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All graphs of order n with partition dimension 2, n —2, n— 1, or n have been characterized. However, finding
all graphs on n vertices with partition dimension other than these above numbers is still open. In this paper, we
characterize all graphs of order n > 11 and diameter 2 with partition dimension n — 3.

1. Introduction

Characterizing all graphs of order n with partition dimension k is
a difficult problem. There are few results concerning this problem, in
particular for k equal to 2,n or n—1 [1] and n—2 [2]. In this paper, we
characterize all graphs with partition dimension n — 3.

Let G be a connected graph. The distance of two vertices u,v € V(G),
denoted by d(u,v), is the length of shortest paths connecting u and v
in G. For a subset of vertices .S C V(G), the distance between u € V(G)
and S is defined by d(u,S) = min{d(u,x) : x € S}. The eccentricity of a
vertex u € V(G), denoted by ecc(u), is the maximum distance of vertex
u to any other vertices of G, namely ecc(u) = max{d(u,v) : v € V(G)}.
The diameter of G, denoted by diam(G), is the maximum eccentricity of
the vertices in G, or in short diam(G) = max{ecc(u) : u € V(G)}. Further-
more, u € V(G) is called a peripheral vertex if ecc(u) = diam(G).

Let W = {w;,w,,...,w,} be an ordered set of V(G). The metric
representation of a vertex u € V(G) with respect to W is r(u|W) =
d, w),dWw,w,), ..., du,wy)). A set W is called a resolving set of G if
the metric representations of any two vertices of G are distinct with re-
spect to W. The cardinality of a minimum resolving set of graph G is
called metric dimension of G and denoted by dim(G). Some results re-
lated to the metric dimension can be seen in [3, 4].

In [5] Chartrand et al. presented another kind of metric dimension
concept, as follows. Let IT= {5}, S, ..., S, } be a partition of a connected
graph G. Define the partition representation of a vertex u € V(G) with
respect to I1 by r(u|Il) = (d(u, S)),d(u,S,), ...,d(u,S;)), where d(u,S;) =
min{d(u,x) : x € S;} for 1 <i <k. If any two vertices u,v € V(G) have
distinct representations with respect to I1, namely r(u|II) # r(v|II), then
such a partition II is called a resolving partition of G. The partition dimen-
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sion of G, denoted by pd(G), is the smallest cardinality of a resolving
partition IT of G.

In general, for a connected graph G we have pd(G) < dim(G) + 1. It
is also natural to think that if two vertices u,v € V(G) have the same
distance to all other vertices V(G) \ {u, v}, then these two vertices must
be contained in distinct elements of any resolving partition IT of G. This
result is shown as follows.

Remark 1 ([1]). Let IT be a resolving partition of G and u,v € V(G). If
d(u,x)=d(v,x) for any x € V(G) \ {u,v}, then u and v belong to distinct
elements of II.

In [1], Chartrand et al. characterized all connected graphs G of order
n with partition dimension 2,n or n — 1. They showed that for n > 2, the
only graph with partition dimension 2 is a path and the only graph G
with pd(G) = n is the complete graph. Furthermore, they characterized
all graphs of order n > 3 with partition dimension » — 1, namely K, ,_;,
K, —e for any edge e € E(K,), or K| + (K, UK, _,). The characterization
of connected graphs on n > 9 vertices with partition dimensions n—2 has
been done by Tomescu [2]. He showed that there are only 23 graphs G
of order n >9 with pd(G)=n -2, namely K, , ,, K, + K, », K, — E(P;),
K, — E(K3), K, — E(Py), K; + (K; U(K,_, — ), K, — E(Cy), K ,_| +e,
K, - EQK)), K, ., —e, K, — E(K, 3 +e), G|,G,, ...,G,, where e is any
edge. The detail definitions of graphs G,...,G,, can be found in [2].
However, in this paper we prove that two of these above graphs, namely
K, +e and K, — E(K, 5 + e), have partition dimension n —3 (not
n—2). Furthermore, it is easy to verify that the graph F on n > 9 vertices
obtained by connecting a vertex v to end vertex e of K,_, — e for any
edge e € E(K,_,), has partition dimension n — 2.
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In this paper, we study graphs of order » with partition dimension
n —3. From [1], for all connected graphs G we have that pd(G) <n—
diam(G) + 1. Then, the graph G with partition dimension n — 3 must
have diameter 2,3 or 4. In this paper, we characterize all connected
graphs on n > 11 vertices with diameter 2 and partition dimension n— 3.
We will show that there are 114 non-isomorphic such graphs.

