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Abstract

Background: Calcium/calmodulin-dependent protein kinase IV (CaMKIV) controls activity-
dependent gene transcription by regulating the activity of the cyclic AMP response element binding
protein (CREB). This signaling pathway is involved in gating emotional responses in the CNS but
previous studies did not address the potential roles of CaMKIV in discrete brain regions. In the
present study, we aimed at specifically dissecting the role of CaMKIV in the nucleus accumbens of
adult mice.

Results: We used recombinant adeno-associated virus (rAAV)-mediated gene transfer of a
dominant-negative CaMKIV variant (rAAV-dnCaMKIV) to inhibit endogenous CaMKIV in the
nucleus accumbens. rAAV-dnCaMKIV treated animals were subjected to a battery of tests
including, prepulse inhibition of the acoustic startle response, open field, social interaction and
anxiety-related behaviour. We found that basal locomotor activity in the open field, and prepulse
inhibition or startle performance were unaltered in mice infected with rAAV-dnCaMKIV in the
nucleus accumbens. However, anxiogenic effects were revealed in social interaction testing and the
light/dark emergence test.

Conclusion: Our findings suggest a modulatory role of CaMKIV in the nucleus accumbens in
anxiety-like behaviour but not sensorimotor gating.

Background

Long-lasting neuroadaptations in mesolimbic structures,
particularly in the nucleus accumbens (NAc), influence
behavioural responses to emotional stimuli. This experi-
ence-based behaviour occurs as a result of activity-
dependent synaptic plasticity. At the molecular level, elec-

trical activation of neurons leads to opening of ligand
and/or voltage-gated calcium channels and generates
intracellular calcium transients [1]. Calcium signals can
propagate to the cell soma, invade the cell nucleus, and
lead to the activation of the nuclear calcium/calmodulin-
dependent kinase IV (CaMKIV) [2,3]. CaMKIV activates

Page 1 of 9

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18053176
http://www.biomedcentral.com/1471-2202/8/105
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Neuroscience 2007, 8:105

several transcription factors such as ATF-1, MEF2D and
NF-kappaB [4-6], and is a key regulator of neuronal gene
expression that stimulates transcription through the phos-
phorylation of the cAMP response element binding pro-
tein (CREB) and activation of the CREB co-activator,
CREB binding protein (CBP) [2,3,7].

The activation of CREB after exposure to emotional stim-
uli has been shown to alter gating between these environ-
mental stimuli and their behavioural responses [8].
Disruption of CREB function within the NAc increases
anxiety-related behaviour while CREB overexpression
reduces anxiogenic responses under certain conditions
[9,10]. In line with these findings, NAc-specific expression
of the inducible cAMP early repressor (ICER), a natural
inhibitor of CREB-mediated transcription, has been
shown to increase measures of anxiety in the elevated plus
maze and neophobia to novel tastes [11]. Two independ-
ent CaMKIV-deficient mouse lines were generated that
showed overlapping phenotypes. Means and coworkers
demonstrated that the targeted disruption of the CaMKIV
gene results in impaired cerebellar LTD and motor control
[12] while the other knockout strain [13] had mild cere-
bellar abnormalities and deficits in long-term potentia-
tion (LTP). The latter mutants also exhibited decreased
fear memory [14] and reduced anxiety-like behaviour in
the elevated plus maze and dark-light emergence test [15].
Functional redundancy and/or effects during develop-
ment are inherent problems that can complicate the inter-
pretation of results obtained in knockout mice and may
mask the roles of CaMKIV in defined brain regions. To
study the role of CaMKIV in cognitive processes, Kang and
colleagues generated transgenic mice expressing a domi-
nant-negative (dn) form of CaMKIV in the postnatal fore-
brain [16]. These mice showed normal locomotor and
emotional behaviour. Although this study revealed
insight into the role of CaMKIV in the context of complex
behaviour, it did not allow the characterization of CaM-
KIV function specifically in the NAc of adult animals. To
investigate this, we used a recombinant adeno-associated
virus (rAAV) gene transfer system to interfere with CaM-
KIV function specifically in the NAc. CaMKIV activity was
suppressed by rAAV-mediated expression of a kinase-dead
mutant of CaMKIV [17]. The results obtained indicate that
NAc-specific suppression of CaMKIV activity increased
anxiety-related behaviour whereas sensorimotor gating
was unaffected.

