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Association of Serum Aluminum 
Levels with Mortality in Patients  
on Chronic Hemodialysis
Ming-Hsien Tsai1,2,3, Yu-Wei Fang1,2, Hung-Hsiang Liou4, Jyh-Gang Leu1,2 & Bing-Shi Lin1

Despite reported evidence on the relationship between higher serum aluminum levels and poor 
outcomes in patients on chronic hemodialysis (CHD), the acceptable cutoff value of serum aluminum 
for mortality remains unclear. A retrospective observational cohort study with 636 Taiwanese patients 
on CHD was conducted to investigate the impact of serum aluminum levels on mortality. The predictors 
were bivariate serum aluminum level (<6 and ≥6 ng/mL) and the Outcomes were all-cause and 
cardiovascular (CV) mortality. During the mean follow-up of 5.3 ± 2.9 years, 253 all-cause and 173 CV 
deaths occurred. Crude analysis showed that a serum aluminum level of ≥6 ng/mL was a significant 
predictor of all-cause [hazard ratio (HR), 1.80; 95% confidence interval (CI), 1.40–2.23] and CV (HR, 
1.84; 95% CI, 1.36–2.50) mortality. After multivariable adjustment, the serum aluminum level of ≥6 ng/
mL remained a significant predictor of all-cause mortality (HR, 1.37, 95% CI, 1.05–1.81) but became 
insignificant for CV mortality (HR, 1.29; 95% CI, 0.92–1.81). Therefore, our study revealed that a serum 
aluminum level of ≥6 ng/mL was independently associated with all-cause death in patients on CHD, 
suggesting that early intervention for aluminum level in patients on CHD might be beneficial even in the 
absence of overt aluminum toxicity.

Identifying risk factors for mortality may help in early intervention approaches to improve the survival of patients 
on chronic hemodialysis (CHD) who have a substantially reduced life expectancy1,2. Controlling aluminum lev-
els is an important issue for patients with chronic kidney disease (CKD) because systemic aluminum toxicity is 
harmful3. Moreover, an elevated serum aluminum level can lead to dialysis dementia4, osteomalacia, a very low 
bone turnover rate with marked accumulation of unmineralized osteoid5, iron-resistant microcytic anemia6 and 
cardiomegaly7 in dialysis patients.

Currently, severe aluminum toxicity (serum aluminum level >200 ng/mL) in patients on CHD is uncom-
mon8,9 due to the removal of aluminum from water used for dialysis by reverse osmosis and deionization as 
well as the use of widely available nonaluminum-containing phosphate binders. However, controlling serum 
aluminum levels remains an important issue for patients on CHD. Aluminum removal by dialysis is not efficient, 
and the possible source of aluminum accumulation in patients on CHD is oral (aluminum-containing phosphate 
binders and antacids) and injectable medications (calcitriol, vitamins B complex, iron and erythropoietin) that 
are commonly administered to dialysis patients10,11. Therefore, the National Kidney Foundation–Kidney Disease 
Outcomes Quality Initiative (KDOQI) guidelines12 recommend that the baseline serum aluminum level should 
be below 20 ng/mL and that aluminum levels and risk for aluminum toxicity should be assessed at least once per 
year.

Chazan et al. demonstrated that elevated aluminum levels are associated with mortality in a study on 10646 
patients on maintenance CHD. The annual mortality rate was 18% higher for patients with serum aluminum lev-
els between 40.9 and 59.8 ng/mL and progressively increased to 60% higher for those with aluminum levels above 
199.7 ng/mL than for those with levels below 38.9 ng/mL13. One recent study reported that patients on CHD with 
serum aluminum levels more than 9 ng/mL had significantly poorer outcomes than those with levels below 6 ng/
mL over a year of observation14, demonstrating that aluminum, even within an apparently acceptable range (i.e., 
<20 ng/mL), is also associated with increased mortality in patients on CHD. However, a significant difference 
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between the groups with serum aluminum levels below 6 ng/mL and 6–9 ng/mL was not observed in that study14. 
Moreover, the evidence on the serum aluminum cutoff value to assess its clinical significance in association with 
mortality in patients on CHD remains unclear due to the insufficient observation time and insufficient adjust-
ment for risk factors.

