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Abstract: For the first time, monoterpene trifluoromethylated β-hydroxy-benzyl-O-oximes were
synthesized in 81–95% yields by nucleophilic addition of the Ruppert–Prakash reagent (TMSCF3) to the
corresponding β-keto-benzyl-O-oximes based on (+)-nopinone, (−)-verbanone and (+)-camphoroquinone.
Trifluoromethylation has been determined to entirely proceed chemo- and stereoselective at the
C=O rather than C=N bond. Trifluoromethylated benzyl-O-oximes were reduced to the correspond-
ing α-trifluoromethyl-β-amino alcohols in 82–88% yields. The structure and configuration of the
compounds obtained have been established.

Keywords: trifluoromethylation; Ruppert–Prakash reagent; chiral amino alcohol; pinane; bor-
nane; monoterpenoids

1. Introduction

Derivatives of monoterpenoids have a wide spectrum of antimicrobial activity against
certain pathogenic species of bacteria and fungi [1]. The binding site of cyclic terpene
hydrocarbons is located in the cell membrane of pathogenic microorganisms [2]. Many
monoterpenoids, such as α- and β-pinenes, γ-terpinene, limonene, are capable of inhibiting
respiration and other energy-dependent processes localized in fungal cell membranes [3].

It is known that the introduction of fluorine-containing groups into the molecule
of a substance leads to an increase in membrane permeability, as well as an increase in
resistance to biodegradation in comparison with their non-fluorinated analogues [4,5]. For
this reason, about 25% of all modern pharmaceuticals contain fluorine atoms [6–8]. These
transformations can lead to a change in the biological activity of the resulting compounds,
as well as a new way of substrate–receptor interactions in comparison with hydrocarbon
analogues [9–12].

Natural asymmetric molecules are a good starting point for the synthesis of chiral
compounds because they are usually enantiomerically pure, obtained from renewable
sources, and in most cases inexpensive. Terpenes are excellent natural asymmetric building
blocks: they are mainly produced by various plants, some of them can be converted
into more complex compounds used, for example, as ligands or catalysts for asymmetric
reactions [13].

It is known that chiral β-amino alcohols [14,15], including terpene ones [16–19], are
organocatalysts for a wide range of reactions of asymmetric synthesis, such as Diels–Alder
cycloaddition, 1,3-dipolar cycloaddition, aldol condensation, Michael addition, cascade
cyclization, Morita–Baylis–Hillman reaction, Friedel–Kraftz alkylation of indoles, allylation
of isatins, and epoxidation of olefins.

Molecules 2022, 27, 7068. https://doi.org/10.3390/molecules27207068 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27207068
https://doi.org/10.3390/molecules27207068
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0001-5640-6956
https://orcid.org/0000-0003-0198-3806
https://doi.org/10.3390/molecules27207068
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27207068?type=check_update&version=1


Molecules 2022, 27, 7068 2 of 11

It has been shown that the introduction of fluoroalkyl groups, including the triflu-
oromethyl group, into many chiral ligands, chiral auxiliaries, and chiral substrates im-
proved their ability to induce asymmetry in stereoselective reactions [20–23]. Chiral α-
trifluoromethyl-β-amino alcohols improved the stereoselectivity of addition reactions of
diethylzinc and the Reformatsky reagent to carbonyl compounds and imines compared to
their non-fluorinated analogs [22,24]. The authors attribute the effect of increasing stereose-
lectivity and reaction rate to strong electron-withdrawing properties, a large steric effect,
as well as electrostatic repulsion between the local negative charge of the trifluoromethyl
group and the charge of attacking nucleophiles [22].

In addition, fluorine-containing compounds are easily identified by 19F NMR spec-
troscopy and related homo- and heterocorrelation techniques due to the fact that the nucleus
of the 19F fluorine atom has a spin 1

2 , with an unprecedented natural abundance (100%) and
a relatively high gyromagnetic ratio (83% of γ1H), which results in a strong signal. The large
range of chemical shifts observed for fluorine nuclei means that 19F NMR spectroscopy
is a very sensitive source of changes in the electronic environment and changes in the
local dielectric medium [25,26]. These advantages, as well as the absence of background
noise and the considerable simplicity of 19F NMR spectra compared to 13C, 1H, 15N nuclei,
make it possible to study fluorine-containing compounds in biological media [25,27,28], to
study the mechanisms and kinetics of reactions [29–31], including catalytic reactions [32,33].
Chiral fluorine-containing derivatizing agents make it easy to evaluate the enantiomeric
purity of amines and amino alcohols by 19F NMR [34–38].