2. Main results

Before presenting the main results, we provide a useful property as
follows.

Lemma 1. For n > 8, let G be a graph on n vertices. If G does not contain
the following three configurations:

(1) five vertices a,ty,t,,t3 and t, forming at,,at, € E(G) and at3,at, &
E(G),

(2) six vertices a,b,t,t,,t; and t, forming at,bt; € E(G) and at,,bt, &
E(G), and

(3) four vertices t,t,,t; and t, forming t|t, € E(G) and t,14,t,t3,131, &
EG),

then G is isomorphic to either K,, K,, Ky, 1, K, UK}, K, — E(Ky,_5),
or K, — e for any edge e € E(K,).

Proof. Let K, be a maximum clique of G for some integer r € [1,n]. We
consider four following cases.

Case 1. r=1 or r = n. We can easily see that G= K, or G =K,
respectively.

Case 2. r=2. Let V(K,) = {x,y} and V(G) - V(Ky) ={v; : 1 <i<
n—2}. If all vertices of K, are not adjacent to any vertex of G — K,, then
any two vertices of G — K, must be adjacent, since otherwise we have
Configuration (3) in G. Hence G — K, induces K, _,, but this contradicts
that K, is the maximum clique in G. Now assume that there exists a
vertex of K,, namely a vertex x, such that x is adjacent to s vertices of
G—K,.If 1 <s<n—4, then we have Configuration (1) in G, a contradic-
tion. If s = n—3, namely xv; € E(G) for all 1 <i <n-3 and xv,_, & E(G),
then v;v;, yv; € E(G) for all 1 <i,j <n -3, since otherwise K, is not a
maximum clique in G. Hence, we also obtain that yv,_,,v;v,_, € E(G)
for any 1 <i <n -3, if not we have Configuration (1) in G. However,
G =K, , UK; and it contains Configuration (3) in G, a contradic-
tion. Otherwise, assume that s = n — 2. Note that v;v > y0; & E(G) for any
1<i,j <n-2, since otherwise K, is not a maximum clique of G. Thus
we obtain that G = K ,_;.

Case3.3<r<n-2.LetV(K,)={x; : 1<i<r}and V(G-K,)={v; :
1 <i<n-r}. Note that in this case, any vertex of K, is not adjacent to
at most one vertex of G — K, and any vertex of G — K, is not adjacent
to at least one vertex of K,, since otherwise we have Configuration (1)
or K,,; in G, respectively, a contradiction. Therefore, without loss of
generality we can assume that x;v; ¢ E(G) for all 1 <i <min{r,n—r}
and x;v; € E(G) for all i # j, 1 <i,j <min{r,n —r}. However, it leads us
to Configuration (2) in G, a contradiction.

Case 4. For r=n—1, let V(G — K,_;) = {v}. Note that a vertex v is
either adjacent to 0, 1 or n — 2 vertices of K,,_,, since otherwise we have
Configuration (1) or K,,_; is not a maximum clique of G, a contradiction.
If v is not adjacent to any vertex of K,_;, then G= K,_; UK. If v is only
adjacent to a single vertex of K,,_;, then G = K, — E(K| ,_,). Otherwise,
v is adjacent to n — 2 vertices of K,_; and we obtain G= K, —e. [

In the following result, we prove that there are exactly 114 non-
isomorphic graphs G on n > 11 vertices and diam(G) = 2 such that
pd(G)=n-3.