Therefore, we conducted a retrospective observational cohort study to test the effect of a serum aluminum 
cutoff value of 6 ng/mL (upper normal limit) on all-cause and cardiovascular mortality in patients on CHD.

Methods
Study design and patients. This retrospective observational cohort study was conducted at a single 
medical center, Shin Kong Wu Ho-Su Memorial Hospital, and used the medical records of patients undergo-
ing hemodialysis from December 2006 to December 2012. Medical records of only those patients who were 
receiving regular hemodialysis for at least 3 months before data collection and those who were clinically stable 
without hospitalization during the 3 months preceding data collection were included. Initially, 805 patients were 
eligible for this study. Furthermore, the medical records of patients with unavailable serum aluminum levels 
were excluded. Finally, the records of 636 patients on CHD were selected. Patient outcomes were observed until 
December 2015. Patients who died at the hospital during follow-up were identified from the discharge diagnosis 
and death certificates in hospital charts, which the causes of death were classified into CV event, cerebrovascular 
event, gastrointestinal bleeding event, and unknown etiology by the attending physician of nephrologist. Patients 
who were transferred to other dialysis centers, switched to peritoneal dialysis, or received renal transplantation 
were censored.

This study was performed in accordance with the principles of the Declaration of Helsinki and was approved 
by the Ethics Committee of the Shin Kong Wu Ho-Su Memorial Hospital. Informed consent was waived because 
the study was based on a medical chart review. Patient information was protected by anonymization and 
de-identification prior to analysis.

Demographic and laboratory data. Demographic and laboratory data were obtained from the medical 
records and included age; sex; hemodialysis vintage; cardiothoracic ratio (CTR); levels of aluminum, blood urea 
nitrogen, serum creatinine, albumin, uric acid, total cholesterol, triglycerides, hemoglobin, intact parathyroid 
hormone, ionized calcium, serum phosphate, and alkaline phosphatase; iron profile; urea kinetics; history of 
diabetes mellitus (DM), hypertension, coronary artery disease, or cerebrovascular disease; and prescription of 

Characteristic All (n = 636)
Al < 6 ng/mL 
(n = 322)