Based on the foregoing, the synthesis of chiral trifluoromethylated amino alcohols
based on natural monoterpenoids is of undoubted interest. In this work, based on ver-
banone, nopinone, and camphorquinone, we synthesized the corresponding ketooximes,
benzyl-O-oximes, trifluoromethylated benzyl-O-oxymoalcohols, and trifluoromethylated
amino alcohols.

2. Results

For this study, we used ketooximes 1–3 based on (+)-nopinone [39], (−)-verbanone [18],
and (+)-camphoroquinone [40], which were synthesized according to already known
methods. The corresponding benzyl-O-oximes 4–6 were obtained from the resulting oximes
1–3 in 68, 55, 45% yields, respectively (Scheme 1). The benzyl group was previously introduced
to protect the OH group of the oxime before trifluoromethylation of the obtained compounds.
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The IR spectra of compounds 4–6 contain absorption bands characteristic of the
carbonyl group in the region of 1715–1717 cm−1, characteristic of the C=N–O group in the
region of 1584–1684 cm−1. The 1H NMR spectra contain the signals of the protons of the
methylene group C-1′ at 5.37 ppm for compound 4, at 5.4 ppm for 5; at 5.28 ppm for 6 and
a multiplet of the phenyl fragment in the range 7.31–7.41 ppm for 4–6. In the 13C NMR
spectra, the signals of these functional groups are present at 77.9 ppm for 4, at 78 ppm for 5,
at 77.3 ppm for 6 and the multiplet of the phenyl fragment in the regions 128.2–128.4 ppm
for 4–6, respectively.

Significantly, oximes 4–6 have two reaction centers C=O and C=N bonds, and both of
them can be subjected to trifluoromethylation, for example, as demonstrated in [41–44] for
imines and sulfinimines, which react at the C=N bond, and for monoterpene ketooximes
4–6 undergoing trifluoromethylation to yield the products solely at the C=O bond.

Nucleophilic addition of the Ruppert–Prakash reagent–trifluoromethyltrimethylsilane
(TMSCF3) [45] to β-keto-benzyl-O-oximes 4–6 at the double C=O bond is carried out in
THF at 4 ◦C in an argon atmosphere in the presence of an initiator—cesium fluoride
(CsF). At the first stage, trimethylsilyl ethers 7–9 are formed, which, after addition of
tetrabutylammonium fluoride hydrate (TBAF·3H2O), form new trifluoromethyl alcohols
10–12 in 81, 89 and 95% yields, respectively (Scheme 2).
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The IR spectra of compounds 10–12 contain absorption bands characteristic of the
hydroxyl group in the region 3437–3560 cm−1, characteristic of the C=N–O group in the
region 1618–1688 cm−1, absorption bands corresponding to the CF3 group at 1271, 1171,
and 1096 cm−1 for 10; at 1283, 1169, 1105 cm−1 for 11; at 1265, 1180, and 1103 cm−1 for 12.

The 1H NMR spectra of compounds 10–12 contain singlets of the proton of the hy-
droxyl group at 3.27 ppm for 10; 3.20 ppm for 11; 2.76 for 12 and a multiplet of the phenyl
fragment in the range of 7.31–7.41 ppm for 10–12. The 13C NMR spectra show quartets of
the C-2 carbon atom at 77.9 ppm (JF 27.6 Hz) for 10; at 78.9 ppm (JF 27.6 Hz) for 12. There
is a quartet of C-4 carbon at 78.6 ppm (JF 26.5 Hz) in the 13C NMR spectrum of compound
11. The quartet of the C-10 carbon of compound 10 is present at 125.0 ppm (JF 288.6 Hz).
The quartets of the C-11 carbon atom of compounds 11, 12 are present at 125.2 ppm (JF
288.6 Hz) for 11; at 125.2 ppm (JF 287.5 Hz) for 12. Singlets of the trifluoromethyl group of
compounds 10–12 appear in the 19F NMR spectra in the range from −71.8 to −74.6 ppm.
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For each of the benzyl-O-oximes 4–6 in the trifluoromethylation reaction, only (2S)-10,
(4R)-11, (2R)-12 diastereomers are formed from two theoretically possible diastereomers in
81, 89 and 95% yields, respectively (Scheme 2).

The configuration of C-2, C-4 and C-2 atoms of compounds 10–12, respectively, was
established by 1H NMR NOESY spectroscopy by the presence of NOE interactions between
the protons of the hydroxyl group and the C-8 methyl group in compounds 10 and 11,
between the protons of the hydroxyl group and the C-9 methyl group of compound 12
(Figure 1).
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Figure 1. Structure and NOE interactions of compounds (2S)-10, (4R)-11, (2R)-12.