Theorem 1. Let G be a connected graph of order n > 11 and diam(G) = 2.
Then pd(G)=n—3 if and only if G is one of the following graphs:
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(i) K,_; + H, where H is any graph on three vertices,

(ii) K, +(K,_4 U H), where H is any graph on three vertices,
(iii) K, + (K,_3 —eVU H), where H is any graph on two vertices,
(iv) K, +(K,,_4 VU H), where H is any graph on two vertices,

(v) K,—E(K,,_4UH), where H is any connected graph on three vertices,
(vi) K,_s+ (K, U H), where H is any connected graph on three vertices,
(vii) K, — E(H), where H is any connected graph on four vertices other

than C, and P,
(vii) K, — E(H), where H is either Cs, Ps, K,3, K, UK3, K, U P3, 3K,,
K,uC,, or K, U Py,
(i) K, + Ky, UK)),
x K, - E(Kl,y,_4);
(xi) Ky, +e,
(i) K, — E(K} ,_3 +e),
(xiii) Graphs H,, H,, ..., Hg.

Proof. If G is one of the above graphs, then it is easy to verify that
pd(G) =n — 3. Now we are going to show the other direction. Let
G be a connected graph of order n > 11 where pd(G) =n — 3 and
diam(G) = 2. Let x be a peripheral vertex of G with ecc(x) = 2. De-
note N,(x) as the set of vertices of G with distance i to a vertex
x, for i =1,2. Let N(x) 2 {u;,uy,uz,us} and Ny(x) 2 {v), 0y, 05,04}, If
min{| N, (x)], |[N(x)|} >4, then (X)(u,v;)(uy, vy)(u3, 03)(uy, V)7 is a re-
solving (n — 4)-partition, for a singleton partition = containing the
vertices V(G) \ {x,u;,uy,uz,uy,01,05,03,04), @ contradiction. There-
fore, min{|N;(x)|,|N,(x)|} < 3. We consider the following subcases:
(A) N =3, [INy(®)|=n—4; (B) I[N;(x)| =n—4, [N;(x)|=3; (C)
[N| ()] =2, [Ny(x)| =n=3; (D) IN;(x)| =n =3, [Ny(x)| =2; (E) [N (x)| =
I, INy(x)=n—2and (F) |[N;(x)| =n—=2, |[N,(x)| = 1.

(A) N{(x)] =3 and |Ny(x)| =n—4. Let N (x) = {u;,us,uz}. If Ny(x)
contains 3 vertices a, b, ¢ such that ab € E(G) and ac ¢ E(G), then we can
define a resolving (n — 4)-partition of G, namely (x)(a)(b, c)(u;,t|)(u,,1,)
(u3,t3)7, for t,t,,t3 € Ny(x) \ {a,b,c} and a singleton partition = of the
remaining vertices, a contradiction. Therefore, N,(x) induces (A1) K,_4
or (A2) K,_y4.

(A1) N,(x) induces m. If there exists a vertex of N,(x), namely
uy, with u;a ¢ E(G) and u, b € E(G) for some a,b € N,(x), then we have
a resolving (n — 4)-partition in G, namely (x)(a, b)(uy,1)(uy,1,)(u3,13)7,
for t,,1,,13 € N,(x) and a singleton partition r, a contradiction. There-
fore, any vertex of N,(x) are adjacent to all vertices of N,(x) or some of
them are not adjacent to any vertex of N,(x). If u; € N|(x) is adjacent
to all vertices of N,(x) and u, € N,(x) is not adjacent to any vertex of
N,(x), then we can also define a resolving (n —4)-partition of G, namely
(uy, a;)(uy, ay)(us, a3)(x, ay)m, for ay, a,,a3,a, € N,(x) and a singleton par-
tition z of the remaining vertices, a contradiction. Therefore, we can
conclude that any vertex of N,(x) are adjacent to all vertices of N,(x).
We obtain that G = K3 ,_; if none of vertices of N,(x) are connected, or
G = (K, UKy) + K, _; if Nj(x) induces K; UK,, or G = Py + K,,_; if N|(x)
induces P;, or G = K3 + K,_5 if any two vertices of N,(x) are connected
(Fig. 1).

