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Accidental falls of patients cannot be completely prevented. However, timely fall detection can help prevent further complications such as
blood loss and unconsciousness. In this study, the authors present a cost-effective integrated system designed to remotely detect patient
falls in hospitals in addition to classifying non-fall motions into activities of daily living. The proposed system is a wearable device that
consists of a camera, gyroscope, and accelerometer that is interfaced with a credit card-sized single board microcomputer. The information
received from the camera is used in a visual-based classifier and the sensor data is analysed using the k-Nearest Neighbour and Naïve
Bayes’ classifiers. Once a fall is detected, an attendant at the hospital is informed. Experimental results showed that the accuracy of the
device in classifying fall versus non-fall activity is 95%. Other requirements and specifications are discussed in greater detail.
1. Introduction: The prime objective of this research project was to
design an integrated system that not only detects patient falls in
hospitals, but also accurately differentiates between different
non-fall motions, which consist of activities of daily living
(ADL). In this work, the ADL of hospital patients are limited to
staying still in bed, lying down, sitting up, standing up, and
bending. To be able to differentiate between a fall and non-fall
motion, feature extraction, and various data classification methods
were tested using signals and videos obtained for the activities
mentioned.

According to the British newspaper ‘The Telegraph’, ∼208,720
falls occurred in National Health Service (NHS) hospitals in
England by the end of October 2012, out of which 90 falls resulted
in death and >50,000 patients were left injured [1]. The article con-
firms that 900 of the mentioned cases were classified as severe with
patients suffering from hip fractures and brain injuries. Although it
is almost impossible to prevent all falls in hospitals, the timely
rescue of the patient can make a difference. Moreover, the extra
cost of taking care of patients who have suffered a fall is an
estimated £2.4 billion a year [1]. Accurate and timely fall detection
can help save hospital’s resources as well as help patients cope with
the physical and emotional consequences of a fall.

Moreover, a 27-month fall prevalence study hosted in hospitals in
the United States concluded that 315,817 accidental falls occurred
in the duration of the study, out of which >78,000 resulted in
injury and 600 resulted in death [2]. The study classified the likeli-
hood of fall based on hospital units. For instance, neurology units
have higher fall rates in hospitals, whereas patients in surgical
and intensive care units have lower rates of fall. The study discov-
ered that factors such as age, mental status, and illness severity were
associated with the likelihood of fall in patients [2]. Similar to the
article in The Telegraph mentioned earlier, this study also empha-
sises on how the length of hospital stay and costs related to fall
injuries increase due to delay in rescue times, leaving the patient
in emotional and physical trauma. However, an interesting fact
mentioned in the study is that effective from October 2008, the
federal agency within the US Department of Health and Human
Service called Centers for Medicare and Medicaid Services
(CMS), no longer pays for health care costs associated with falls
during hospitalisation, since such events should never occur
during hospitalisation [2]. Therefore, although accidental falls
cannot be prevented completely at times, this paper presents the so-
lution of a fall detection device for patients in hospitals that will
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accurately differentiate between fall and non-fall activities. The pro-
posed system will help decrease costs associated with
fall-related injuries for both the patient and the hospital and in
turn, decrease prolonged hospital stays for patients through timely
fall detection. Ensuring help arrives on time and any injuries
sustained (hip fractures, brain injuries etc.) are treated immediately,
can further prevent complications such as blood loss, bone infec-
tion, and pressure ulcers due to laying on the floor for prolonged
hours etc.

There are products available in the market designed to detect falls
for the elderly who live independently. However, the proposed
device is a low-cost alternative designed for all ages and specifically
for patients in hospitals. Moreover, the aim is to increase the
accuracy of fall detection by classifying common actions performed
by patients, such as sitting up and standing up. This was achieved
by analysing the signals obtained from a combination of sensors
whose inputs include tri-axial angular velocity, tri-axial acceler-
ation, and performing data classification using methods such as
the k-Nearest Neighbours (k-NN) and Naïve Bayes’ classifiers.
The system was integrated with a wearable camera and visual-based
classification to further improve the accuracy of fall detection.

2. Related work: Upon reviewing the literature, several existing
fall detection methods were found and compared with the
proposed solution to perform trade-off analysis. The existing
solutions are described below.