Trifluoromethylated benzyl-O-oximes 10–12 based on (+)-nopinone, (−)-verbanone
and (+)-camphoroquinone were reduced with LiAlH4 to the corresponding amines isolated
as hydrochlorides 13–15 in 81–95% yields (Scheme 3).
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romethylated benzyl-O-oximes 10–12. Reagents and conditions: (a) LiAlH4, Et2O, 4 ◦C→ rt, 12 h.
(b) HCl (gas), Et2O, 4 ◦C.

The IR spectra of compounds 13–15 contain absorption bands characteristic of the
hydroxyl group in the region of 3298–3558 cm−1, characteristic of the NH3

+ group in the
region of 2922–3080 cm−1, absorption bands corresponding to the CF3 group in the regions
of 1128–1198 cm−1 for 13, 1126–1194 cm−1 for 14, and 1121–1186 cm−1 for 15.

The 1H NMR spectra of compounds 13–15 contain singlets of the protons of the OH
and NH3

+ groups at 4.75 ppm and there are no signals of the phenyl fragment compared to
the original substrates. The 13C NMR spectra of compounds 13 and 15 contain quartets of
the C-2 carbon atom at 78.2 ppm (JF 25.4 Hz) for 13; at 80.6 ppm (JF 26.5 Hz) for 15. There
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is a quartet of the C-4 carbon atom at 78.1 ppm (JF 26.5 Hz) in the 13C NMR spectrum
of compound 14. The quartet of the trifluoromethyl group C-10 of compound 13 is at
125.3 ppm (JF 288.6 Hz). Quartets of the trifluoromethyl groups C-11 of compounds 14, 15
are present at 125.3 ppm (JF 287.5 Hz) for 14; at 125.4 ppm (JF 288.6 Hz) for 15, respectively.
There are singlets in the range from −72.6 to −68.2 ppm in the 19F NMR spectra of 13–15.

The configuration of the C-3 atom of compounds 13–15 was established by 1H NOESY
NMR spectroscopy by the presence of NOE interactions between the H-3 protons and the
methyl group C-8 in 13 and 14, between the H-3 protons and the methyl group C-9 in the
compound 15 (Figure 2).
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Figure 2. Structure and NOE interactions of compounds (2S,3S)-13, (3R,4R)-14, (2R,3R)-15.

A single crystal of free amine 16 was obtained after alkaline extraction of hydrochloride
14 with Et2O. The configuration of free amine 16 was confirmed by X-ray diffraction analysis
(Figure 3). This compound crystallizes in the chiral space group P212121 of the orthorhombic
system. There are two independent molecules (A and B) of 16 in the asymmetric unit cell.
They have the same molecular structure. The root–mean–square deviation of atomic
positions of A and B molecules is 0.056 Å. The carbon atoms C(1), C(2), C(3), C(4), and C(5)
lie almost in the same plane. The average deviation of atoms from the plane is 0.085 Å. The
trifluoromethyl group, the amino group, and the methylene group are on the same side
of this plane. The main geometric characteristics in 16 are in good agreement with related
carbocyclic compounds [18,46].

In a crystal, neighboring molecules are oriented in such a way that intermolecular
hydrogen bonds are realized O-H...O (2.03 Å), O-H...N (2.07 Å), N-H...N (2.47 Å), and
N-H...O (2.48 Å). As a result, endless molecular chains A-B-A-B are formed.
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3. Materials and Methods
3.1. General Information

FT-IR spectra were recorded on a Shimadzu IR Prestige 21 on thin films or KBr pellets;
ν in cm−1. 1H and 13C NMR spectra were registered on a Bruker Avance 300 spectrometer
(300.17 MHz for 1H, 75.48 MHz for 13C and 282.44 MHz for 19F) in CDCl3, J in Hz (See
Supplementary Materials). The signals were assigned using COSY, NOESY, HSQC, HMBC
techniques, and 13C NMR spectra in J-modulation mode. Automatic analyzer EA 1110
CHNS-O was employed for elemental analysis. The melting points were measured on
a Sanyo Gallenkamp MPD350.BM3.5 and were not corrected. Optical rotations were
performed with automatized digital polarimeter Optical Activity PolAAr 3001. Thin layer
chromatography (TLC) was performed on Sorbfil plates; spots were visualized by treatment
with 10% phosphomolybdic acid in ethanol, 5% vanillin and 0.005% H2SO4 in ethanol, 5%
KMnO4, and 0.005% H2SO4 in H2O. Silica gel 60 (70–230 mesh, Alfa Aesar, Lancashire, UK)
was used for column chromatography (CC). For both TLC and CC the same eluent systems
were used.

