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Genome instability is a hallmark of tumors and is involved in proliferation, invasion,
migration, and treatment resistance of many tumors. However, the relationship of
genome instability with gliomas remains unclear. Here, we constructed genome
instability-derived long non-coding RNA (lncRNA)-based gene signatures (GILncSig)
using genome instability-related lncRNAs derived from somatic mutations. Multiple
platforms were used to confirm that the GILncSig were closely related to patient
prognosis and clinical characteristics. We found that GILncSig, the glioma
microenvironment, and glioma cell DNA methylation-based stemness index (mDNAsi)
interacted with each other to form a complex regulatory network. In summary, this study
confirmed that GILncSig was an independent prognostic indicator for patients,
distinguished high-risk and low-risk groups, and affected immune-cell infiltration and
tumor-cell stemness indicators (mDNAsi) in the tumor microenvironment, resulting in tumor
heterogeneity and immunotherapy resistance. GILncSig are expected to provide new
molecular targets for the clinical treatment of patients with gliomas.
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INTRODUCTION

Glioma is the most common primary central nervous system tumor in adults and accounts for
approximately 80.8% of all malignant central nervous system tumors (Ostrom et al., 2020).
Mutations in epigenetic regulatory genes contribute to the formation of different subtypes of
gliomas, resulting in very limited effects of conventional treatments (Ostrom et al., 2014; Berghoff
et al., 2017). Among them, glioblastoma is the most malignant type of glioma and has the worst
prognosis. Even with standardized treatment, the median survival time remains less than 2 years
(Stupp et al., 2009; Tan et al., 2020). Patients with functional-area or end-stage tumors often exhibit
neurological symptoms caused by tumor space-occupying effects, which may seriously affect the
quality of life and health of patients (Lapointe et al., 2018). In recent years, with the rapid
development of genomics, there has been a greater understanding of the pathogenesis of glioma
(Berger and Mardis, 2018). Some new treatments have been applied clinically, but most gliomas
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remain insensitive or tolerant to these treatments (Nduom et al.,
2015; Jackson et al., 2019). This may be due to a lack effective
molecular targets (Lee et al., 2018). Therefore, to improve the
prognosis of patients and guide molecular therapy for clinical
glioma, there is a need to identify new molecular markers.

Genome instability is an important factor for genome diversity
and natural selection and is also a basic characteristic of tumor
formation (Negrini et al., 2010; Tubbs and Nussenzweig, 2017).
Moreover, genetic instability is widely involved in the occurrence
and development of tumors and is related to patient prognosis
(Ottini et al., 2006). For example, Koschmann et al. found that
ATRX loss can increase glial genome instability and promote
tumor progression (Koschmann et al., 2016). Zhang et al. found
that high expression of the gene module co-expressed with
CDC20 is closely related to chromosome instability and may
be a potential molecular target for the treatment of glioma (Zhang
et al., 2019). In recent years, some long non-coding RNAs
(lncRNAs) have also been found to be closely related to
genome instability and tumor progression. For example, Zho
et al. found that gene instability-related lncRNAs are widely
involved in breast cancer gene instability through cell cycle
arrest and that they suggest a poor prognosis for patients (Bao
et al., 2020). Mathias et al. found that the lncRNA noncoding
RNA activated by DNA damage (NORAD) can be combined with
the RNA-binding motif protein encoded on the X chromosome
(RBMX) to maintain gene stability by forming a topoisomerase
complex (Munschauer et al., 2018). However, the relationship
between genetic instability and lncRNAs in gliomas is still
unclear.

The tumor microenvironment is a complex composed of
immune cells, stromal cells, extracellular matrix, and tumor
cells (Cui et al., 2017). During malignant progression of tumor
cells, the cells gradually dedifferentiate and acquire characteristics
of stem cells. Accordingly, the tumor immune microenvironment
and tumor stem cells are important components of tumor
proliferation, metastasis, and treatment resistance (Pitt et al.,
2016; Malta et al., 2018). Studies have also found that cancer stem
cell-like characteristics can affect the mutation status of
oncogenes and tumor suppressor genes, thereby increasing
genome instability (Zhang et al., 2020). Genome instability
leads to increased tumor mutation burden, which makes it
easier for immune cells to recognize and promote immune cell
infiltration, reduce tumor purity, and increase tumor tissue
heterogeneity (Mouw et al., 2017; Zhang et al., 2017). In view
of the intricate relationship among genome instability, tumor
microenvironment, and tumor cell stemness, understanding the
underlying pathogenesis may help develop new strategies for
tumor treatment. Therefore, it is particularly important to
investigate the mechanisms related to glioma genome
instability (Sansregret et al., 2018).