2.1. Three-dimensional (3D) accelerometer-based fall detection [3]:
This system uses a 3D accelerometer as a sensor, a microcontroller,
and a communication device. The device is placed at the waist and
it is lightweight, uses a battery power supply and has low-energy
consumption. It can detect falls as fall forward and fall backward,
and non-fall motions such as standing or sitting, lying down
with face up, face down, left lateral recumbent and right lateral
recumbent. A 3D accelerometer is an electromechanical device
that can measure dynamic acceleration and a static acceleration in
three direction coordinates x, y, and z. The output from this
device can be used to calculate the magnitude of acceleration,
value of pitch (side-to-side motion) and roll (front-to-back
motion) of a person and these are used to detect the mentioned
positions and motions. Experimental results showed that the
system can detect forward falls with an accuracy of 95% and
backward falls with an accuracy of 75%. The advantage of this
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Fig. 1 System block diagram

Fig. 2 Classification system
system is that it has low power consumption since there is only a
single sensor being used for detection. However, the disadvantage
is that it has limited accuracy and is prone to false detection
because fast motions may sometimes be detected as a fall given
that the solution only depends on acceleration quantities.

2.2. Smart Textile-based fall detection [4]: This system uses the
smart textile by Hexoskin, Carré technology, which enables
real-time remote monitoring of 3D acceleration data using
three-axis sensors, cardiac activity, and respiratory activity on
smartphones and tablets using Bluetooth. The system detects falls
and classifies them into one of 11 categories: moving upstairs,
moving downstairs, walking, running, standing, fall forward, fall
backward, fall right, fall left, lying and sitting. Feature extraction
is performed on the collected data using MATLAB and some of
these features include amplitude, minimum, maximum, mean
values, as well as the range and skew of the signal component.
The system’s main advantage is its flexibility and portability,
since it can be used in any ambient environment without
restrictions. Whereas, the main disadvantage is that it is a very
expensive solution. Smart textile costs can often reach up to and
over 3000USD. Results of experiments carried out on 13
participants show the accuracy for fall detection to be 98% and
fall orientation to be 98.5% with a system response time of
∼0.005 s.

2.3. Floor vibration-based fall detection [5]: This system consists
of vibration-based floor detectors, using a piezoelectric sensor
fixed to the floor surface of a room by means of a mass and
spring arrangement. Combined with battery-powered processing
electronics to evaluate the floor’s vibration patterns, a fall signal
is generated and a wireless transmitter sends the fall alarm to a
communication gateway. The principle behind this system is that
the vibrations on the floor generated by a human fall are
significantly different from those generated by daily activities like
walking and from those generated by objects falling on the floor.
The main advantage is that the system is completely passive and
unobtrusive to the person being monitored. However, the device
has a limited range for detection, so if the patient were to move
outside of this range, falls would not be detected. Experiments
using a dummy showed that it has a high sensitivity of almost
100% while differentiating between a human fall and a falling
object; however the difference between daily activities and human
falls were not tested extensively.

2.4. Visual-based fall detection method [6]: This system uses
vision-based approach and multivariate exponentially weighted
moving average (MEWMA) scheme to detect a fall. The user is
monitored through installed cameras and a fall or not fall decision
is made based on four major steps of the algorithm. First, data
acquisition is performed to record specific variables in order to
determine whether the person has suffered a fall. Next is the
segmentation phase which consists of extracting the body’s
silhouette from the input image sequence. In the third step,
feature extraction is performed to extract discriminative human
body attributes from the segmented frames obtained in the second
step. The collected data is then used as input in fall detection and
classification steps. Lastly, the presence and absence of a fall is
determined in the detection phase. MEWMA is the classification
technique used in this system to differentiate between a true fall
and a false alarm. Experimental results showed that the system
detects a fall with an accuracy of ∼90.5%. The advantage of this
method is that the patient need not wear any device. However, a
major drawback comes with the use of a surveillance camera,
which makes this system unsuitable due to the intrusion of
privacy. The patient may have the feeling of constantly being
watched. Additionally, the range of fall detection is limited to
visual coverage of the camera.
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3. Method: The functional requirements (F.R.) are as follows:

F.R. 1: The system should be able to detect patient falls. Non-fall
motions are classified into ADLs.
F.R. 2: The system should send a notification message when falls
occurs.
F.R. 3: The system must have low power consumption.