X-ray Data Collection and Structure Refinement. The diffraction data for compound 16
were collected on a Bruker D8 Quest diffractometer (Mo-Kα radiation, ω-scan technique,
λ = 0.71073 Å) at 298(2) K. The intensity data were integrated by the SAINT [47] program.
The structure was solved by dual methods [48] and was refined on F2

hkl using the SHELXTL
package [49]. The SADABS program [50] was used to perform absorption corrections.
All non-hydrogen atoms were refined anisotropically. All H-atoms, with the exception of
hydrogens of the hydroxyl and amino groups, were placed in calculated positions and were
refined using a riding model (Uiso(H) = 1.5Ueq(C) for CH3 groups and Uiso(H) = 1.2Ueq(C)
for other groups). The H(1)-H(6) atoms in 16 were located from the differential Fourier map
and were refined isotropically. CCDC 2191818 contains the supplementary crystallographic
data accessed on 19 October 2022. These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures.

Commercially available reagents such as (trifluoromethyl)trimethylsilane TMSCF3 (pu-
rity 98%, Alfa Aesar, Lancashire, UK), caesium fluoride CsF (purity 98%, Alfa Aesar, Lan-
cashire, UK), tetra-N-butylammonium fluoride trihydrate TBAF·3H2O (purity 98%, Alfa Aesar,
Lancashire, UK), lithium aluminum hydride LiAlH4 (purity 95%, Sigma-Aldrich, St. Louis,
USA) were used directly as supplied without further purification. All solvents used for the re-
actions were distilled. (1R,5R,E)-3-(Hydroxyimino)-6,6-dimethylbicyclo[3.1.1]heptan-2-one
(1), mp 180 ◦C, [39], (1S,4S,5S,Z)-3-(hydroxyimino)-4,6,6-trimethylbicyclo[3.1.1]heptan-2-
one (2), mp 135 ◦C, [18], and (1S,4R,E)-3-(hydroxyimino)-1,7,7-trimethylbicyclo[2.2.1]heptan-
2-one (3), mp 118 ◦C, [40] were synthesized in accordance with known methods.

3.2. General Procedure for the Synthesis of Benzyl-O-Oximes 4 and 5

In a two-necked flask equipped with a stirrer and a reflux condenser, oxime 1 or 2
(2.63 mmol) in 15 mL of acetonitrile was placed under argon. Cs2CO3 (5.27 mmol) was
then added, and benzyl chloride (5.27 mmol) was added dropwise after 5 min of stirring.
The resulting mixture was stirred for 3 h at room temperature. The reaction progress was
monitored by TLC (eluent, chloroform). The solvent was distilled off under vacuum, H2O
(30 mL) was added to the residue, extracted with Et2O, the organic layer was washed with
brine and dried over Na2SO4. The solvent was distilled off under reduced pressure. The
reaction products were isolated by silica gel column chromatography.

(1R,5R,E)-3-((Benzyloxy)imino)-6,6-dimethylbicyclo[3.1.1]heptan-2-one (4). Yield: 68%;
light brown oil; [α]25

D =+19.70 (c = 0.99 in CHCl3); Rf 0.38 (petr. ether/EtOAc, 3:1); 1H
NMR (CDCl3, δ, ppm, J/Hz): 0.91 (s, 3H, H8), 1.38 (s, 3H, C9H3), 1.53 (d, 1H, J = 11.0,
H7α), 2.25–2.32 (m, 1H, H5), 2.65–2.88 (m, 4H, H1, H7β, H4α, H4β), 5.37 (s, 2H, H1′α, H1′β),
7.32–7.41 (m, 5H, H3′ , H4′ , H5′ , H6′ , H7′ ); 13C NMR (CDCl3, δ, ppm): 21.5 (C8), 26.2 (C9),
28.0 (C7), 28.6 (C4), 37.6 (C5), 41.7 (C6), 56.6 (C1), 77.9 (C1′ ), 128.2 (C5′ ), 128.3 (C4′ ,6′ ), 128.4
(C3′ ,7′ ), 136.6 (C2′ ), 152.7 (C3), 198.2 (C2); IR spectrum (KBr, ν, cm−1): 1715 (C=O), 1684

https://www.ccdc.cam.ac.uk/structures
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(C=N−O); elemental analysis calcd (%) for C16H19NO2: C 74.68, H 7.44, N 5.44; found: C
74.08, H 7.26, N 5.14.