Results

rAAV-mediated gene transfer

We generated a rAAV vector expressing Flag-tagged domi-
nant-negative CaMKIV under the control of the cytomeg-
alovirus enhancer/chicken beta actin (CBA) promoter
(Fig. 1A). As control vectors, we packaged the rAAV-plas-
mid without any coding sequence (rAAV-empty), or with
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the humanized renilla green fluorescent protein open
reading frame (rAAV-hrGFP). We have previously shown
that the dnCaMKIV mutant inhibts CRE-mediated tran-
scription in AtT20 cells [18]. In the present study, we first
assessed the efficacy of gene transfer and expression of
rAAV-dnCaMKIV in primary hippocampal neurons by
immunoblot analysis and confirmed the functionality of
the dnCaMKIV vector. Figure 1B illustrates that rAAV-
dnCaMKIV but not rAAV-hrGFP dramatically reduced
expression of the CREB-target gene c-fos after induction of
action potential (AP) bursting. The transgenes were read-
ily detected using specific antibodies indicating a high
transduction efficiency as described previously [19].

Next, the vectors were injected bilaterally into the NAc of
adult mice. rAAV-mediated gene expression requires at
least three weeks to peak in the rodent brain and then per-
sists at stable levels without overt inflammation or immu-
nogenicity [20]. Three weeks after surgery, the
transduction efficiency was assessed by Flag-immunohis-
tochemistry. In line with the known neurotropism of chi-
meric TAAV1/2 vectors [21], robust transgene expression
was found in NAc neurons in all rAAV-dnCaMKIV-treated
animals (Fig. 1C). As expected [22], Flag immunoreactiv-
ity localized to the cytosol of transduced cells (Fig. 1D).
Similar to our previous studies using rAAV1/2 as gene
delivery system in the NAc [23-25], the transduction cov-
ered most of the NAc core and shell subregions and was
restricted approximately 1 mm around the injection site
in the NAc (Fig. 1E). Next, the response of dnCaMKIV
expressing animals on emotional stimuli was investigated
in a battery of behavioural tests.

Locomotor activity

The locomotor activity of all animals was assessed in an
open field. Suppression of CaMKIV activity did not affect
basal locomotor activity. Animals expressing dnCaMKIV
did not differ significantly from control-infused rAAV-
empty mice (emtpy) in activity time [s] (Values + S.E.M.:
dnCaMKIV: 933.9 + 18.1; EMPTY: 973.2 + 20.8; Student's
t-test, p > 0.05), distance travelled [cm] (Values + S.EM.:
dnCaMKIV: 6018.1 + 259.6; EMPTY: 6654.5 + 275.4; Stu-
dent's t-test, p > 0.05) and rearing (Values + S.E.M.:
dnCaMKIV: 237.9 + 21.7; EMPTY: 262.1 + 26.4; Student's
t-test, p > 0.05).

Light/dark emergence test

To investigate anxiety-related behaviour, a classical anxi-
ety paradigm, the light/dark emergence test, was chosen.
Expression of dnCaMKIV in the NAc significantly
increased anxiety-related behaviours in the light/dark
emergence test. Frequency of emergence into the lit com-
partment, time spent there (duration) [s] and rearing were
decreased compared to controls (Fig. 2) (Student's t-test,
p <0.01; p = 0.03; p = 0.02 respectively). No effects were
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Characterization of rAAV-mediated transgene expression. A) Schematic illustration of the rAAV-dnCaMKIV expres-
sion cassette, for nomenclature see Methods section. B) Immunoblot analysis of neuronal activity-dependent induction of c-Fos
expression in uninfected cultured mouse hippocampal neurons or in cultured mouse hippocampal neurons infected with rAAV-
dnCaMKIV or rAAV-hrGFP. The neurons were treated for 4 hr with the GABA, receptor bicuculline (50 M) to induce action
potential bursting [2, 19], or were left untreated. Expression of c-Fos, hrGFP, Flag-tagged dnCaMKIV, and calmodulin (loading
control) was analyzed. C) Immunohistochemical analysis of dnCaMKIV expression (using antibodies to the Flag-tag) and
expression of the neuronal marker NeuN in the NAc of animals infected in the NAc with rAAV-dnCaMKIV. The overlay of
representative photomicrographs (10% objective) of Flag-immunohistochemistry (green) and NeuN (red) is shown. ac, anterior
commissure. D) Photomicrograph (100% objective) showing overlay of Flag-immunoreactivity (green) and Hoechst stain (blue).
Arrows indicate the cytosolic localization of Flag-tagged dnCaMKIV in two representative neurons; the nuclei in those neurons
are indicated with asterisks. E) Schematic diagrams showing the approximate extension of transgene expression (gray shading)
in rAAV-dnCaMKIV injected mice. Numbers, distance from bregma [42].
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Figure 2