The non-functional requirements (N.R.) are as follows:

N.R. 1: Wearable and wireless.
N.R. 2: Compact with dimensions 8 cm × 2 cm × 2 cm.
N.R. 3: Accuracy ≥95%.
N.R. 4: Low cost (under $150).
N.R. 5: Fast response time of utmost 15 s.

The wearable system hardware consists of three basic compo-
nents, accelerometer, and gyroscope sensors, wearable camera
and a single board microcomputer. The system hardware will
henceforth be referred to as internet of things (IoT)-Multi-Sensor
Unit. The technical specifications of these elements can be found
in [7, 8, 9] along with the system block diagram depicted in Fig. 1.

As stated previously, the device differentiates between a fall and
non-fall motion. If a fall is detected, the person-in-charge will be
notified. This decision-making process requires the system to go
through a series of steps that are represented in Fig. 2 shown below.

Sensor data and camera images are collected by the
IoT-Multi-Sensor Unit. The sensor data is wirelessly transmitted
to the PC, where feature extraction and data classification is
performed on raw data in real time, using an IoT platform further
explained in section 5. Moreover, to minimise power consumption
of the device, the camera is made to operate in idle mode. It is
switched on when the gyroscope data exceeds a certain pre-set
threshold value, indicating a high risk of fall. The captured video
is passed through a visual-based classifier on the microcomputer
for image processing and the output is transferred to the IoT plat-
form present on the PC.

Finally, the IoT platform categorises motion based on results
from the classifiers. The output of the classifiers is binary where
‘logic 1’ indicates a fall. In the case of fall, a majority of the
classifiers would output ‘logic 1’, shown using the majority gate
in Fig. 2, and an automated Twitter notification would be sent to
alert the person-in-charge. Feature extraction and data classification
methods used to analyse data are explained in Sections 5.1 and 5.2.

In addition, one of the major advantages of the proposed system
is that it allows the monitoring of multiple patients using a single
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Fig. 3 React App
PC. When data is transmitted by the microcomputer, it is identified
by the PC using its IP address. Hence, the process of feature extrac-
tion and data classification for each patient is conducted in parallel.

To summarise, when power is supplied to the microcomputer, the
accelerometer and gyroscope sense its inputs: angular velocity and
acceleration in the X-, Y-, and Z-axis. Next, sensor data along with
the result of the visual classifier is transmitted wirelessly to the PC.
Feature extraction and data classification are performed on sensor
data using the IoT platform. If a majority of the classifiers output
‘logic 1’, the final output of the system indicates a fall case and
thus, a notification is sent out. Otherwise, the system will keep on
detecting and classifying other motions.

4. Hardware architecture: The proposed system’s hardware
architecture consists of the IoT-Multi-Sensor Unit, wireless
communication module, and a PC module.

4.1. IoT-Multi-Sensor Unit: This is an edge computing device,
composed of a Raspberry Pi and sensor module. The Raspberry
Pi is a credit card sized ARM-Microcomputer that has 1.4 MHz
CPU speed, 1 GB flash memory, 32 GB SD memory card, an
inter-integrated circuit communication port to interface the sensor
module, a camera interface port, Wi-Fi access point, and an
Ethernet port [7]. The sensor module comprises of two sensors,
a three-axis accelerometer user programmable range and a
three-axis gyroscope user programmable range [8] as well as a
high-resolution image and video camera [9]. Table 1 shows a list
of the Raspberry Pi peripherals used along with their current
ratings. For instance, when the system is used as a stand-alone
device, then only the gyroscope and accelerometer are operating,
however, as mentioned previously, the camera only switches on
once the sensor readings indicate a fall is likely to occur.

4.2. Communication module: It consists of Wi-Fi access points that
link the IoT-Multi-Sensor unit and the IoT platform that can be
accessed through the browser on a PC. Patients should be located
within the Wi-Fi access point range of ∼50–60m.

4.3. PC module: It is used to host the IoT platform known as
ThingSpeak [10], which supports MATLAB and allows execution
of programs in the cloud. The platform’s functionality and
relevant features are further detailed in the next section.

5. Software architecture: The software performs two main func-
tions, namely feature extraction and data classification, implemented
using ThingSpeak on the PC. The Python code on RPi extracts sensor
readings and transmits them to ThingSpeak using RESTful applica-
tion program interface (API), which is an API that uses HTTP
requests to GET, PUT, POST, and DELETE data [11].