In the current study, we constructed a genome stability and
gene instability framework based on somatic mutation data of
glioma and found 23 lncRNAs related to genome instability. We
then identified seven genome instability-derived lncRNA-based
gene signatures (GILncSig). Multiple platforms were used to
verify that the GILncSig were closely related to patient
prognosis and clinical characteristics. We also analyzed the

relationship between the GILncSig, glioma microenvironment,
and glioma cell stemness index to help develop new strategies for
the clinical treatment of patients with glioma. Through
laboratory-based experiments and analysis of data from the
TICA and pRRophetic databases, we showed that patients in
the high-risk group were relatively insensitive to immunotherapy
but were relatively sensitive to treatment with cisplatin and
rapamycin. GILncSig are expected to provide new molecular
targets for the clinical treatment of patients with gliomas.

MATERIALS AND METHODS

Data Extraction
Clinical characteristics, gene expression matrix, and somatic
mutation information of 698 glioma patients were extracted
from The Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov/). Furthermore, clinical information and
data on the lncRNA expression levels of 693 glioma specimens
were extracted from the Chinese Glioma Genome Atlas (CGGA)
mRNAseq_693 database and 325 glioma specimens from the
CGGA mRNAseq_325 database (http://www.cgga.org.cn/) (Bao
et al., 2014; Wang et al., 2015). Information on the stemness
indicators of glioma cells, including the stemness index based on
mRNA expression (mRNAsi), DNA methylation-based stemness
index (mDNAsi), and epidermal growth factor receptor
messenger RNA expression (EGFR-mRNA), was obtained
from published articles (Pan et al., 2019).

Genome Instability-Related lncRNAs From
Somatic Mutations
Based on TCGA data, we calcul1ated the frequency of somatic
mutations in each of the glioma specimens and sorted them in a
descending order. The first 25% of the specimens were considered
to be genome unstable (GU)-like samples and the last 25% were
considered to be genome stable (GS)-like samples. In total, 23
lncRNAs were identified via screening significance analysis of
microarrays according to log-fold change (logFC) expression
differences (logFC >3 or logFC < −3; p < 0.001) (Bao et al., 2020).

Construction of the GILncSig Model
All the glioma samples were randomly assigned to two
cohorts—332 samples in the test group and 335 samples in
the training group. Seven lncRNAs related to prognosis were
screened from the training group through univariate and
multivariate Cox regression analyses, and a prognostic model
was constructed.

GILncSig (risk score) � ∑
n

i�1
coef (ln cRNAi) × exp r(ln cRNAi)

In the model, GILncSig was a prognostic risk score for patients
with glioma, lncRNAi represented the i-th independent
prognostic lncRNA, expr (lncRNAi) was the expression level
of lncRNA in the patient, and coef (lncRNAi) represented the
contribution of lncRNAi to the prognostic risk score obtained
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from regression coefficients of multivariate Cox analysis. The
median score of patients in the training group was used as a risk
cutoff value and used to separate patients into high-risk and low-
risk groups (Bao et al., 2020).

Evaluation of the GILncSig Model
The Kaplan–Meier method and log-rank test were used to
evaluate the prognosis of glioma patients under different
grouping conditions (Mo et al., 2020). Differences in the
instability genes in GILncSig patients (high-risk vs. low-
risk) were assessed using the Wilcoxon test. To determine
whether GILncSig were independent prognostic factors,
univariate and multivariate Cox regression analyses were
performed (Li et al., 2019). The performance of GILncSig
was evaluated using a time-dependent receiver operating
characteristic (ROC) curve (Mandrekar, 2010). The
relationships between clinical features and GILncSig were
assessed using the Wilcoxon test or Kruskal–Wallis test.
Differences in the gene mutation frequency between the
high-risk and low-risk groups were assessed using the Chi
Square test. Principal component analysis of glioma samples
was completed using the scatterplot3d package (Duforet-
Frebourg et al., 2016). The correlation circle graph between
lncRNAs was drawn using the corrplot package.

Tumor Immune Microenvironment and
GILncSig
Relationships between gene mutations and immune cell
infiltration were obtained from the TIMER: Tumor IMmune
Estimation Resource website (https://cistrome.shinyapps.io/
timer/). We scored 29 immune gene sets in the samples using
the single-sample gene set enrichment analysis (GSEA) method,
sorted them in an ascending order according to GILncSig, and
then separated them into two groups based on the median value
(Wang et al., 2020). The abundance of immune cells infiltrating
the tumor samples was calculated using the CIBERSORT method
(Ostrom et al., 2019).

Glioma Stemness Index and GILncSig
Differences in stem cell index were determined using the
Wilcoxon test and Kruskal–Wallis test for glioma and non-
tumor tissue and for different clinical features (Parks, 2018).
The tumor samples were divided into a high stem cell index group
(high) and low stem cell index group (low) according to the
median value. The Kaplan–Meier method and log-rank test were
used to evaluate the prognosis of patients with glioma. The
correlation between mDNAsi and GILncSig was analyzed
according to the Pearson correlation coefficient using
GraphPad Prism 7 software. A heatmap related to mDNAsi,
GILncSig, tumor microenvironment-related indicators, and
mutant genes was drawn using the pheatmap function.