(A2) N,y(x) induces K,_,. If there exist four distinct vertices
ty,15,13,14 € Ny(x) such that u;1,ut, € E(G) but u,t5,u,t, ¢ E(G), then
we have a resolving (n — 4)-partition of G, namely (x)(u)(t;,#3)(t5.24)
(uy,15)(u3, tg)7, for some 5,15 € N, (x)\ {t},1,,13,1,} and a singleton parti-
tion z, a contradiction. Therefore, any vertex of N|(x) is either adjacent
to at most one vertex of N,(x) or it is adjacent at least to n — 5 vertices
of N,(x). Note that for any ¢t € N,(x), there exists a vertex u; € N,(x)
such that u;r € E(G), since otherwise diam(G) = 3.

Remark 2. Let {a,b,c} C N,(x). If we have one of the following five
conditions in G:

1. u, is not adjacent to any vertex of N,(x), u, is only adjacent to
vertex a in N,(x), and u; is adjacent to n—5 vertices of N,(x)\ {a},
or
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Table 1

Adjacency of three vertices u;,u,,u; € N,(x) to the vertices of N,(x).
u, 0 0 0 0 1 1 1 n—>5 n—>5 n—4
u, 0 1 n—->5 n—4 1 n—->5 n—4 n—->5 n—4 n—4

u3 n—4 n—4 n—4 n—4 n—4

n—4 n—4 n—4 n—4 n—4

Fig. 1. Graph (a) K;,,_;, (b) (K, UK,)+ K, 3, (¢) P+ K,_; and (d) K; + K, _;.

K,,,4 Kn—'i

(a (b)

Fig. 2. Graph (a) K, + (K,_, U P;), (b) K, + (K,_, UKj3), (¢) Hy; and (d) Hyy.

2. u; is not adjacent to any vertex of N,(x), u, is adjacent to n—5
vertices of N,(x)\ {a}, and u; is adjacent to n—5 vertices of N,(x)\
{b}, or

3. u, is only adjacent to vertex a in N,(x), u, is only adjacent to vertex
b in N,(x), and u; is adjacent to n — 5 vertices of N,(x) other than
a or b, or

4. u; and u, are only adjacent to vertex a in N,(x), and u; is adjacent
to n—5 vertices of N,(x)\ {a}, or

5. u; is only adjacent to vertex a in N,(x), u, is adjacent to n—5
vertices of N,(x) \ {s} where s € {a,b}, and u; is adjacent to n -5
vertices of N,(x)\ {c}, or

6. u; is adjacent to n — 5 vertices of N,(x) \ {a}, u, is adjacent to
n—>5 vertices of N,(x)\ {s}, and us3 is adjacent to n — 5 vertices of
N,(x)\ {t}, where s, € {b,c},

then there exists a resolving (n—4)-partition of G, namely (a)(b)(c)(u;,t;)
(uy, 12)(x,u3,13)7 for t1,15,13 € N, (x)\ {a,b,c} and a singleton partition =,
a contradiction.

By the previous facts and Remark 2, the adjacency of three vertices
uy,uy,uz € Ny(x) to the vertices of N,(x) are shown in the Table 1.

(A2.1) u; € N, (x) is not adjacent to any vertex of N,(x). If u, € N (x)
is also not adjacent to any vertex of N,(x), then u; is adjacent to all
vertices of N,(x) and u,us,u,u; € E(G), since otherwise diam(G) = 3. We

an4 Kn—ri

obtain that G = K| + (K,_4 U P3) if uju, ¢ E(G) or G= K| +(K,_4 U K3)
if uyu, € E(G). If u, is only adjacent to a single vertex t; € N,(x) and u;
is adjacent to all vertices of N,(x), then u u; € E(G) and u,yu; ¢ E(G),
since otherwise diam(G) =3 or (u,)(t;,1,)(u;,13)(x,u3,1,)7 is a resolving
(n — 4)-partition for t,,15,1, € No(x) \ {t;} and z is a singleton partition,
respectively, a contradiction. We obtain that G = H,; if uju, ¢ E(G) or
G = Hy, if uu, € E(G) (Fig. 2).