ThingSpeak allows execution of MATLAB codes on an internet
browser using its MATLAB Analytics app. The sensor readings
along with the visual classifier result are imported to the
MATLAB code to detect a fall. This platform also has the function-
ality of linking a Twitter account so that an automated Twitter
Table 1 Peripherals and current ratings (mA) [7–9]

Peripherals Current rating, mA

gyroscope 36
accelerometer 0.5
camera 250
HDMI port 50
keyboard 100
mouse 100
wi-Fi 250
raspberry Pi-3 board 400
total consumption 1186.5
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notification may be triggered using its React app, which reacts to
the results of the MATLAB code execution, as shown in Fig. 3.
Thus, if the result of the data classifiers is a fall, a Twitter notifica-
tion is sent to the care-taker and control room.

5.1. Feature extraction: In order to classify motions as fall or
non-fall, patterns and regularities gathered from the data are
evaluated. The pattern is analysed using feature extraction. This
was carried out using the power signals of the acceleration and
angular velocity in the X, Y, and Z directions. The graphs shown
in Figs. 4 and 5 illustrate two different fall events.

Upon comparison of the two, it is observed that an increase in
power at the fall instant for each axis differs according to the type
of fall. Therefore, during a certain type of fall there could be a
large increase in a single axis whilst having no significant change
in the others. Using these results, it was concluded that acceleration
and angular velocity in each of the three axes would have to be
utilised in order to detect fall accurately. Therefore, the used
features are as follows:

† Tri-dimensional acceleration signal power
† Tri-dimensional angular velocity signal power

5.2. Classifiers: Once the six features that are to be extracted from
the sensor data were decided, they had to be utilised to classify
whether an event is a fall or not. In order to choose a classifier,
extensive research was carried out to determine the classifier with
the highest accuracy; which was found to be the k-NN method. In
an implementation of fall detection classification it was observed
that there are several sophisticated classification algorithms
available, however, for this research using k-NN classifier was
sufficient due to the ease of implementation and relatively high
accuracy [12]. To improve the fall detection accuracy, it was
decided to use the Naïve Bayes’ classifier as a second classifier
working in parallel with the k-NN classifier.
Fig. 4 Fall case 1
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Fig. 5 Fall case 2
Lastly, a visual-based classification method was also used in
order to classify a motion as a fall or non-fall based on the visual
information gathered by the wearable camera. Detailed explanations
of the working of the three chosen classifiers are provided in the
following sections.
5.2.1 k-NN classifier: The k-NN classification method is a type of
lazy learning, also known as instance-based learning. The lazy
learning algorithm, instead of performing explicit generalisation,
compares new testing data with data collected in training, which
are stored in memory [13]. When predicting a class for new
testing data, the distances or similarities between this test data
and the training data is computed to make a decision [13]. To
implement k-NN, the first task was to collect training data sets for
all the possible classes, which in this case were still, lying down,
sitting up, standing up, bending and fall. This was done by carrying
out 40 different trials of all classes; however, having even larger
training data sets would make the classifier more effective.
As there were six features to be taken into account, the power of
the accelerometer readings in the X, Y, and Z axes as well as the
power of the gyroscope readings in the X, Y, and Z axes, the training
and test data points exist in a 6D feature space.
The next step was to establish the value of k-NN. This is vital as

the output of k-NN is the class that has the most frequent number
of training data points amongst k of the nearest points around ‘x’.
In order to determine which points are closest, the distances
between ‘x’ and every training point have to be computed. There
are several different measures of distance that can be used and
some of these are the Euclidean distance, Hamming distance, and
Manhattan distance [14]. Since all the six features are numerical
values, the Euclidean measure is used where the distance between
‘x’ and a training point is given by the following expression [14],
where d is six

���������������
∑d
i=1

xi − yi
( )2

√√√√ (1)