Gene Ontology (GO) Analysis
Correlation analysis was used to screen for the top 10 mRNAs
with the strongest correlation with lncRNAs. These then
underwent GO enrichment analysis (Kim et al., 2016).

Immunotherapy Sensitivity and GILncSig
We obtained scoring data related to immunotherapy efficacy for
152 glioma cases from The Cancer Imaging Archive (TCIA)
(https://tcia.at/home; Supplementary Material S1 form). Based
on the GILncSig score, we divided the samples into high- and
low-risk groups. The relationships between immunotherapy
sensitivity and GILncSig were assessed using the Wilcoxon
test, and a violin chart was drawn using R. The pRRophetic_0.
5 package was used to predict the sensitivity of the high- and low-
risk groups to cisplatin and rapamycin chemotherapy drugs.

Clinical Specimens and Study Ethical
Consideration
We collected a total of 30 glioma samples and 5 control samples
(post epilepsy specimens) from patients of the First Affiliated
Hospital of Harbin Medical University (Harbin, Heilongjiang,
China). Consent, including signed informed consent forms, was
obtained from family members. The study was approved by the
Ethics Committee of The First Affiliated Hospital of Harbin
Medical University.

Quantitative Reverse
Transcription-Polymerase Chain Reaction
(RT-qPCR) and Immunohistochemistry
The RT-qPCR and immunohistochemistry methods have been
previously described (Wang et al., 2020). The sequences of gene
primers used in this study are listed in Supplementary Table S1.
The primary antibodies against PD-L1 and CTLA4, secondary
antibodies, and immunohistochemistry-related kits were all
purchased from Affinity Corporation.

Statistics Software
Strawberry-perl-5.30.2.1, R version 3.6.1, and GraphPad Prism 7
software were used to perform the statistical analyses and
graphing. Statistical significance was set at pp < 0.05, ppp <
0.01, and pppp < 0.001, as indicated.

RESULTS

Genome Instability-Related lncRNAs
Derived From Somatic Mutations
We performed analysis on the differences between the GU-like
samples and GS-like samples, identified 23 differentially
expressed lncRNAs (Supplementary Table S1), and generated
a heatmap to visualize the findings (Figure 1A). Through cluster
analysis, all tumor samples were divided into GU-like and GS-like
groups; the results revealed that there were significant differences
between the two groups (Figure 1B). Quantitative analysis
showed that the expression levels of somatic mutations in
CDC20, AURKA, BRCA1, and BIRC5 in the GU-like group
were significantly higher than those in the GS-like group. In
contrast, the expression levels of NORAD, UBXLN4, and ATRX
in the GU-like group were significantly lower than those in the
GS-like group (Figure 1C). We searched for and identified the
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FIGURE 1 | Screening and functional enrichment of genetic instability-related lncRNAs derived from somatic mutations in glioma patients. (A) Heatmap of
significantly different lncRNAs between genome stability and genome instability samples. The left green cluster is the genome stable (GS)-like group, and the right red
cluster is the genome unstable (GU)-like group. (B) Unsupervised cluster analysis of 23 lncRNAs related to genome instability in 698 glioma samples. (C) Boxplot of
differential expression of somatic mutations, CDC20, AURKA, ATRX, BRCA1, BIRC5, NORAD, and UBQLN4, in GS and GU. (D)Co-expression analysis of lncRNA
and miRNA based on the Pearson correlation coefficient. (E) Gene ontology (GO) function enrichment analysis of mRNA co-expressed with lncRNA.
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top 10 mRNAs exhibiting the strongest correlation with lncRNAs
andmapped the co-expression network (Figure 1D). GO analysis
revealed that the lncRNAs related to genome instability may have
been involved in the malignant behavior of gliomas through
protein-DNA complexes, DNA packaging complexes,
nucleosome and DNA-binding transcription activator activity,
and RNA polymerase II-specific (Figure 1E).

GILncSig in the Training Group
Using a machine learning model, we randomly divided 667
glioma samples into a training group (n = 335) and a test
group (n = 332). It was determined using the chi-square test
that there was no difference among the three data sets, and the
experimental results were independently verified (Table 1).
Through univariate and multivariate Cox regression analyses,
16 lncRNAs related to prognosis were identified (Supplemental
Figure S1) and seven lncRNAs related to independent prognosis
were selected from the training group (Table 2).

The GILncSig of each sample was calculated according to the
formula defined in the Materials and Methods section. The tumor
samples were divided into high-risk and low-risk groups, and a
survival curve was drawn relative to themedian value. In the training
group, the prognosis for the high-risk group was found to be worse
than that for the low-risk group (Figure 2A). Time-dependent ROC

curve analysis of the GILncSig yielded an area under the curve
(AUC) of 0.864 (Figure 2B). Ranking the GILncSig from low to
high, we determined the expression of AL035446.1, CDK6-AS1,
AL133425.1, AGAP2AS, HOTAIR, and HOXCAS; the number of
somatic mutations gradually increased, while the expression of
AC1094391 and NORAD decreased sequentially (Figure 2C).
Quantitative analysis revealed the expression of BIRC5 and
BRCA1; somatic mutation values in the high-risk group were
higher than those in the low-risk group, whereas UBQLN4
expression was relatively low in the high-risk group (Figure 2D).
Univariate analysis revealed that the GILncSig risk score was related
to the prognosis of patients with glioma (HR = 1.085, 95% CI =
1.085–1.117, p < 0.001; Figure 2E). Multivariate analysis showed
that the GILncSig risk score was an independent prognostic factor
(HR = 1.039, 95% CI = 1.015–1.063, p = 0.001; Figure 2F).