If u, is only not adjacent to a single vertex a € N,(x) and uj is
adjacent to all vertices of N,(x), then uu; € E(G) and u,u; € E(G),
since otherwise diam(G) =3 or (u,)(x,us3,1,)(a,1,)(u;,13)x is a resolving
(n — 4)-partition, for #,,1,,13 € N,(x) \ {a} and a singleton partition z,
contradiction. We deduce that G = Hs; if uju, ¢ E(G) or G = Hg, if
uyuy € E(G). For the remaining cases, assume that both u, and u; are
adjacent to all vertices of N,(x). Then u, is adjacent to at least one ver-
tex of u, or us, since otherwise diam(G) = 3. We obtain G as depicted in
Fig. 3 (o)-(D.

(A2.2) u; € Ni(x) is only adjacent to vertex a in N,(x). Let u, be
only adjacent to vertex b in N,(x) and u; be adjacent to all vertices of
Ny(x). If a=b or a# b, then ujy is not adjacent to both 4, and u,, since
otherwise one of (u;)(a,1;)(uy,1,)(x, U3, 13)7, OF (uy)(a,t1)(uy,t,)(x, uz,13)7,
or (u;)(uy)(a,t;)(b,1,)(x,u3,t3)x is a resolving (n — 4)-partition of G, for
11,1y,13 € Ny(x) \ {a, b}, a contradiction. We deduce G = H;5 if a=b and
uu, & E(G), or G= Hy, if a=b and uyu, € E(G), or G = Hy¢ if a# b and
uu, & E(G), or G = Hy; if a# b and u u, € E(G).

Now assume that u, is only not adjacent to a single vertex b € N,(x)
and u; is adjacent to all vertices of N,(x), so that u,u; € E(G), since
otherwise (u,)(x,us,t,)(a,t,)(uy,t3)x is a resolving (n — 4)-partition, for
1y,15,13 € Ny(x) \ {a, b}, a contradiction. If a = b, then u, is not adjacent
to at least one of u, or us, since otherwise (u;)(a,?,)(uy,15)(x,u3,t3)7 is a
resolving (n — 4)-partition, for 7,,1,,1; € N,(x) \ {a}, a contradiction. We
deduce G as depicted in Fig. 4 (e)-(g). If a # b, then u,u3 ¢ E(G), since
otherwise (u;)(u,)(a,1,)(b,t,)(x,u3,t3) is a resolving (n — 4)-partition, for
t,15,13 € Ny(x) \ {a,b}, a contradiction. We obtain G as depicted in
Fig. 4 (h)-(i).

Fig. 3. Graph (a) Hs;, (b) Hyy, (¢) Hse, (d) Hyy, (€) Hg; and (f) Hyg.
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Fig. 5. Graph (a) Hy, (b) H,;, (¢) Hy;, (d) Hy;, (e) H5 and (f) Hs.

Ky Ky

Ky

Fig. 6. Graph (a) Hy, (b) H, (c) Hyg, (d) Hy, (e) K, — E(K,,_4UK3), () K, — E(K,,_4U P;), (§) H, and (h) K, — E(K,,,_,).

For the remaining cases, let both u, and u; be adjacent to all vertices
of N,(x). Then, u; is not adjacent to at least one of u, or us, since
otherwise (u;)(a,t))(uy,15)(x,u3,t3)7 is a resolving (n — 4)-partition, for
t,15,13 € No(x) \ {a}, a contradiction. We obtain G as depicted in Fig. 4
(G)-(m).

(A2.3) u; is adjacent to n — 5 vertices of N,(x) \ {a}. Let u,
be also adjacent to n — 5 vertices of N,(x) \ {b} and u; be adja-
cent to all vertices of N,(x). If a # b then u; is adjacent to both
u; and u,, since otherwise we have a resolving (n — 4)-partition,
namely (u;)(uy)(a,t,)(b,1,)(x,u3,13)m, for t,t,,t3 € N,(x) \ {a,b}, a con-
tradiction. We obtain G as depicted in Fig. 5 (a)-(b). If a = b, then
uj,uy € E(G) or (both u; and u, are adjacent to u3), since other-
wise (u)(a, 1))y, ty)(x,us3,13)7 OF (Up)(a,t1)(uy,t,)(x,u3,13)7) is a resolv-
ing (n — 4)-partition, for ¢;,1,,13 € N»(x) \ {a}, a contradiction. We de-
duce G as depicted in Fig. 5 (c)-(f).