Anxiety-related behaviours observed in the dark/light box. Expression of dnCaMKIV in the NAc increased anxiogenic
behaviour during dark/light emergence test performance. Time spent in the lit compartment, emergence frequency and rearing
were significantly reduced in dnCaMKIV animals compared to rAAV-empty infused controls (EMPTY) (dnCaMKIV: n = I 1,
EMPTY: n = | I; p < 0.05 is indicated by asterisks). Means + S.E.M. are shown.

seen on emergence latency and risk assessment (data not
shown, Student's t-test, p > 0.05).

Social interaction test

To assess the effects of dnCaMKIV expression on different
aspects of anxiety-related behaviour and social behaviour
animals were tested in a social interaction paradigm.
Compared to controls, rAAV mediated dnCaMKIV expres-
sion in the Nac significantly reduced the total amount of
social behaviour in the social interaction test (Student's t-
test, p = 0.03). This decrease in social behaviour was
mainly related to a reduction in following behaviour
observed in these animals. Furthermore, expression of
dnCaMKIV in the NAc significantly increased anxiety-like
behaviour in the social interaction test (Fig. 3) (Student's
t-test, p = 0.01). No significant effects were found for con-
tact behaviour, social exploration or self grooming (data
not shown, Student's t-test, p > 0.05).

Prepulse inhibition (PPI) of the acoustic startle response
(ASR)

To further investigate potentially increased anxiety
responses and difficulties in attentional processing or sen-
sorimotor gating, animals were tested for their PPI of the
ASR. Animals expressing dnCaMKIV in the NAc did not
differ significantly from controls in their ASR magnitudes
(Student's t-test, p > 0.05), nor in their PPI performance
(ANOVA: F, ;o= 0.7, p > 0.05) (Table 1).

Discussion

In the present study, we show that expression of a negative
interfering mutant of CaMKIV in the NAc of adult mice
results in increased anxiety-like behaviour. The behav-
ioural abnormalities in rAAV-dnCaMKIV treated animals
appear to be very selective since locomotor activity in the
open field, and functional sensorimotor gating assessed
by normal PPI performance of the acoustic startle reflex
were found unchanged. The social interaction test
revealed an increased anxiogenic response towards an
unknown social partner in animals expressing rAAV-
dnCaMKIV, while other social behavioural elements such
as self-grooming, contact behaviourand social exploration
did not differ from controls.

Two different approaches were used previously to study
the loss of function phenotype of CaMKIV in the brain.
Kang and colleagues generated transgenic mice expressing
a negative interfering mutant of CaMKIV in the postnatal
forebrain [16]. These mice had deficits in long-term mem-
ory but showed normal behaviour in the open field or ele-
vated-plus maze. Results obtained by the latter test
suggested normal fear-related behaviour in these mutants.
In contrast, in mice with a targeted null mutation of the
endogenous CaMKIV gene anxiolytic effects were found in
the elevated-plus maze and the dark/light emergence test
[15]. These authors also reported unchanged open field
performance but a reduction of anxiety-like behaviour in
the dark-light emergence test. However, in the current
study, we observed an increase using the same test. It
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Social interaction testing. Interaction with an unknown social partner revealed an increase in anxiety-related behaviour in
rAAV-dnCAMKIV treated animals. The total amount of social behaviours was decreased in those mice, mainly due to a signifi-
cant decrease in approaching and following the social partner. Social avoidance/anxiety-related behaviour (stretched-attend
posture and evade upon contact) was increased in animals expressing dnCaMKIV compared to EMPTY (dnCaMKIV: n = |1,
EMPTY: n = I 1; p <0.05 is indicated by asterisks). Means + S.E.M. are shown.