Independent Validation of GILncSig in
Glioma
To confirm the reliability of GILncSig, we conducted independent
verification using the test group and TCGA datasets. The lncRNAs
and grouping thresholds used to build the model in the training
group were applied to these two additional datasets. The
Kaplan–Meier method and log-rank test results showed that the

TABLE 1 | Clinical information for three Glioma patients groups in this study.

Covariates Type TCGA Test Train P value

n = 667 n = 335 n = 332

Age ≤42 254 (38.54%) 129 (39.09%) 125 (37.99%) 0.6989
>42 348 (52.81%) 170 (51.52%) 178 (54.1%)
unknow 57 (8.65%) 31 (9.39%) 26 (7.9 %)

WHO Grade II-III 452 (68.59%) 227 (68.79%) 225 (68.39%) 0.706
Grade IV 150 (22.76%) 72 (21.82%) 78 (23.71%)
unknow 57 (8.65%) 31 (9.39%) 26 (7.9%)

Gender Female 252 (38.24%) 124 (37.58%) 128 (38.91%) 0.9128
Male 350 (53.11%) 175 (53.03%) 175 (53.19%)
unknow 57 (8.65%) 31 (9.39%) 26 (7.9%)

IDH_status Mutant 421 (63.88%) 215 (65.15%) 206 (62.61%) 0.5124
unknow 7 (1.06%) 4 (1.21%) 3 (0.91%)
Wildtype 231 (35.05%) 111 (33.64%) 120 (36.47%)

1p19q_status Codel 167 (25.34%) 76 (23.03%) 91 (27.66%) 0.1709
Non-codel 488 (74.05%) 254 (76.97%) 234 (71.12%)
unknow 4 (0.61%) 0 (0%) 4 (1.22%)

Chi square test is applied for statistical analysis.

TABLE 2 | Multivariate Cox regression analyses of the genome instability-related lncRNAs associated with overall survival in Glioma.

Gene symbol coef HR HR.95L HR.95H p value

HOTAIR 0.176815 1.19341 1.096712298 1.298633 4.11E-05
AC109439.1 −0.43252 0.648874 0.532571848 0.790575 1.77E-05
AL035446.1 0.023758 1.024043 1.003406257 1.045104 0.022176
CDK6-AS1 0.084613 1.088296 1.025776964 1.154626 0.005062
AL133415.1 0.142271 1.152889 1.092884564 1.216188 1.82E-07
HOXC-AS1 −0.09503 0.909346 0.837458986 0.987404 0.023719
AGAP2-AS1 0.009649 1.009695 1.002666019 1.016774 0.006791

Coef, coefficient ; p < 0.05 is considered statistically significant.
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prognosis of patients with glioma in the high-risk group was
significantly worse than that in the low-risk group (Test,
Figure 3A; TCGA, Figure 3D). The expression levels of

AL035446.1, CDK6-AS1, AL133425.1, AGAP2-AS, HOTAIR, and
HOXC-AS and the number of somatic mutations gradually
increased in conjunction with an increase in the expression of

FIGURE 2 | Prognostic model of the genome instability-related lncRNA signature (GILncSig) in the training (Train) group. (A) Survival curve of patients based on the
GILncSig high- and low-risk groups in the Train group. (B) Time-dependent ROC curves analysis of the GILncSig at 1 year. (C) LncRNA expression patterns and
distribution of somatic mutations and NORAD expression with increasing GILncSig scores. (D) Distribution of cumulative somatic mutations, BRCA1, UBQLN4, and
BIRC5 expression in the high- and low-risk groups of glioma patients. Statistical analysis was performed using the Mann–Whitney U test. Univariate (E) and
multivariate (F) analyses of the risk score (GILncSig) were related to the prognosis of patients with glioma.
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GILncSig, while the expression levels of AC1094391 and NORAD
decreased (Test, Figure 3B; TCGA, Figure 3E). Further
quantification revealed that the somatic mutation value in the
high-risk group was higher than that in the low-risk group, while

the opposite was true for UBQLN4 (Test, Figure 3C; TCGA,
Figure 3F). The time-dependent ROC curve analysis also
confirmed that GILncSig had clinical diagnostic value in the test
group and TCGA datasets (Test, AUC = 0.881, Supplementary

FIGURE 3 | Performance of GILncSig was verified using the test group (Test) and TCGA data. Survival curves of patients in the high- and low-risk groups based on
the GILncSig score of the Test group (A) and TCGA (D) datasets. LncRNA expression patterns and distribution of somatic mutations and NORAD expression with
increasing GILncSig scores in the Test group (B) and TCGA dataset (E). Distribution of cumulative somatic mutations and UBQLN4 expression in the high- and low-risk
groups for glioma based on the Test group (C) and TCGA dataset (F).
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Figure S2A; TCGA, AUC = 0.896, Supplementary Figure S2B).
These results were consistent with those for the training group.

