,
and our study preliminarily speculates on the mechanism
and key genes involved through the analysis of sequencing
data. However, the specific signaling pathways and mecha-
nisms involved require further studies to demonstrate.
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