Al ≥ 6 ng/mL 
(n = 314) P

Aluminum (ng/mL) 7.7 ± 7.6 3.7 ± 1.3 11.7 ± 9.1 NA

Age (years) 62.8 ± 13.2 61.6 ± 14.1 64.0 ± 12.1 0.021

Male sex 304 (47.8) 172 (53) 132 (42) 0.004

Duration of dialysis (years) 5.0 ± 4.7 4.6 ± 4.7 5.3 ± 4.8 0.078

Diabetes mellitus 244 (38.5) 114 (35) 130 (41) 0.143

Cardiovascular disease 175 (27.6) 87 (27) 88 (28) 0.832

Hypertension 254 (39.9) 121 (37) 133 (42) 0.218

Blood nitrogen (mg/dL) 69 ± 18 68 ± 17 69 ± 19 0.576

Creatinine (mg/dL) 9.5 ± 2.3 9.8 ± 2.2 9.3 ± 2.3 0.001

Uric acid (mg/dL) 6.6 ± 2.3 6.9 ± 1.9 6.3 ± 2.6 0.001

Albumin (g/dL) 4.1 ± 0.4 4.2 ± 0.4 4.1 ± 0.4 0.031

Triglyceride (mg/dL) 163 ± 149 155 ± 141 171 ± 157 0.180

Cholesterol (mg/dL) 175 ± 44 173 ± 40 177 ± 47 0.252

Kt/V 1.3 ± 0.2 1.3 ± 0.2 1.3 ± 0.2 0.429

Hemoglobin (g/dL) 10.4 ± 1.4 10.4 ± 1.4 10.3 ± 1.5 0.601

Transferrin saturation (%) 35.3 ± 15.2 36.2 ± 16.1 34.3 ± 14.2 0.116

Ionized calcium (mg/dL) 4.6 ± 0.4 4.6 ± 0.4 4.6 ± 0.4 0.123

Phosphate (mg/dL) 5.2 ± 1.4 5.1 ± 1.4 5.2 ± 1.4 0.397

Alkaline phosphatase (U/L) 98 ± 70 90 ± 57 107 ± 80 0.002

iPTH (pg/mL) 163 ± 199 158 ± 221 168 ± 174 0.510

Cardiothoracic ratio (%) 50.6 ± 6.7 49.3 ± 7.0 51.9 ± 6.2 <0.001

Medications

  Antiplatelet agents 220 (34.8) 99 (31) 121 (38) 0.044

  RAS blockaders 219 (31.8) 119 (37) 100 (31) 0.149

  Beta-blocker 116 (18.3) 56 (17) 60 (19) 0.613

  Lipid-lowering agents 122 (19.2) 50 (15.6) 72 (22.9) 0.020

Table 1. Baseline characteristics of the study population. Values are expressed as number (%) of patients or 
as mean ± standard deviation Abbreviations: Al, aluminum; Kt/V, urea kinetics; iPTH, intact parathyroid 
hormone; NA, not available; RAS, renin–angiotensin system.
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renin–angiotensin system blockers, lipid-lowering agents, beta-blockers, and antiplatelet agents. Coronary artery 
disease was defined as a history of exertional angina, significant arterial occlusive disease disclosed by an angio-
gram, past myocardial infarction, coronary artery bypass surgery, or angioplasty. Cerebrovascular disease was 
defined as a history of cerebrovascular accidents, either hemorrhage or infarction. CVD was diagnosed based 
on a documented history of coronary artery or cerebrovascular disease. Blood samples were collected before, 
following an at least 8-h fast, and immediately after the dialysis session. The blood samples post dialysis were used 
to assess the urea kinetics. Biochemical analyses were conducted using standard commercially available assays 
and automated test machines (Beckman Coulter, Lane Cove, NSW, Australia). Intact parathyroid hormone levels 
were measured using the Roche Elecsys assay (Roche Diagnostics, Basel, Switzerland). Aluminum levels were 
measured by graphite furnace atomic absorption spectrometry using GBC 906AA (Braeside VIC, Australia).

Statistical analysis. Data are presented as mean ± standard deviation or median with interquartile range 
as appropriate for continuous data and number (%) for categorical data. Student’s t-test was used to compare the 
means of continuous variables, and the χ2 test was used for categorical variables. Continuous aluminum levels 
were natural-log transformed (ln) to approximate a normal distribution. Linear regression analyses were per-
formed using ln(aluminum) as the dependent variable. Variables were chosen into the multivariable analysis by 
stepwise methods; P-values by F-statistic for entry and removal were <0.05 and >0.10, respectively. Moreover, 

Figure 1. The distribution of serum aluminum levels in patients on chronic hemodialysis.

Parameter

Crude Multivariable

Estimate (95% CI) P Estimate (95% CI) P

Age (per year) 0.005 (0.001, 0.009) 0.029

Male versus female −0.182 (−0.29, −0.072) 0.001

Duration of dialysis (per year) 0.019 (0.008, 0.031) 0.001 0.012 (0.001, 0.025) 0.045

Diabetes mellitus 0.047 (−0.067, 0.160) 0.419

Cardiovascular disease 0.088 (−0.035, 0.211) 0.160

Hypertension 0.069 (−0.044, 0.181) 0.232

Creatinine (mg/dL) −0.030 (−0.054, 0.006) 0.015

Uric acid (mg/dL)