Clinical Features of GILncSig in Glioma
We extracted the clinical information for glioma samples in
TCGA and used statistical tests to analyze the correlation
between GILncSig and the clinical features. It was found that

the GILncSig risk score in wild-type IDH was higher than that in
mutant IDH (Figure 4A), 1p/19q non-codel status was higher
than the 1p/19q co-deletion status (Figure 4B), and there was no
difference between females and males (Figure 4C). The GILncSig
risk score increased with increase in patient age and the World
Health Organization (WHO) grade level (Figures 4D,E). We also
analyzed GILncSig as a risk factor for the prognosis of patients

FIGURE 4 |Relationship between GILncSig and clinical prognosis of patients with glioma derived from TCGA. The relationship between GILncSig score (risk score)
and clinical characteristics: IDH status (A), 1p19q status (B), gender (C), WHO grade (D), and patient age (E). Survival curves of patients in the high- and low-risk groups
based on the GILncSig score under different clinical characteristics: patient age (F), gender (G), 1p19q status (H), IDH status (I), and WHO grade (J).
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with different clinical symptoms, except for WHO grade IV
(Figures 4F–J). In summary, GILncSig as a marker of patient
prognosis was superior to common clinical features.

Independent Verification of GILncSig Using
the CGGA Database
Correlation analysis revealed that seven independent prognostic-
related lncRNAs regulated each other (Figure 5A). Principal

component analysis of all the samples revealed that the high-
risk and low-risk samples were coalesced with each other
(Figure 5B). The model-related linRNA was used as a marker
to distinguish the high-risk and low-risk groups (Figure 5C). Of
the seven GILncSig lncRNAs in CGGA, we found one lncRNA,
that being AGAP2-AS1. Further analysis revealed that the
expression of GILncSig increased as the WHO grade level
increased. At the same time, the expression levels of GILncSig
in the population with 1p19q non-codel, wild-type IDH, and

FIGURE 5 | Superiority of the GILncSig model. (A) Correlation analysis of lncRNAs derived from GILncSig. (B) Principal component analysis based on the
expression of all genes. (C) Principal component analysis based on the expression of lncRNAs from GILncSig. Clinical features based on one lncRNA (AGAP2-AS1) of
GILncSig signature in CGGA-mRNAseq-325 (D) and CGGA-mRNAseq-698 (E). Survival curve based on one lncRNA (AGAP2-AS1) of GILncSig in CGGA-mRNAseq-
325 (F) and CGGA-mRNAseq-698 (G). (H) One-year ROC curve based on multiple models.
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FIGURE 6 | The prognostic assessment ability of GILncSig is better than that of a gene mutation. Proportion of a gene mutation in high- and low-risk groups in the
training set, testing set, and TCGA set: IDH1 (A), ATRX (C), CIC (E), and TP53 (G). Survival curves of patients based on the GILncSig scores under different gene
mutation states: IDH1 (B), ATRX (D), CIC (F), and TP53 (H).
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patient age >42 years were higher than those in the population
with 1p19q codel, mutant IDH, patient age ≤42 years
(CGGA_mRNAseq_325, Figure 5D; CGGA_mRNAseq_693,
Figure 5E). The GILncSig high-risk group showed a poor
prognosis in the CGGA_mRNAseq_325 (Figure 5E) and
CGGA_mRNAseq_693 (Figure 5F) groups. Furthermore, we
compared GILncSig, linLncSig, and WangLncSig in all the
TCGA samples and found that our model had advantages
(Figure 5G; AUC(GILncSig) = 0.881, AUC(LinLncSig) =
0.847, and AUC(WangLncSig) = 0.829). As noted, the
GILncSig model exhibited stability and accuracy.

GILncSig Better Predicted Patient
Prognosis Than a Single-Gene Mutation
We screened the most commonmutated genes in gliomas, such as
IDH, TP53, CIC, and ATRX. It was found that variants of these
genes made a greater contribution to the genome instability
model. We further found that the mutation frequency of these
four genes in the low-risk group was higher than that in the high-
risk group of the training group, and there were differences
between the test group and TCGA dataset (Figures
6A,C,E,G). Survival curve analysis revealed that the prognosis
for the GU-like group was much worse than that for the GS-like
group in both the mutation group and wild-type group (Figures
6B,D,F,H). GILncSig was better than IDH1, TP53, CIC, and
ATRX in determining the prognosis of patients with glioma.