(1S,4S,5S,E)-3-((Benzyloxy)imino)-4,6,6-trimethylbicyclo[3.1.1]heptan-2-one (5). Yield: 55%;
light brown oil; [α]25

D =−1.2 (c = 1.0 in CHCl3); Rf 0.29 (CHCl3/petr. ether, 2:1); 1H NMR
(CDCl3, δ, ppm, J/Hz): 1.05 (s, 3H, H8), 1.37 (d, J = 7.2, 3H, H10), 1.39 (s, 3H, C9H3), 1.45 (d,
1H, J = 11.0, H7α), 2.17 (td, 1H, J = 5.8, 3.0, H1), 2.66 (ddd, 1H, J = 11.0, 6.1, 5.8, H7β), 2.73
(t, 1H, J = 5.8, H5), 3.18 (qd, 1H, J = 7.1, 3.0, H2), 5.32–5.42 (m, 2H, H1′α, H1′β), 7.31–7.41
(m, 5H, H3′ , H4′ , H5′ , H6′ , H7′ ); 13C NMR (CDCl3, δ, ppm): 16.5 (C10), 23.9 (C8), 27.3 (C9),
28.2 (C7), 36.9 (C2), 42.3 (C6), 45.7 (C1), 56.6 (C5), 78.0 (C1′ ), 128.1 (C5′ ), 128.2 (C4′ ,6′ ), 128.4
(C3′ ,7′ ), 136.6 (C2′ ), 156.3 (C3), 199.0 (C4); IR spectrum (KBr, ν, cm−1): 1717 (C=O), 1584
(C=N−O); elemental analysis calcd (%) for C17H21NO2: C 75.25, H 7.80, N 5.16; found: C
75.05, H 7.52, N 5.01.

(1S,4R,E)-3-((Benzyloxy)imino)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-one (6). In a two-
necked flask equipped with a stirrer and a reflux condenser, (+)-camphorquinone oxime
3 (0.59 mmol) in 3 mL of THF (dry) was placed under argon. After ice-bath cooling the
mixture, t-BuOK (0.65 mmol) was added and the flask was purged with argon. Benzyl
chloride (2.06 mmol) was added after 20 min of stirring. The resulting mixture was stirred
overnight at room temperature. The progress of the reaction was monitored by TLC (eluent,
petr.ether:EtOAc, 10:1). At the end of the reaction, H2O (20 mL) was added, the reaction
mixture was extracted with diethyl ether, the organic layer was washed with brine and
dried over Na2SO4. The solvent was distilled off under reduced pressure. The reaction
product was isolated by silica gel column chromatography. Yield: 45%; light brown oil;
[α]25

D =−134.4 (c = 1.15 in CHCl3); Rf 0.23 (petr. ether/Et2O, 5:1); 1H NMR (CDCl3, δ, ppm,
J/Hz): 0.88 (s, 3H, H8), 0.98 (s, 3H, C9H3), 1.03 (s, 3H, C10H3), 1.47–1.62 (m, 2H, H5α, H6α),
1.71–1.83 (m, 1H, H6β), 1.96–2.06 (m, 1H, H5β), 3.21 (d, 1H, J = 4.4, H4), 5.28 (s, 2H, H1′α,
H1′β), 7.33–7.37 (m, 5H, H3′ , H4′ , H5′ , H6′ , H7′ ); 13C NMR (CDCl3, δ, ppm): 9.0 (C10), 17.6
(C9), 20.6 (C8), 23.9 (C5), 30.7 (C6), 44.8 (C7), 47.4 (C4), 58.5 (C1), 77.3 (C1′ ), 128.0 (C5′ ), 128.1
(C4′ ,6′ ), 128.4 (C3′ ,7′ ), 137.0 (C2′ ), 159.3 (C3), 203.9 (C2); IR spectrum (KBr, ν, cm−1): 1715
(C=O), 1634 (C=N−O); elemental analysis calcd (%) for C17H21NO2: C 75.25, H 7.80, N
5.16; found: C 75.10, H 7.56, N 5.09.

3.3. General Procedure for Trifluoromethylation of β-Keto-Benzyl-O-Oximes 4–6

In a two-necked flask equipped with a stirrer and reflux condenser, cooled in an ice
bath under argon, benzyl-O-oxime 4 (or 5, 6, 1.36 mmol) was placed in 6 mL of THF (dry).
After cooling the mixture, CsF (0.68 mmol) and TMSCF3 (4.08 mmol) were added with
stirring. The resulting mixture was stirred for 4 h (control by TLC until the disappearance
of the substrate). After that, the ice-bath was removed and TBAF·3H2O (1.36 mmol) was
added. The progress of the reaction was monitored by TLC (eluent, pet.ether:EtOAc, 3:1).
A saturated solution of NH4Cl (20 mL) was added, the reaction products were extracted
with diethyl ether, the organic layer was washed with brine and dried over Na2SO4. The
solvent was distilled off under vacuum. The reaction products were isolated by column
chromatography.