Hemoglobin (per g/dL) 0.006 (−0.032, 0.043) 0.769

Albumin (per g/dL) −0.118 (−0.256, 0.020) 0.094

Kt/V (per unit) 0.082 (−0.161, 0.325) 0.508

Ionized calcium (per mg/dL) 0.186 (0.067, 0.305) 0.002 0.135 (0.010, 0.261) 0.035

Phosphate (per mg/dL) 0.023 (−0.015, 0.061) 0.238

ALK-P (per 10 U/L) 0.016 (0.008, 0.024) <0.001 0.015 (0.006, 0.023) 0.001

iPTH (per 10 pg/mL) 0.002 (0.000, 0.005) 0.087

Cardiothoracic ratio (per 1%) 0.021 (0.013, 0.029) <0.001 0.019 (0.011, 0.027) <0.001

Table 2. Determinants of serum log (aluminum level) by simple linear regression analysis. Abbreviations: CI, 
confidence interval; Kt/V, urea kinetics; ALK-P, alkaline phosphatase; iPTH, intact parathyroid hormone.
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serum aluminum levels were categorized into two groups based on the cutoff of 6 ng/mL. Survival curves were 
estimated using the Kaplan–Meier method and tested by the log-rank test. Cox proportional regression model 
was used to determine the risk of death. The assumption of proportionality was not violated by testing for the 
interaction between time and variables. Additionally, subgroup analyses were performed for the following var-
iables: DM, age (≤60 and >60 years), sex, previous CVD, and ionized calcium level (≤4.5 and >4.5 mg/dL). A 
two-tailed P-value of <0.05 was considered statistically significant. All statistical analyses were performed using 
SAS for Windows version 9.4 (SAS Institute Inc., Cary, NC, USA).

Results
The mean age, length of follow-up, and mean HD vintage among the entire cohort of 636 patients on CHD were 
62.8 ± 13.2 years, 5.3 ± 2.9 years, and 5.0 ± 4.7 years, respectively. Of the total, 47.8% were males and 38.5%, 
39.9%, and 27.6% had DM, hypertension, and CVD, respectively (Table 1). Right-tail distribution of serum alu-
minum level was observed in the entire cohort (Fig. 1). Table 1 lists the demographic and clinical data of the 
participants stratified by the serum aluminum level (<6 and ≥6 ng/mL). Those with higher aluminum levels were 
older and predominantly females. Moreover, those with serum aluminum levels of ≥6 ng/mL had significantly 
higher alkaline phosphatase levels and CTR and lower creatinine, uric acid and albumin levels; the frequencies of 
antiplatelet and lipid-lowering agent prescriptions were also higher in this group.

Figure 2. Probabilities of survival according to serum aluminum levels (<6 and ≥6 ng/mL) (A) in all-cause 
mortality with a log-rank test (χ2 = 20.4; P < 0.001) and (B) in cardiovascular mortality with a log-rank test 
(χ2 = 15.1; P < 0.001).
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Factors significantly associated with serum aluminum levels in patients on CHD. As summa-
rized in Table 2, older age, female sex, longer HD vintage, higher ionized calcium and alkaline phosphatase levels, 
lower creatinine level, and higher CTR were significantly associated with higher ln(aluminum) levels in patients 
on CHD. Moreover, multiple linear regression analysis with a stepwise method for parameter selection demon-
strated that ln(aluminum) levels exhibited a significantly positive association with HD duration, ionized calcium 
and alkaline phosphatase levels, and CTR.

All-cause mortality in patients on CHD. On follow-up, there were 253 (39.7%) deaths due to all causes, 
including 173 fatal CV events, 33 infectious diseases, 13 malignancies, 9 cerebrovascular events, 7 gastrointestinal 
bleeding events, and 18 deaths due to unknown etiology. Figure 2A shows the Kaplan–Meier survival curves of 
all-cause mortality according to the bivariate aluminum levels (<6 and ≥6 ng/mL). The difference in survival 
among the two groups was significant for all-cause mortality (χ2 = 20.4; P < 0.001). Results of the Cox propor-
tional hazards regression analysis are shown in Table 2. The crude hazard ratio (HR) of the bivariate aluminum 
levels (<6 and ≥6 ng/mL) for all-cause mortality was 1.80 [95% confidence interval (CI), 1.40–2.32]. After multi-
variable adjustment, the bivariate aluminum levels (<6 and ≥6 ng/mL) remained a significant predictor of mor-
tality (HR, 1.37; 95% CI, 1.05–1.81). Moreover, the continuous ln(aluminum) level was a significant predictor of 
all-cause mortality in both crude and multivariable analyses.