Tumor Immune Microenvironment and
GILncSig
We analyzed the effects of mutated genes on immune infiltration
in low-grade glioma (LGG) and glioblastoma multiforme (GBM)
and found that in LGG, IDH1 and CIC mutations inhibited the
infiltration of six types of immune cells in the glioma
microenvironment, while PTEN and ATRX mutations
promoted the infiltration of the six immune cell types
(Supplementary Figures S3A–S3D). In GBM, PTEN, TTN,
and EGFR mutations promoted immune infiltration, while
TP53 mutations suppressed immune cell infiltration. However,
no statistical significance was found (Supplementary Figures
S3E–S3H), perhaps due to the number of GBM samples being
relatively small. We concluded that gene mutations are closely
related to the immune microenvironment of tumors. Further
analysis showed that TumorPurity tended to decrease, while
ESTIMATEScore, immuneScore, and StromalScore tended to
increase as GILncSig increased (Figure 7A). We also
quantified immune microenvironment-related indicators and
found that the ESTIMATEScore, immuneScore, and
StromalScore values were higher in the high-risk group than
in the low-risk group, while TumorPurity was higher in the low-
risk group (Figures 7B–E). Expression levels of CD274 (PD-L1),
CTLA4, TIM-3, and CD96 in the high-risk group were much
higher than those in the low-risk group (Figures 7F–I). We also
quantified the immune cells that infiltrated the glioma specimens.
Macrophages (M0, M1, and M2) and CD8+ T cells infiltrated in
greater numbers in the high-risk group than in the low-risk

group, while the number of infiltrating naïve B cells, CD4+

memory resting T cells, monocytes, activated NK cells,
activated mast cells, and neutrophils decreased in the high-risk
group compared to that in the low-risk group (Figure 8A). From
the TIME website, we found that the expression of one lncRNA of
GILncSig, HORAIR, and the infiltration of immune cells were
correlated, again proving credibility for our model findings
(Figure 8B). We concluded that GILncSig affects the
distribution of non-tumor cells in the tumor immune
microenvironment and promotes tumor heterogeneity and
immunotherapy resistance.

Tumor mDNAsi and GILncSig
The mean values of mDNAsi and mRNAsi in gliomas were lower
than those in normal tissues (Figures 9A,B). In contrast, EGFR
mRNA expression in gliomas was higher than that in normal
tissues (Figure 9C). Glioma samples were divided into high-
expression and low-expression groups according to the mean-
based cut-off point. Survival analysis revealed that the prognosis
for patients in the mDNAsi high-expression group was worse
than that for patients in the low-expression group (Figure 9D),
the mRNA high-expression group had better prognosis than the
low-expression group (Figure 9E), and there was no significant
difference in EGFR mRNA expression between the two groups
(Figure 9F, p = 0.718). At the same time, mDNAsi expression
values were relatively higher for wild-type IDH, 1p19q non-codel,
and patient age >42 years than for mutant IDH1, 1p19q codel,
and patient age ≤42 years (Figures 9G–I). The mDNAsi
expression value also increased as the WHO grade level
increased (Figure 9J). Histologically, mDNAsi expression was
also relatively high in GBM (Figure 9K). Correlation analysis
revealed that the mDNAsi expression value in the sample
positively correlated with the GILncSig value (Figure 9l). We
also found that the levels of GILncSig in the high-expression
group were higher than those in the low-expression group, while
the TumorPurity value decreased. At the same time, we found
that the values of ESTIMATEScore, immuneScore, and
StromalScore increased. In the mDNAsi high-expression
group, CIC, IDH1, and ATRX were dominated by wild-type
forms, while PTEN was dominated by variants (Figure 9M). We
concluded that GILncSig, mDNAsi, and the tumor immune
microenvironment were closely related.

Immunotherapy Sensitivity and GILncSig
Based on the RT-qPCR results, AC109439.1 expression was low,
and AGAP2-AS1, HOXC-AS1, and HOTAIR expression was
high in glioma samples, while obvious differences in the
expression levels of AL133415.1, AL035446.1, and CDK6-AS1
were not observed between glioma and normal tissues
(Figure 10A). We calculated the risk scores of 30 glioma
samples using the above-noted risk model formula
(Figure 10B). Further analysis showed that patient risk scores
increased as the WHO grade level of glioma increased
(Figure 10C), while the prognosis of patients with high-risk
scores was poorer than that of patients in the low-risk groups
(Figure 10D). The risk score model demonstrated good
performance with regard to predicting the prognosis of glioma
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patients (Figure 10E, AUC1years = 0.838, AUC3years = 0.836, and
AUC5years = 0.884). Correlation analysis revealed that the risk
score was closely related to the expression levels ofCD3,CD8, PD-
L1, and CTLA4 in glioma patients (Figure 10F). Meanwhile,
immunohistochemistry results confirmed that the protein
expression of CTLA4 and PD-L1 in the high-risk group was
obvious higher than that in the low-risk group (Figure 10G).
Patients in the low-risk group showed a better response to anti-
CTLA4 treatment than those in the high-risk group, but the anti-
PDL1 effect failed to show a significant difference between the

two groups (Figure 10H). However, patients in the high-risk
group were more sensitive to cisplatin and rapamycin than
patients in the low-risk group (Figure 10I).