might not appear surprising that the different approaches
to genetically altering CaMKIV function yield non-over-
lapping or even partially opposing phenotypes. CaMKIV
is normally expressed during development and in the
adult in many regions of the central nervous system and
in the periphery [26,27]. Expression domains in the brain
include neocortex, hippocampus, striatum and amygdala,
the latter region has been implicated in fear memory.
Hence, anxiety-related behavioural responses have been
correlated with the role of CaMKIV in the amygdala [14].
In the present study we detected an anxiogenic phenotype
after NAc-specific suppression of CaMKIV function.
Although the NAc is not considered a key structure for
anxiety-related responses, there is increasing evidence for
an involvement of this brain region in stress, anxiety and
emotional behaviour [9,10]. Furthermore, the ventral
striatum (NAc and olfactory tubercle) and the striatum
have also been implicated in anxiety-like behaviour
[28,29]. The NAc has been characterized as a limbic-

Table I: PPI of the ASR.

Treatment dnCAMKIV EMPTY
ASR + SEM. 121.0 + 18.2 1434 £ 17.7
PPI [%] £ SEM.
Prepulse 72 dB 263 +54 24.6 £ 9.1
Prepulse 76 dB 54.1 £3.8 629 £ 4.2
Prepulse 80 dB 66.3 32 74325

Suppression of CaMKIV activity in the NAc did not significantly affect
PPI or startle magnitude (dnCaMKIV: n = ||, EMPTY: n = [ ).

motor interface, which refers to the importance of this
structure in the integration of different brain circuits,
mediating the transfer from motivation/emotion into
action [30,31]. These integrating characteristics of the NAc
for different brain structures, such as the amygdala, pre-
frontal cortex, hippocampus and hypothalamus, may
underlie its involvement in anxiety-related processes.

The studies addressing anxiety-related behaviour in rela-
tion to activity-dependent gene expression in the NAc
focused on specific alterations mediated by manipula-
tions of the NAc shell [9-11], while in the present study we
targeted CaMKIV activity in both NAc core and shell. It is
has been shown that the NAc core is critical for mediating
the ability of environmental cues with learned relevance
to stimulate and guide behaviour, whereas the NAc shell
is more involved in modulating unconditioned behav-
iours, such as feeding and drug reward. Albeit their differ-
ent functional roles, it is important to note that the shell
and core regions of the NAc are thought to be part of two
closely direct interacting networks [32]. It has been sug-
gested that for example cues associated with drug reward
through the shell may affect instrumental performance by
output of the core [33]. Therefore, these two subregions
and their associated circuitry are thought to have a strong
influence on each other by specific, possibly GABA-medi-
ated shell-to-core and reciprocal projections [32].

We addressed the consequences of suppression of CaM-
KIV function exclusively in the NAc of adult mice. Our
results differed from those obtained with CaMKIV mouse
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mutants generated using conventional transgenic technol-
ogies. The interpretation of results observed in complete
null mutants is inherently complicated due to potential
compensatory effects. In addition determining the func-
tion of genes in discrete brain regions is difficult because
more than one neural circuit is likely to be affected by a
genetic deletion in the germ line. The transgenic mouse
line overexpressing a negative interfering mutant of CaM-
KIV in the cortex, hippocampus and striatum after birth
was informative but did not allow dissection of CaMKIV
function in specific brain areas after completion of neuro-
nal maturation.