Cardiovascular mortality in patients on CHD. There were 173 fatal CV events during the observation 
period of this study. Figure 2B shows the Kaplan–Meier survival curves of CV mortality according to the bivar-
iate aluminum levels (<6 and ≥6 ng/mL). The difference in survival among the two groups was significant for 
all-cause mortality (χ2 = 15.1; P < 0.001). As presented in Table 3, the crude HR of the bivariate aluminum levels 
(<6 and ≥6 ng/mL) for CV mortality was 1.84 (95% CI, 1.36–2.50). After multivariable adjustment, HR (1.29; 
95% CI, 0.92–1.81) became an insignificant predictor of CV mortality. The predictability for CV mortality of 
continuous ln (aluminum) level followed the same pattern as bivariate aluminum levels. However, the HRs of the 
bivariate aluminum levels (1.50; 95% CI, 1.07–2.09) and continuous ln (aluminum) (1.28; 95% CI, 1.03–1.60) for 
CV mortality became significant in the full multivariable model without adjusting the parameter of CTR.

Subgroup analysis. We also analyzed the association of the bivariate aluminum levels (<6 and ≥6 ng/mL) 
with all-cause and CV mortality stratified by covariates, including a history of DM or CVD, age (≤60 and >60 
years), sex, and ionized calcium level (≤4.5 and >4.5 mg/dL). As shown in Fig. 3, after multivariable adjustment, 
the bivariate aluminum levels (<6 and ≥6 ng/mL) were significantly predictive of both all-cause and CV mortal-
ity in those with a CVD history, ionized calcium level of ≤4.5 ng/dL, and no history of DM.

Discussion
In this study on 636 patients on CHD with the longest follow-up being 9 years, we found that a higher serum alu-
minum level (≥6 ng/mL) was independently associated with higher all-cause mortality after adjusting for poten-
tial confounders. Moreover, we found a linear association of ln(aluminum) level with all-cause death in patients 
on CHD. Interestingly, serum aluminum level was not independently associated with CV mortality and it might 
mediate the CV outcomes though the CTR level in patients on CHD. These findings expand our understanding 
of the association of serum aluminum levels with adverse outcomes in patients on CHD and emphasize that cli-
nicians should be vigilant of potential early events even in patients in whom serum aluminum levels are within 

Aluminum cutoff value of 6 ng/mL Every 1 increment in ln(Aluminum)