DISCUSSION

Based on somatic mutation data, we separated stable genome
samples from unstable genome samples. AURKA, CDC20,
ATRX, BRCA1, BIRC5, and UBQLN4, which are known to be

FIGURE 7 | Relationship between GILncSig and the tumor immune microenvironment. (A) Heatmap of glioma immune microenvironment based on the GILncSig
score. Quantitative analysis of glioma microenvironment and related indicators: tumor purity (B), StromalScore (C), immuneScore (D), and ESTIMATEScore (E).
Expression levels of immune checkpoints in the high- and low-risk groups: CD274 (F), CTLA4 (G), TIM-3 (H), and CD96 (I).
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involved in the process of gene instability (Conde et al., 2017;
Sasanuma et al., 2018; Jachimowicz et al., 2019), were used to
verify the method. Our results showed that this method could
well reflect the characteristics of genome instability. Yosef et al.
found that UBQLN4 promotes genome instability and that its
high expression indicates a poor prognosis for patients with
melanoma (Jachimowicz et al., 2019). Huang et al. found that
UBQLN4 can inhibit the proliferation of gastric cancer and that
its high expression indicates a better prognosis for patients
(Huang et al., 2019). In the current study, we found that as
the grade of glioma increased, the expression of UBQLN4
gradually decreased, and its high expression was associated

with shorter survival time of patients. Meanwhile, the
expression levels of UBQLN4 in the genome instability group
were lower than those in the genome stability group. It can be
inferred that UBQLN4 is involved in maintaining the stability of
the genome in gliomas.

The differentially expressed lncRNAs were screened in the
training group and used to construct the GILncSig. Two
independent datasets, the test group and TCGA dataset, were
used to analyze the correlation between clinical characteristics
and prognosis with regard to the model. We found that GILncSig
was closely related to both the prognosis and clinical
characteristics of patients with gliomas. The model was able to

FIGURE 8 | Relationship between GILncSig and immune cell infiltration. (A) Distribution of immune cell infiltration in the high- and low-risk groups. Red represents
the high-risk group, and green represents the low-risk group. (B) Effect of one lncRNA of GILncSig on immune infiltrating cells.
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FIGURE 9 | Relationship between the stemness index of glioma cells and GILncSig. Expression of glioma cell stemness indicators in glioma samples and normal
tissues: mDNAsi (A), mRNAsi (B), and EGFR-mRNAsi (C). Relationship between the glioma cell stemness index and overall survival of patients: mDNAsi (D), mRNAsi (E),
and EGFR-mRNAsi (F). Distribution of the mDNAsi index in patients with different clinical symptoms of glioma: IDH status (G), 1p19q status (H), patient age (I), WHO
grade (J), and histology (K). (L) Pearson correlation analysis of the GILncSig score and the mDNAsi index. (M) Heatmap of glioma immune microenvironment
based on the mDNAsi index.
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FIGURE 10 |Genome instability-related lncRNAs are closely related to the clinical prognosis and immunotherapy sensitivity of glioma. (A) Differential expression of
lncRNAs related to genome instability in normal tissue and gliomas. (B) Distribution of risk scores of 30 glioma samples. (C)Relationship between theWHO classification
and risk score (based on lncRNA related to genome instability) in glioma. (D)Relationship between the risk score and prognosis of patients with glioma. (E) Efficacy of risk
score in predicting the prognosis of patients with glioma. (F) Correlation between risk score and immune checkpoint of glioma samples. (G) Immunohistochemical
results of immune checkpoints for the high- and low-risk groups. (H)Correlation between the risk score and immunotherapy sensitivity. (I)Sensitivity of the high- and low-
risk groups to chemotherapy drugs.
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distinguish high-risk and low-risk groups and had certain
advantages compared with the previously published models
(Lin et al., 2020; Wang et al., 2020). We reviewed the
literature and found that AGAP2-AS1, HOTAIR, and HOXC-
AS1 (three lncRNAs of GILncSig) are not only related to the
malignant progression of tumors and poor prognosis of patients
(Tan et al., 2018a; Tan et al., 2018b; Dong et al., 2019) but also
affect the tumor immune microenvironment (Wang et al., 2018;
Botti et al., 2019). Therefore, clarifying the mechanism of
GILncSig in gliomas may provide new ideas for the treatment
of gliomas.