((1R,2S,5R,E)-2-Hydroxy-6,6-dimethyl-2-(trifluoromethyl)bicyclo[3.1.1]heptan-3-one O-benzyl
oxime (10). Yield: 81%; light brown oil; [α]25

D =−9.69 (c = 0.98 in CHCl3); Rf 0.39 (petr.
ether/EtOAc, 10:1); 1H NMR (CDCl3, δ, ppm, J/Hz): 0.95 (s, 3H, H8), 1.35 (s, 3H, C9H3),
1.53 (d, 1H, J = 11.3, H7α), 1.99–2.04 (m, 1H, H5), 2.34 (t, 1H, J = 5.9, H1), 2.40–2.54 (m, 2H,
H7β, H4α), 3.02 (dt, 1H, J = 18.7, 3.0, H4β), 3.27 (s, 1H, OH), 5.16–5.25 (m, 2H, H1′α, H1′β),
7.34–7.39 (m, 5H, H3′ , H4′ , H5′ , H6′ , H7′ ); 13C NMR (CDCl3, δ, ppm): 21.9 (C8), 26.7 (C7),
26.8 (C9), 30.2 (C4), 37.4 (C5), 40.0 (C6), 45.2 (C1), 76.7 (C1′ ), 77.9 (q, JF = 27.6, C2), 125.0
(q, JF = 288.6, C10), 128.0 (C5′ ,4′ ,6′ ), 128.4 (C3′ ,7′ ), 137.4 (C2′ ), 156.7 (C3); 19F NMR (CDCl3, δ,
ppm, J/Hz): –74.6 (s, 3F, C11F3); IR spectrum (KBr, ν, cm−1): 3560 (OH), 1627 (C=N−O),
1271, 1171, 1096 (CF3); elemental analysis calcd (%) for C17H20F3NO2: C 62.38, H 6.16, N
4.28; found: C 62.01, H 6.12, N 4.17.
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(1S,2R,4S,5S,E)-2-Hydroxy-4,6,6-trimethyl-2-(trifluoromethyl)bicyclo[3.1.1]heptan-3-one O-
benzyl oxime (11). Yield: 89%; light brown oil; [α]26

D =+17.9 (c = 1.0 in CHCl3); Rf 0.20 (petr.
ether/CH2Cl2, 2:1); 1H NMR (CDCl3, δ, ppm, J/Hz): 1.11 (s, 3H, H8), 1.35 (s, 3H, C9H3),
1.41 (d, 1H, J = 11.6, H7α), 1.47 (d, J = 7.2, 3H, H10), 1.85 (td, 1H, J = 5.8, 2.0, H1), 2.33 (t,
1H, J = 5.8, H5), 2.42 (dt, 1H, J = 11.6, 6.1, H7β), 2.92 (qd, 1H, J = 7.1, 2.0, H2), 3.20 (s, 1H,
OH), 5.13–5.22 (m, 2H, H1′α, H1′β), 7.32–7.40 (m, 5H, H3′ , H4′ , H5′ , H6′ , H7′ ); 13C NMR
(CDCl3, δ, ppm): 19.1 (C10), 24.2 (C8), 27.0 (C7), 27.9 (C9), 39.2 (C2), 39.7 (C6), 44.9 (C5),
46.7 (C1), 77.0 (C1′ ), 78.6 (q, JF = 26.5, C4), 125.2 (q, JF = 288.6, C11), 127.9 (C5′ ), 128.0 (C4′ ,6′ ),
128.4 (C3′ ,7′ ), 137.4 (C2′ ), 158.5 (C3); 19F NMR (CDCl3, δ, ppm, J/Hz): –74.2 (s, 3F, C11F3);
IR spectrum (KBr, ν, cm−1): 3557 (OH), 1618 (C=N−O), 1265, 1180, 1103 (CF3); elemental
analysis calcd (%) for C18H22F3NO2: C 63.33, H 6.50, N 4.10; found: C 63.13, H 6.34, N 4.32.