Now assume that both u, and u; are adjacent to all vertices of
N,(x). Then, u, is adjacent to at least one of u, or u;, since otherwise
(uy)(a, 1))y, 1) (x,u3,t3)7 is a resolving (n — 4)-partition, for #,1,,1; €
N,(x)\ {a}, a contradiction. We deduce G = H,g if u,u; ¢ E(G) and u,
is only adjacent to one of u, or u;, or G = Hg if uyu; € E(G) and u, is
only adjacent to one of u, or us, or G = H,g if u,u; ¢ E(G) and u, is ad-
jacent to both u, and us3, or G = H, if u,u; € E(G) and u, is adjacent to
both u, and us, as depicted in Fig. 6 (a)-(d), respectively.

(A2.4) All vertices of N;(x) are adjacent to all vertices of N,(x).
We deduce that G = K, — E(K;,_4 U K3) if Nj(x) induces K;, or G =
K, — E(K,,_4 U P3) if uju, € E(G) and ujuz,upu; & E(G), or G = H, if
Ny (x) induces P;, or G = K, — E(K| ,_4) if N,(x) induces K3, as depicted
in Fig. 6 (e)-(h).

(B) [N {(x)| =n—4 and |N,(x)| =3. Let N,(x) = {v},vp,03}. If N;(x)
contains three vertices a,b,c such that ab € E(G) and ac ¢ E(G),
then (x)(a)(b, c)(vy,1,)(v,,1,)(v3,13)7 is a resolving (n — 4)-partition, for
t,t5,13 € Nj(x) \ {a,b,c} and a singleton partition z of the remaining
vertices, a contradiction. Therefore, N,(x) induces (B1) K,_, or (B2)
K, 4. L

(B1) N,(x) induces K,,_,. Note that for any vertex v; € N,(x), there
exists t € N (x) such that v;t € E(G), and conversely for any 1 € N (x),
there exists v; € N,(x) such that rv; € E(G), since otherwise diam(G) = 3.
Without loss of generality, we can assume that v,a,v,b,v3¢c € E(G) for
some a, b, c € N,(x). Then, (a)(b)(c)(x,1,)(vy,1,)(vy,13)(v3,14)7 is a resolv-
ing (n — 4)-partition for #,,t,,13,74 € Ny(x) \ {a,b,c} and a singleton
partition z, a contradiction. Hence we can conclude that there exists
no graphs G with pd(G) =n —3 where N,(x) induces K,_,.

(B2) N(x) induces K,_,. If there exist four distinct vertices
a,b,c,d € N|(x) such that v,a,v,b € E(G) but v,c,v,d ¢ E(G), then
(x)(v1)(a, c)(b,d)(vy,1,)(v3,15)x is a resolving (n — 4)-partition, for ¢,,t, €
N,;(x)\ {a,b,c,d}, a contradiction. Additionally, any vertex of N,(x) is
adjacent to at least one vertex of N,(x), since otherwise diam(G) = 3.
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(e)

Fig. 7. Graph (a) H,;, (b) Hys, (¢) Hyy, (d) K, +(K,_4 UE), (e) K, +(K,_sU(Py—e)), (f) K, +(K,_, U Py and (g) K, + (K,_, UKj3).

Kuf'l

Fig. 8. Graph (a) K| +(K,_; —eU2K)), (b) K| +(K,_; —eUK,), (c) Hgs, (d) Hs;, (e) Hg and (f) Hy,.

Therefore, any vertex of v,v,,v; € N,(x) is either adjacent to 1, n —5
or n—4 vertices of N, (x). Now consider the following remarks.

Remark 3. Let {a,b,c} C N (x), v; be only adjacent to vertex a in N,(x)
and v, be only adjacent to vertex b in N;(x).