Using the TIMERwebsite, we found that gene mutations affect
the infiltration of immune cells in the tumor microenvironment.
This view is also supported by other investigators (Li et al.,
2017a). We speculate that GILncSig is closely related to the
tumor immune microenvironment. Our current analysis found
the StromalScore, immuneScore, and ESTIMATEScore each
increased in the glioma samples as GILncSig expression
increased, while TumorPurity tended to decrease. Further
evaluation showed that the StromalScore, immuneScore, and
ESTIMATEScore were higher in the high-risk group than in
the low-risk group, while the TumorPurity score was low in the
high-risk group. These findings indicated that the higher the
GILncSig expression, the greater the tumor heterogeneity
(McGranahan and Swanton, 2017). The expression of PD-L1,
CTLA4, TIM-3, and CD96 was significantly higher in high-risk
populations than in low-risk populations, indicating that
GILncSig expression was related to a high tumor immune
resistance (Li et al., 2017b; Saha et al., 2017; Xue et al., 2017;
Liu et al., 2020). Macrophage (M0, M1, and M2) and CD8+ T-cell
infiltration were significantly increased in the high-risk group
compared to those in the low-risk group, while the infiltration of
naïve B cells, CD4+ memory resting T cells, monocytes, activated
NK cells, activated mast cells, and neutrophil was significantly
reduced. In summary, GILncSig was able to promote tumor
heterogeneity and immune resistance by regulating the
infiltration and distribution of immune cells in the tumor
microenvironment and overexpressing relevant immune
checkpoints.

Through laboratory-based experiments, we showed that the
expression of immune checkpoints (CTLA4 and PDL1) in the
high-risk group was relatively high compared with that in the
low-risk group, which was consistent with the above-noted
results. Meanwhile, it was also concluded from the TCIA data
that patients in the low-risk group were more sensitive to anti-
CTLA4 treatment than patients in the high-risk group. Based on
the above-mentioned results, we can clearly conclude that
patients in the high-risk group were in a state of high
immunosuppression. As shown in Figure 7, higher levels of
CD8+ T-cell infiltration, along with higher levels of
macrophage (M0, M1, and M2) infiltration, were observed in
the high-risk group. The M1/M2 ratio is typically in a balanced
state; a break in this balance may appear as a state of suppressing
immunity. The overexpression of CTLA4 and PD-L1 on the
surface of CD8+ T cells promotes the exhaustion of the CD8+

T cells and thereby fails to exert anti-tumor immunity.We plan to
use experimental cell biology to verify our assumptions at a later

stage. This should provide new insights for the clinical treatment
of glioma.

Cancer stem cells have the ability to self-renew, produce
heterogeneous tumor cells in tumors, and play an important
role in the processes of tumor cell proliferation, invasion, and
metastasis (Christensen et al., 2017). The stem cell index describes
the degree of acquaintance between tumor cells and stem cells
(Vlashi and Pajonk, 2015). We found no significant difference
between mRNAsi and mDNAsi in tumor cells compared to those
in normal cells. In contrast, EREG-mRNAsi expression was
significantly higher in tumor cells than in normal cells. The
stemness indicators mRNAsi and mDNAsi are related to
patient prognosis and clinical symptoms. We determined that
mDNAsi and GILncSig were positively correlated. When the
tumor samples were further divided into two groups according to
mDNAsi, we found that the tumor samples of the high-
expressing mDNAsi group had relatively low TumorPurity,
compared with the low expression group, and relatively high
StromalScore, immuneScore, and ESTIMATEScore. These results
show that the stemness index of glioma cells is closely related to
GILncSig expression; additionally, it is also involved in the
regulation and distribution of non-tumor cells in the tumor
microenvironment, thereby promoting the occurrence of
immunotherapy resistance (Nassar and Blanpain, 2016).

Genomic instability is one of the main features of tumor
progression and heterogeneity (Hanahan and Weinberg, 2011;
Macheret and Halazonetis, 2015; Zhou et al., 2020). Research on
its effect has been carried out very early during the process, and
some investigators have performed preliminary experimental
research. In the current study, we constructed a prognostic
model of genomic instability, analyzed its relationship with the
tumor microenvironment, and evaluated how genomic instability
reduces immunotherapy sensitivity. However, the relationship
between lncRNAs and instability-related genes and how lncRNAs
are involved in remodeling of the tumor microenvironment
remain unclear. We strongly believe that understanding how
instability-related genes are involved in malignant progression of
glioma may provide novel insights into the clinical treatment of
glioma.

CONCLUSION

We constructed a framework of genome stability and genome
instability based on somatic mutation data to screen for
prognostic-related lncRNAs and construct the GILncSig. We
verified through multiple platforms that GILncSig was an
independent prognostic factor for patients with glioma, was
related to the clinical characteristics of the patients, and was
able to well distinguish between the high-risk and low-risk
groups. In addition, GILncSig positively correlated with the
mDNAsi of glioma cells and regulated the infiltration of
various immune cells that participate in the remodeling of
tumor immune microenvironment cells, such as CD8+ T cells
andmacrophages (M0, M1, andM2). Furthermore, GILncSig was
found to be associated with the upregulation of the expression of
immune checkpoints, such as CD274, CTLA4, CD96, and TIM-3,
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which induced tumor immunotherapy resistance. This study
provides a new perspective for the clinical treatment of glioma
with respect to lncRNAs related to genome instability, tumor
immune microenvironment, and glioma cell stemness.
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