(1R,3R,4S,E)-3-Hydroxy-4,7,7-trimethyl-3-(trifluoromethyl)bicyclo[2.2.1]heptan-2-one O-
benzyl oxime (12). Yield: 95%; light brown oil; [α]25

D =−37.9 (c = 0.82 in CHCl3); Rf 0.37 (petr.
ether/Et2O, 10:1); 1H NMR (CDCl3, δ, ppm, J/Hz): 0.94 (s, 3H, H8), 1.04 (s, 3H, C9H3), 1.07
(s, 3H, C10H3), 1.36–1.45 (m, 1H, H5α), 1.58–1.89 (m, 3H, H6α, H6β, H5β), 2.76 (s, 1H, OH),
3.12 (d, 1H, J = 4.4, H4), 5.09–5.18 (m, 2H, H1′α, H1′β), 7.30–7.39 (m, 5H, H3′ , H4′ , H5′ , H6′ ,
H7′ ); 13C NMR (CDCl3, δ, ppm): 9.8 (C10), 18.7 (C9), 21.9 (C8), 22.3 (C5), 28.9 (C6), 48.0 (C7),
48.3 (C4), 52.6 (C1), 76.2 (C1′ ), 78.9 (q, JF = 27.6, C2), 125.2 (q, JF = 287.5, C11), 127.8 (C5′ ),
127.9 (C4′ ,6′ ), 128.3 (C3′ ,7′ ), 137.8 (C2′ ), 164.7 (C3); 19F NMR (CDCl3, δ, ppm, J/Hz): –71.8 (s,
3F, C11F3); IR spectrum (KBr, ν, cm−1): 3437 (OH), 1688 (C=N−O), 1283, 1169, 1105 (CF3);
elemental analysis calcd (%) for C18H22F3NO2: C 63.33, H 6.50, N 4.10; found: C 63.71, H
6.62, N 4.38.

3.4. General Procedure for the Preparation of Trifluoromethylated Amino Alcohols 13–15

Trifluoromethylatedβ-trifluoromethyl-β-hydroxy-benzyl-O-oxime 10 (or 11, 12, 0.54 mmol)
in 15 mL of dry Et2O was placed into a two-necked flask equipped with a stirrer, cooled
to 4 ◦C in an argon atmosphere. LiAlH4 (1.65 mmol) was added in portions with stirring.
The reaction mixture was stirred at room temperature for a day, the progress of the reaction
was monitored by TLC (eluent, pet.ether: EtOAc, 10:1). The mixture was cooled again in an
ice bath, then Et2O (20 mL) was added and 5% KOH solution was carefully poured until
phase separation and the aqueous layer was extracted with Et2O. The combined organic
phases were washed with brine and dried over Na2SO4. The solvent was distilled off in
vacuo. The resulting amines were isolated in the hydrochlorides form in Et2O solution by
blowing dry HCl into the flask until the precipitation ceased. The hydrochlorides were
purified by washing with a mixture of hexane- Et2O (1:1).

(1R,2S,3S,5R)-2-Hydroxy-6,6-dimethyl-2-(trifluoromethyl)bicyclo[3.1.1]heptan-3-ammonium
chloride (13). Yield: 88%; white powder; mp = 218 ◦C (decomposition); [α]27

D =+33.3 (c = 0.74
in MeOH); 1H NMR (D2O, δ, ppm, J/Hz): 1.04 (s, 3H, H8), 1.30 (s, 3H, C9H3), 1.36 (d, 1H,
J = 11.6, H7α), 1.78 (ddd, 1H, J = 14.1, 6.4, 1.5, H4β), 2.05–2.12 (m, 1H, H5), 2.37 (t, 1H,
J = 5.8, H1), 2.40–2.49 (m, 1H, H7β), 2.68 (ddt, 1H, J = 13.8, 11.0, 3.2, H4β); 4.04 (dd, 1H,
J = 10.3, 6.2, H3), 4.75 (s, 4H, OH, NH3

+); 13C NMR (D2O, δ, ppm): 22.6 (C8), 26.0 (C7),
26.5 (C9), 31.9 (C4), 38.6 (C6), 39.0 (C5), 47.2 (C1), 51.3 (C3), 78.2 (q, JF = 25.4, C2), 125.3 (q,
JF = 288.6, C10); 19F NMR (D2O, δ, ppm, J/Hz): –72.6 (s, 3F, C10F3); IR spectrum (KBr, ν,
cm−1): 3558 (OH), 2959 (NH3

+), 1601 (N), 1198, 1148, 1128 (CF3); elemental analysis calcd
(%) for C10H17ClF3NO: C 46.25, H 6.60, N 5.39; found: C 46.61, H 6.82, N 5.51.