Furthermore, the value of k has to be chosen appropriately because
there are problems associated with values that are too large as well
as values that are too small. Choosing k to be too small could lead to
overfitting where the classifier becomes sensitive to outliers which
could be the result of random fluctuations in the training data of a
particular class [15]. This means that any outliers are picked up
and learned as data belonging to that class [15]. Outliers do not
characterise that particular class yet even if a few of those outliers
happen to be nearest to the test point, the output will still be that
class. However, if more nearest neighbours were considered, it
would be clear that the test point actually belongs to a different
class. On the other hand, if the value of k is too large, it leads to
underfitting and defeats the basic theory behind k-NN, which is
that training points that are nearest to the test point belong to the
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same class as the test point [15]. The optimal k value can be
chosen through the process of cross-validation, which is a widely
used method in machine learning. In this method the data is split
into a number of folds so if there are n folds, then the first step of
the algorithm is to use n− 1 of the folds as training data, and to
use the single left-out fold as the test [16]. This is repeated n
times until each fold has been used as the test set. A fixed value
of k is used for every repetition and the error is calculated from
this. The same process is repeated for different values of k and
the one which gives the lowest error is the k that should be used
for the k-NN classifier.

5.2.2 Naïve Bayes’ classifier: The Naïve Bayes classifier is from a
family of probabilistic classifiers which are able to predict, given
an observation of an input, a probability distribution over a set of
classes instead of only outputting the most likely class that the
observation should belong to [17]. The Naïve Bayes classifier is
based on applying Bayes’ theorem of conditional probability and it
assumes that the value of a particular feature is independent of
the value of any other feature, given the class [18]. In this method
of classification, the same training data sets for all classes that are
used for k-NN is used again. Using these data sets, the mean and
standard deviation of the classes is computed. Once these values
are obtained the probability distribution of each of the test features,
given every class can be computed (assuming they are a Gaussian
distribution) using the following equation where ‘x’ is the value of
the test feature ‘F1’ and ‘Ck’ is the class [18]

p(F1 = x|Ck ) = 1

s
����
2p

√ e−(1/2) x−m/s( )2 (2)

The next step is to calculate the evidence, which is the total probabil-
ity of all the features given each class. The evidence is given by the
following expression where k is the total number of classes and n is
the total number of features, which is six

p F1, . . .Fn

( ) =
∑
k

p Ck

( )
p(x|Ck ) (3)

Once these values are acquired, the posterior probability of every
class can be computed which is the conditional probability that is
assigned after the relevant evidence is taken into account. In this
context, ‘posterior’ means after taking into account the relevant
evidence related to the particular case being examined [19].
The posterior probability of a class is given by the following equation

p(Ck |F) = p Ck

( )
p(F1, . . .Fn|Ck )

p F1, . . .Fn

( ) (4)

Finally, after the posterior probability of each class is computed,
the result of the Naïve Bayes’ classifier is the class with the higher
posterior probability.

5.2.3 Visual-based classifier: A visual-based classifier is used to
analyse the video recorded by the camera module. As expected,
during a fall motion the camera will record abrupt changes in the
external environment, whereas, a gradual change in the surround-
ings will be seen by the camera when a patient is carrying out
ADLs. Therefore, the classifier measures the quantitative difference
between frames rather than analysing each frame individually.
The recorded video is broken down into frames and the classifier
calculates the percentage difference between consecutive frames.
If the calculated difference exceeds the threshold value, the
motion is categorised as a fall. Through several trials, the threshold
value for a fall motion was found to be 7%.

An easy way to comply with the requirements stated in the
Author Guide [1] is to use this document as a template and
simply type your text into it. PDF files are also accepted, so long
as they follow the same style.
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6. Implementation: To validate the proposed hardware design and
software algorithms, an experimental setup, shown in Fig. 6 was
developed. The device is placed in a leather casing, which is attached
to a Velcro strap. As shown in the figure, the wearable unit is strapped
to the body such that the device is placed over the subject’s chest.
The strap ensures that the sensors are firmly attached to the body
to prevent inaccurate readings, and thus false alarms.

The device is autonomous once switched on and the codes in
Python and MATLAB are executed. A power bank was used to
power the device, taking into account the total consumption of
the peripherals mentioned in Table 1.
Fig. 8 Gyroscope readings for a sit up motion

Fig. 9 Accelerometer readings for a fall motion
7. Results: Test data were obtained using the same methods used for
collecting training data. After carrying out the five non-fall motions
many times, it was observed that the gyroscope and accelerometer
readings in any axis do not exceed values larger than ±120 rad/s
and ±1.5 m/s2, respectively, as shown in Figs. 7 and 8.

Hence, these values were chosen as the threshold at which the
camera starts recording.