We have shown that inhibition of endogenous CaMKIV
activity attenuated Ca2+-induced expression of c-fos (Fig.
1B) and increases anxiety-like behaviour after viral trans-
fer to the NAc. Likewise, the inhibition or deletion of
CaMKIV causes a lack of activity-dependent phosphoryla-
tion of CREB at serine 133 and c-fos expression in vitro
and in vivo and behavioural abnormalities [12,16,34].
These data suggest that CaMKIV-dependent activation of
CREB/CRE signaling pathways is involved in complex
behaviour. Support for the hypothesis that increased anx-
iety-like behaviour found in the rAAV-dnCaMKIV treated
animals might be linked to acute reduction of CREB/CRE-
dependent signaling in the NAc comes from a study in
which herpes simplex virus-mediated expression of dom-
inant-negative mutant of CREB in the NAc of adult mice
and rats enhanced anxiogenic and aversive behavioural
responses to emotional stimuli while overexpression of
CREB had the opposite effect [9,10]. Furthermore, induc-
tion of the endogenous CREB antagonist, ICER, in the
NAc has been shown to increase measures of anxiety in
the elevated plus maze and neophobia to novel tastes
[11]. Barrot et al. (2005) showed that inhibition of CREB
in the NAc affected the initiation of sexual behaviour
which was associated with an anxiety-like phenotype. In
these animals the latency for the first mount as well as for
intromission was largely increased without affecting later
copulatory parameters (such as ejaculation and the
number of mounts to reach ejaculation) and could be
restored by treatment with the anxiolytic drug diazepam,
suggesting an anxiogenic response upon the initial contact
with the female [10]. Similarly, the deficits in the social
behaviour of rAAV-dnCaMKIV mice analyzed in this study
may mainly derive from an increase in anxiety-related
responses (increased stretched-attend posture, evade
upon contact and a decrease in following) towards the
unknown social partner that leaves unaffected other social
behaviours such as exploration or contact behaviour.

Conclusion

Our data show that the expression of a dnCaMKIV in the
NAc induces an increase in anxiety-related behaviour sim-
ilar to that observed after overexpression in the NAc of
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either ICER or a dominant-negative version of CREB
(mCREB) [9-11]. In addition to anxiety, CREB dysregula-
tion in the NAc has been implicated in depression and
depressive symptoms [35,36], indicating that understand-
ing the role of CaMKIV in this brain structure is of clinical
importance. CREB/CBP has been suggested to be a key
regulator of the reactivity of brain "reward" circuits which
regulates individual sensitivity to emotional stimuli in
general [8]. CaMKIV is an important upstream activator of
CREB/CBP-dependent gene transcription, and intracellu-
lar signaling through the nuclear calcium-CaMKIV-CREB/
CBP pathway might exert a similar or even a subsidiary
modulatory influence on emotional gating processes in
the NAc. Future virus-based studies will shed light on the
role of CaMKIV for the behavioural responses to emo-
tional stimuli and might offer new insights in the patho-
physiology of mood-related disorders.

Methods

Subjects

Twenty-two naive adult male C57Bl/6NCil mice (Charles
River, Sulzfeld, Germany) weighing 25-30 g were used for
this study. Initially all animals were group housed in
groups of four under standard conditions in Macrolon
cages (Typ II) on a 12 h light-dark schedule (lights on
7:00-19:00). One week before behavioural testing was
started, mice were single housed to avoid whisker barber-
ing [37,38]. They had free access to tap water and were fed
ad libitum. The experiments were done in accordance with
the ethical guidelines for the care and use of laboratory
animals for experiments, and were approved by the local
animal care committee (Karlsruhe, Germany).

Generation of recombinant adeno-associated virus (rAAV)
A DNA encoding the dominant-negative mutant of
human CaMKIVK75E [17] fused to the coding region of
the Flag-tag (generous gift of Anthony R. Means), was sub-
cloned in an AAV plasmid backbone containing the 1.1 kb
CMV enhancer/chicken p-actin (CBA) promoter, the
woodchuck post-transcriptional regulatory element
(WPRE) and the bovine growth hormone polyA (bGH) to
yield the construct pAAV-dnCaMKIV. The same pAAV-
CBA-WPRE-bGH backbone carrying no cDNA (pAAV-
empty) or hrGFP (pAAV-hrGFP) were used as controls
[21,39]. rAAV mosaic vectors containing a 1:1 ratio of
AAV1 and AAV2 capsid proteins with AAV2 inverted ter-
minal repeats (ITRs) were generated by crosspackaging as
described [40]. Briefly, HEK293 cells were transfected
with the AAV cis plasmid, the AAV1 and AAV2 helper plas-
mids and the adenovirus helper plasmid by standard cal-
cium phosphate transfection methods. 48 h after
transfection, cells were harvested and the vector purified
using heparin affinity columns (Sigma, St. Louise, MO).
Genomic titers were determined using the ABI 7300 real
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time PCR cycler (Applied Biosystems) with primers
designed to bGH.