(1S,2R,3R,4S,5S)-2-Hydroxy-4,6,6-trimethyl-2-(trifluoromethyl)bicyclo[3.1.1]heptan-3-ammonium
chloride (14). Yield: 89%; white powder; mp = 220 ◦C (decomposition); [α]25

D =−17.7 (c = 0.5
in MeOH); 1H NMR (D2O, δ, ppm, J/Hz): 1.15 (s, 3H, H8), 1.25 (d, J = 6.9, 3H, H10), 1.34
(s, 3H, C9H3), 1.34 (d, 1H, J = 11.3, H7α), 2.00 (t, 1H, J = 5.5, H1), 2.92 (quin, 1H, J = 7.5,
H2), 2.39 (t, 1H, J = 5.8, H5), 2.49 (dt, 1H, J = 11.8, 6.1, H7β), 3.91 (d, 1H, J = 8.8, H3), 4.75
(s, 4H, OH, NH3

+); 13C NMR (D2O, δ, ppm): 18.4 (C10), 23.9 (C8), 27.9 (C7), 27.9 (C9), 39.0
(C6), 40.1 (C2), 46.3 (C1), 48.5 (C5), 59.7 (C3), 78.1 (q, JF = 26.5, C4), 125.3 (q, JF = 287.5,
C11); 19F NMR (D2O, δ, ppm, J/Hz): –71.1 (s, 3F, C11F3); IR spectrum (KBr, ν, cm−1): 3298
(OH), 2955, 2922 (NH3

+), 1580 (N-H), 1194, 1150, 1126 (CF3); elemental analysis calcd
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(%) for C11H19ClF3NO: C 48.27, H 7.00, N 5.12; found: C 48.11, H 6.82, N 5.12. A single
crystal of free amine 16 was obtained after alkaline extraction of hydrochloride 14 with
Et2O. A colorless prismatic crystal of the orthorhombic system had size 0.56 × 0.47 × 0.42
mm, space group P212121, a = 7.8532(5), b = 15.7765(9), c = 19.0439(12) Å, α = β = γ = 90◦,
V = 2359.5(3) Å3, Z = 8, µ = 0.117 mm−1, dcalc = 1.336 g/cm3, F(000) = 1008. A dataset of
34,841 reflections was collected at scattering angles 2.139◦ < θ < 26.361◦, of which 4820 were
independent (Rint = 0.0287), including 4036 reflections with I > 2σ(I). The final refinement
parameters were R1 = 0.0496, wR2 = 0.1013 (all data), R1 = 0.0376, wR2 = 0.0944 [I > 2σ(I)]
with GooF = 1.062. ∆ρe = 0.190/−0.169 e Å–3; Flack parameter = −0.16(15).

(1R,2R,3R,4S)-3-Hydroxy-4,7,7-trimethyl-3-(trifluoromethyl)bicyclo[2.2.1]heptan-2-ammonium
chloride (15). Yield: 82%; white powder; mp = 222 ◦C (decomposition); [α]26

D =−11.9 (c = 0.8
in MeOH); 1H NMR (D2O δ, ppm, J/Hz): 0.95 (s, 3H, H8), 0.99 (s, 3H, C10H3), 1.14 (s, 3H,
C9H3), 1.35–1.50 (m, 1H, H5α), 1.64–1.69 (m, 2H, H6α, H6β, H5β), 1.76–1.87 (m, 1H, H5β),
2.14 (t, 1H, J = 4.0, H4), 3.95–3.96 (m, 1H, H3), 4.75 (br.s, 4H, OH, NH3

+); 13C NMR (D2O, δ,
ppm): 10.3 (C10), 18.0 (C5), 19.3 (C9), 19.6 (C8), 27.9 (C6), 47.6 (C4), 48.0 (C7), 53.4 (C1), 60.7
(C3), 80.6 (q, JF = 26.5, C2), 125.4 (q, JF = 288.6, C11); 19F NMR (CDCl3, δ, ppm, J/Hz): –68.2
(s, 3F, C11F3); IR spectrum (KBr, ν, cm−1): 3339 (OH), 3080, 2964 (NH3

+), 1585 (N-H), 1186,
1143, 1121 (CF3); elemental analysis calcd (%) for C11H19ClF3NO: C 48.27, H 7.00, N 5.12;
found: C 48.61, H 7.12, N 5.34.

4. Conclusions

Thus, trifluoromethylated amino alcohols based on pinane and bornane monoter-
penoids have been synthesized for the first time. The addition of the Ruppert–Prakash
reagent to β-keto-benzyl-O-oximes, as well as the reduction of β-hydroxy-benzyl-O-oximes
to the corresponding amino alcohols proceed stereoselectively with the formation of one
of the diastereomers. Trifluoromethylation has been determined to entirely proceed at the
C=O rather than C=N bond.

All compounds are isolated individually; the structure and configuration are proven
by NMR and IR spectroscopy, elemental, and X-ray diffraction analysis. The obtained
compounds may be of interest as biologically active substances and/or their precursors, as
well as new chiral fluorine-containing auxiliaries, ligands or organocatalysts containing a
trifluoromethyl group.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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