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

All-cause mortality

Crude 1.80 (1.40–2.32) <0.001 1.48 (1.25–1.74) <0.001

Mode 1 1.79 (1.39–2.31) <0.001 1.45 (1.23–1.71) <0.001

Mode 2 1.55 (1.19–2.02) 0.001 1.34 (1.12–1.59) <0.001

Mode 3 1.37 (1.05–1.81) 0.023 1.25 (1.04–1.50) 0.015

Mode 4 1.56 (1.19–2.04) 0.001 1.37 (1.15–1.64) <0.001

Cardiovascular mortality

Crude 1.84 (1.36–2.50) <0.001 1.47 (1.21–1.79) <0.001

Mode 1 1.86 (1.36–2.53) <0.001 1.46 (1.20–1.78) <0.001

Mode 2 1.60 (1.16–2.20) 0.003 1.35 (1.10–1.67) 0.003

Mode 3 1.29 (0.92–1.81) 0.127 1.18 (0.94–1.48) 0.137

Mode 4 1.50 (1.07–2.09) 0.016 1.28 (1.03–1.60) 0.023

Table 3. Multivariable Cox regression analysis of risk factor for mortality. Multivariate model 1 is adjusted for 
age, sex, and hemodialysis vintage. Multivariate model 2 comprises model 1 as well as adjustments for diabetes 
mellitus, cardiovascular disease, and CTR. Multivariate model 3 comprises model 2 as well as adjustments for 
levels of creatinine, albumin, hemoglobin, ionized calcium, phosphate, alkaline phosphatase, and transferrin 
saturation; KT/V; as well as prescriptions of antiplatelet medications, renin–angiotensin system blockers, beta-
blockers, and lipid-lowering agents. Multivariate model 4 comprises model 3 without CTR Abbreviations: CI, 
confidence interval; CTR, cardiothoracic ratio; Kt/V, urea kinetics; ln, natural log transformation.
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the acceptable range (below 20 ng/mL), as suggested by the KDOQI, and adopt early intervention approaches to 
prevent further aluminum accumulation in the body.

Aside from acute toxicity, aluminum accumulation will lead to gradual cellular damage. Aluminum has been 
reported to accumulate in all tissues in animals, preferentially in the liver, heart, bone, and brain15. Previous 
studies have provided several potential possible mechanisms to explain the association of serum aluminum 
levels with mortality in patients on CHD. One such mechanism is cellular oxidative stress induced by alumi-
num16,17, which may cause anemia and atherosclerosis in humans18, consequently increasing mortality in dialysis 
patients19,20. Another potential mechanism is chronic inflammation, as demonstrated by enhanced proinflam-
matory and proapoptotic gene expression in human brain cells exposed to aluminum sulfate21 and by the asso-
ciation of inflammatory markers with plasma aluminum levels in individuals with asthma22. Consequently, 
inflammation was found to be associated with an increased risk of mortality in patients on CHD23,24. Another 
mechanism that may underlie aluminum-associated mortality is protein–energy wasting induced by aluminum25. 
Hypoalbuminemia is recognized as a strong predictor of mortality in the CKD population26. The final consider-
ation is the hazardous effect of aluminum in cardiac remodeling7,27, which the cardiotoxicity of aluminum might 
be attributable to oxidative stress and dysregulation of the intracellular redox system18. Some reports have found a 
significant association between heart damage and aluminum levels28,29. Undoubtedly, CVD is the leading cause of 
death in patients on CHD30. Taken together, these mechanisms might explain the significant association of serum 
aluminum levels with mortality of patients on CHD found in the current study. However, concise elucidation of 
the underlying mechanisms requires further investigations.

Adjustment for potential confounders by multiple linear regression analysis in the current study revealed that 
ln(aluminum) level was positively associated with HD duration, ionized calcium and alkaline phosphatase levels, 
and CTR. Patients with longer dialysis duration are expected to have higher aluminum levels owing to challenges 
in the efficient removal of aluminum by dialysis, leading to progressive accumulation over time. Aluminum will 

Figure 3. Subgroup analysis of the effect of serum aluminum levels (<6 and ≥6 ng/mL) on (A) all-cause 
mortality and (B) cardiovascular mortality among patients on chronic hemodialysis. The full model 
comprised adjusted variables including age; sex; hemodialysis vintage; diabetes mellitus; cardiovascular 
disease; cardiothoracic ratio; levels of creatinine, albumin, hemoglobin, ionized calcium, phosphate, and 
alkaline phosphatase; transferrin saturation; urea kinetics; as well as prescription of antiplatelet agents, renin–
angiotensin blockers, beta-blockers, and lipid-lowering agents.
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block calcium entry into the bone, consequently inducing osteomalacia5. Thereafter, hyperparathyroidism might 
be a mechanism to protect against aluminum-induced osteomalacia, perhaps by increasing bone turnover with 
elevated alkaline phosphatase levels31. Moreover, studies found evidence for aluminum-induced cardiac injury28 
and cardiac complications29; higher aluminum loading in CHD patients was associated with cardiomegaly7 and 
cardiothoracic ratio (>0.5)27; cardiotoxicity of aluminum might be attributable to oxidative stress and dysregula-
tion of the intracellular redox system18. Such clinical findings in previous studies can support our data.