rAAYV vector administration

Briefly, mice were anaesthetised (Fentanyl [0.005 mg/kg]/
Domitor [0.15 mg/kg]/Dormicum [2.0 mg/kg] i. p.) and
1 pl of either rAAV-empty or rAAV-dnCaMKIV (3 x 101!
viral genomes/ml) was injected bilaterally into the NAc
(+1.4 mm AP, + 0.9 mm ML, -4.5 mm DV from bregma)
using a stereotaxic frame (Kopf Instruments, Tujunga,
CA). Vectors were infused at a rate of 200 nl/min using a
microprocessor controlled mini-pump (World Precision
Instruments, Sarasota, FA). Anesthesia was antagonized
using Narcanti (0.12 mg/kg)/Antisedan (0.75 mg/kg)/
Anexate (0.2 mg/kg) i. p. Behavioural training began three
weeks after vector infusion when transgene protein
expression has peaked to remain at stable levels [41].

Immunohistochemistry and verification of transduction
The brains of all animals were assessed for transgene
expression at the end of behavioural testing. Immunos-
taining of brain sections was done as described [39].
Briefly, mice were killed by transcardiac perfusion under
deep anesthesia (pentobarbital). After perfusion with
0.9% NaCl, brains were fixed in situ with 10% buffered
neutral formalin, pH 7.4 (Sigma-Aldrich, Taufkirchen,
Germany). Brains were removed and post-fixed overnight
in the same fixative before cryoprotection in 30% sucrose/
PBS. Coronal sections (40 um) were cut using a cryostat.
Free-floating sections were rinsed with PBS containing
0.2% Triton-X100 (PBS-Triton), blocked in immunob-
uffer (4% horse serum in PBS, pH 7.4, with 0.4% Triton
X-100) for 30 min, followed by overnight incubation with
rabbit anti-Flag (1:1000; Sigma) and mouse anti-NeuN
(1:1000; Sigma). Following three washes, sections were
incubated with cy3-labeled goat anti-mouse antibodies
(Jackson Immunochemical Laboratories, Bar. Harbor,
ME) or Alexa488-labeled donkey anti-rabbit Alexa488
antibodies (1:1000; Invitrogen, Karlsruhe, Germany).
Before the third wash, the nuclear dye Hoechst 33258
(Invitrogen) was administered for 5 min and fluorescence
was visualized using a Zeiss Axiophot microscope. Flag-
immunostaining was restricted to the NAc [42] in all
rAAV-dnCaMKIV injected animals. There is no protein
expressed from the empty vector cassette but spread of
rAAV1/2 vectors assessed by in situ mRNA detection is
comparable for titer-matched preparations regardless of
the transgene [43]. We could detect the needle track in the
NAc of all rAAV-empty treated animals in the NAc. All
rAAV-injected animals were included in the analyses.

Cell culture and Immunoblot analysis

Primary hippocampal neurons from new-born C57Black
mice were cultured in Neurobasal media (Invitrogen,
Gaithersburg, MD, USA) containing 1% rat serum, B27
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(Invitrogen, Gaithersburg, MD, USA), and penicillin and
streptomycin (Sigma). The procedure used to isolate and
culture hippocampal neurons has been described [44,45].

Neurons were infected with rAAVs after 4 days in vitro
(DIV) and stimulations were done at 10-12 DIV as
described [19]. Immunoblotting was done using standard
procedures. Protein samples prepared from uninfected
and rAAV-infected hippocampal neurons were separated
by SDS-PAGE, transferred onto nitrocellulose, and probed
with antibodies to the Flag-tag (Sigma), c-Fos (Sigma),
calmodulin (Upstate, Charlottesville, VA), and hrGFP
(Stratagene). HRP-labeled secondary antibodies were
detected using chemiluminescence

Behavioural testing

Behavioural testing was conducted in all animals (n = 11,
for both treatment groups) in the order listed below. Ani-
mals were left undisturbed for at least 5 days between the
different test sessions. The experimenter was blind to the
treatment of the animals.