When a fall motion occurs as illustrated in Figs. 9 and 10, the
time of fall was apparent, as there was a significant increase in
the sensor readings. For the specific case shown in the figures,
though the accelerometer readings did not exceed the threshold of
±1.5 m/s2, the gyroscope readings exceeded the threshold of
±120 rad/s by a large margin. This significant increase allows the
kNN and Naïve Bayes’ classifiers to differentiate the fall from
other non-fall motions.

Exceeding the threshold values implies that the camera records a
video and a fall results in larger differences between frames in this
video. When this difference surpasses 7%, the visual-based classi-
fier gives a binary output representing a fall as shown in Fig. 11.
When the system detects a fall, an automatic Tweet, shown in
Fig. 12, is sent out to notify an attendant or caretaker.

To determine the accuracy of the system, an experiment was con-
ducted while the wearable IoT unit is attached to the subject. Ten
male and female human subjects aged 20–24 years old participated
in the experiment. The subjects were instructed to perform six
different common actions (movements) including standing still,
laying down, sitting up, standing up, bending and falling. Falling
was performed from still, sitting up, standing up, and bending
Fig. 6 Wearable Multi-Sensor unit attached to the subject’s chest

Fig. 7 Accelerometer for a sit up motion
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positions. Hundred trails were executed by each subject. The out-
comes of which are shown in the table below. The expected
result for all the non-fall motions was negative, while the expected
result for a fall case was positive. In the non-fall scenario, a true
negative (TN) indicates correct detection of the absence of a fall,
whereas a false positive (FP) indicates a false alarm. For fall case,
Fig. 10 Gyroscope readings for a fall motion

Fig. 11 Visual-based classifier result

Fig. 12 Twitter notification
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Table 2 Trial outcomes

Position Trials Expected results TP TN FP FN

null (still) 100 negative — 100 0 —

lying down 100 negative — 97 3 —

sitting up 100 negative — 96 4 —

standing up 100 negative — 93 7 —

bending 100 negative — 86 14 —

fall (still) 100 positive 100 — — 0
fall (lying down) 100 positive 98 — — 2
fall (sitting up) 100 positive 100 — — 0
fall (standing up) 100 positive 93 — — 7
fall (bending) 100 positive 90 — — 10
total 1000 — 481 472 28 19
a true positive (TP) indicates correct detection of a fall, whereas
false negative (FN) indicates incorrect detection.
TP, TN, FP, and FN were used to calculate the accuracy,

sensitivity, and specificity of the system. Sensitivity is the ability
to detect a correct result when the activity (fall) is present and
specificity is the ability to detect a correct result when the activity
is absent [20]. The used formulae are as follows (Table 2)

Sensitivity = TP

TP+ FN
100% (5)

Specificity = TN

TN+ FP
100% (6)

Accuracy = TN+ TP

TN+ TP+ FN+ FP
100% (7)

According to the formulas above, sensitivity, specificity, and
accuracy were calculated to be 96.2%, 94.4%, and 95.3%,
respectively.

8. Limitations: ThingSpeak limits the update rate of data to one
reading/second, whereas the motion sensing chip collects and trans-
mits data at a rate of ten readings/second. This difference in data rates
at the transmitting and receiving ends may result in loss of readings
and therefore, reduced overall system accuracy. Furthermore, the
MATLAB compute time in ThingSpeak is restricted to 20 s; hence
it does not allow the use of an infinite loop in the code, making it
necessary to manually run the program every time a new reading is
received. To resolve this issue, a Macro recorder and auto clicker
was installed on the browser to run the program continuously.

9. Conclusions and recommendations: A compact, cost-effective
and wearable wireless fall detection system was designed and devel-
oped. Patient data is transmitted in real time to the hospital server,
thus enabling caretakers to remotely monitor patient status and
receive twitter notifications when falls occur. It also permits monitor-
ing of multiple patients simultaneously using the unique IP address of
each device, making the system scalable and distributive. Moreover,
the system is stand-alone, therefore its application is not only limited
to hospital beds. Elderly who live alone can also use it in where noti-
fications will be sent to their family members.
In order to enhance the accuracy of the system, the classifiers can

be optimised by including classes for various other non-fall actions.
Additionally, the overall size of the device can be reduced by
replacing the power bank with rechargeable lithium batteries and
hence increasing the patient’s comfort level. The size of the
device can be further reduced by a factor of two and the weight
by a factor of five using the Raspberry Pi Zero instead of
Raspberry Pi 3 Model B [21].
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