An interesting finding from our data was that the higher serum aluminum level was not significantly associ-
ated with CV death in patients on CHD after adjusting the confounders but the association became significant 
after removing the parameter of CTR. Therefore, one hypothesis was made that higher serum aluminum level 
may contribute to the CV death through the higher CTR level, which a well-documented risk factor for poor 
prognosis in chronic dialysis20,32–37.

In subgroup analysis, aluminum levels had a significant predictive power for all-cause and CV mortality in 
patients with ionized calcium levels of ≤4.5 mg/dL, history of DM, and history of CVD. DM is a strong predictor 
of mortality in patients on CHD, which might negate the impact of aluminum levels on outcomes. A previous in 
vitro study indicated that aluminum inhibits the regeneration of reduced glutathione, thereby leading to oxidative 
damage16, which may induce atherosclerosis in humans18. Moreover, aluminum is harmful to cardiomyocytes. 
Such evidence supports our finding that patients with no history of CVD and those with lower calcium levels are 
more vulnerable to aluminum toxicity than those without.

The findings of the current study highlight the need for the close monitoring of aluminum levels in patients 
on CHD, even in those with aluminum levels below 20 ng/mL, as recommended by the KDOQI. Certain prod-
ucts containing aluminum that are commonly administered to dialysis patients include aluminum-containing 
phosphate binders and antacids, iron- and calcium-containing medications, calcitriol, vitamin B complex, eryth-
ropoietin, and insulin10,11,38,39. The first step in the prevention of aluminum toxicity is minimizing exposure to 
these medications, particularly aluminum-containing phosphate binders. Moreover, intensive hemodialysis (six 
times per week for 4–6 weeks) with a high-flux artificial kidney can efficiently remove aluminum12,40. Finally, the 
efficacy of early deferoxamine therapy still requires further evaluations to ascertain its benefits and risks. The 
KDOQI guidelines suggest the deferoxamine stimulation test and initiation of therapy in patients with serum 
aluminum levels of more than 20 ng/mL12.

Our study has several limitations. First, this was a single-center retrospective study; therefore, these findings 
may not be generalizable to all patient populations on CHD. Further multicenter studies as well as those including 
subjects from different ethnicities are needed to confirm our findings. Second, we only assessed baseline covariates 
to predict mortality, which might have resulted in biased estimates for associated variables that were time-varying 
predictors. Third, unstimulated serum aluminum level was used as the predictor, which may only reflect recent, 
limited exposure to aluminum and cannot provide information on the actual aluminum burden41. However, it 
is an easy and noninvasive approach to assess aluminum loading in patients on CHD, aside from bone biopsy 
and the deferoxamine stimulation test. Finally, data on the history of aluminum-containing medication exposure 
were unavailable in this cohort. However, we used serum aluminum level as the predictor, as higher frequency of 
aluminum exposure would lead to higher serum aluminum levels. Despite these limitations, the current study has 
several strengths. First, the follow-up period was long enough to include enough patients who reached the primary 
outcome. Second, adjustment was possible for several well-established factors related to mortality in dialysis.

In conclusion, we identified an independent association of a high aluminum level (≥6 ng/mL) and all-cause 
mortality in patients on CHD. Moreover, our results suggest a dose-dependent effect of serum aluminum levels 
on mortality and implicate that serum aluminum levels should be maintained as low as possible in patients on 
CHD. However, further study is still needed to clarify the benefits and harms of lowering serum aluminum levels 
in CHD patients in whom serum aluminum levels are within the acceptable range (below 20 ng/mL).

Data Availability
All data generated or analysed during this study are included in this published article (Supplementary Informa-
tion files: S1 dataset).
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