Locomotor activity

Locomotor activity was measured in an infrared-beam
operated open field (TruScan, Coulbourne Instruments,
USA) for 30 min. At the beginning of the test session, each
mouse was placed in the middle of the open field. The
number of rearings, activity time [s] and distance travelled
[cm] were recorded.

Light/dark emergence test

The emergence test took place in a plastic box (45 x 20 x
25 c¢m) which consisted of two different compartments
separated by a dividing wall with a hole in the centre that
allows the animals free access to both sides. The first com-
partment, with black walls could be closed by a lid and
was used as start box. The second compartment had white
walls and was bright illuminated (300 lux). Mice were ini-
tially placed in the dark, closed compartment and their
behaviour was recorded for 5 min. Subsequent video anal-
ysis scored the latency of mice to emerge from the dark
compartment into the light compartment, the emergence
frequency, the duration of time spent in the light compart-
ment, the amount of rearings, and risk assessment behav-
iour (only head or forepaws are placed in the lit
compartment without concomitant movement of the
hindlimbs, even if the mouse subsequently entered the
area). The apparatus was thoroughly cleaned with 70%
ethanol between the sessions.

Social interaction test

Social interaction was assessed in an open field. The ani-
mals were allowed to explore the test arena freely for 2
min before the social partner (male juvenile mouse, 6
weeks of age) was presented for 5 min. The following
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behavioural elements were quantified. (A) Social behav-
iour: contact behaviour (grooming, crawling over), social
exploration (anogenital and non-anogenital investiga-
tion) and approach/following were scored as social
behaviours; (B) social avoidance/anxiety-related behav-
iour: Evade upon social contact and occurrence of
stretched-attend posture were scored as anxiety-like
responses; (C) self grooming behaviour. The apparatus
was thoroughly cleaned with 70% ethanol between the
sessions.

Prepulse inhibition of the acoustic startle reflex

Startle testing occurred in a startle chamber (SR-LAB; San
Diego Instruments, San Diego, USA). A loudspeaker
inside the box produced a continuous background noise
of 68 dB sound pressure level (SPL) as well as the acoustic
startle pulses. A white noise pulse was used as the startle
stimulus, with an intensity of 120 dB SPL and duration of
40 ms; three different white noise intensities (72, 76 and
80 dB SPL, duration 20 ms) were used as prepulses. An
acclimatisation time of 5 min, during which the mice
received no stimulus except the background noise, was
followed by the presentation of 5 initial startle stimuli.
After this habituation program the test program was
started with seven different trial types presented in a pseu-
dorandom order: 1.trial: pulse alone, 2.trial: control (no
stimulus), 3.trial: pulse with preceding prepulse (prepulse
72 dB SPL 100 ms before pulse), 4.trial: pulse with preced-
ing prepulse (prepulse 76 dB SPL 100 ms before pulse),
5.trial: pulse with preceding prepulse (prepulse 80 dB SPL
100 ms before pulse), 6.trial: prepulse alone (80 dB). A
total of 10 presentations of each trial type was given with
an interstimulus interval randomized between 10 and 20
S.

Statistical analysis

PPI was calculated as the per cent decrease of the ASR
magnitude in trials when the startle stimulus was pre-
ceded by a prepulse [100 x (mean ASR amplitude on pulse
alone trials - mean ASR amplitude on prepulse-pulse tri-
als)/mean ASR amplitude on pulse alone trials].

Differences between the treatment groups for all three pre-
pulse intensities were evaluated using a two-way repeated
measure ANOVA, followed by post-hoc Tukey t-tests for
pairwise comparison. The effects of dnCaMKIV on mean
locomotor activity, ASR, social interaction and emergence
test behaviour were evaluated by Student's t-tests. Means
+ S.E.M are given. p < 0.05 was considered significant.
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