1. If a=b and v; is adjacent to n — 5 vertices of N,(x) \ {a},
then (v3)(a,1;)(t,,v,)(x,13,0;)7 is a resolving (n — 4)-partition, for
t,1,13 € Ni(x)\ {a} and a singleton partition 7, a contradiction.

2. If a= b and v; is adjacent to n—5 vertices of N, (x)\ {c¢} where c # a,
then (v))(v3)(a,t))(c,1,)(x, 13, v,)7 is a resolving (n — 4)-partition, for
t,1y,13 € Ni(x)\ {a,c} and a singleton partition =, a contradiction.

3. If a # b and v; is adjacent to n — 5 vertices of N,(x) other than a (or
similarly other than b), then (v3)(a,#,)(b, v,)(x,1,,v|)7 is a resolving
(n — 4)-partition, for 7,,7, € N|(x) \ {a,b} and a singleton partition
7, a contradiction.

4. If a # b and v; is adjacent to n — 5 vertices of N;(x) \ {c} where
c¢#a and ¢ # b, then (v3)(x,a,v,)(b,v,)(c, 1))z is a resolving (n —
4)-partition, for 1, € N|(x) \ {a.b,c} and a singleton partition =, a
contradiction.

Remark 4. Let {a,b,c} C N (x), v; be only adjacent to vertex a in N,(x)
and v, be adjacent to n — 5 vertices of N,(x)\ {b}.

1. If a= b and v; is adjacent to n — 5 vertices of N,(x)\ {c} with ¢ #a,
then (v,)(v3)(a,1;)(c,1,)(x,13,v))x is a resolving (n — 4)-partition, for
t,1,t3 € Ni(x) \ {a,c} and a singleton partition =, a contradiction.

2. If a# b and v; is adjacent to n — 5 vertices of N;(x) \ {a},
then (v,)(v3)(a,1,)(b,1,)(x,13,0;) is a resolving (n — 4)-partition for
t,1y,13 € Ni(x)\ {a,b} and a singleton partition =, a contradiction.

3. If (a # b, v; is adjacent to n — 5 vertices of N (x) \ {b} and v,v; €
E(G) (or similarly v,v, € E(G))) or (a # b, v5 is adjacent to all ver-
tices of N (x) and v,v; € E(G)), then (v,)(v,)(a,1)(b, 1,)(x, v3,13)7 is
a resolving (n —4)-partition, for ,,7,,13 € N(x)\ {a,b}, a contradic-
tion.

4. If vy is adjacent to n— 5 vertices of N;(x) \ {c¢} with all a,b,c are
distinct, then (v))(v,)(v3)(a,1,)(b,ty)(x,c,t3) is a resolving (n — 4)-
partition, for ¢,,7,,t3 € Ny(x) \ {a,b,c} and a singleton partition =,
a contradiction.

5. If a # b, vy is adjacent to all vertices of N,(x) and v,v; € E(G),
then (v))(v,)(a.1,)(b,1,)(x, 13, v3)7 is a resolving (n — 4)-partition, for
t1,1,,13 € N (x) \ {a, b} and a singleton partition 7, a contradiction.

Table 2

Adjacency of three vertices v;,v,,v; € N,(x) to the vertices of N, (x).
v, 1 1 1 1 1 n—>5 n—>5 n—>5 n—4
vy 1 1 n—=>35 n—35 n—4 n—>5 n—35 n—4 n—4

vy 1 n—4 n—>5 n—4 n—4 n->5 n—4 n—4 n—4

Fig. 9. Graph (a) Hs;, (b) Hgg, (¢) Hsg and (d) Hyy.

Remark 5. Let {a,b,c} C N, (x), v, be adjacent to n—5 vertices of N;(x)\
{a} and v, be adjacent to n — 5 vertices of N (x)\ {b}.

1. If a=b and v; is adjacent to n—5 vertices of N,(x)\ {c} where ¢ # a,
then (a)(v3)(c, 1)) (v}, 1,)(x, 13, 0,)7 is a resolving (n — 4)-partition, for
t,1y,13 € Ni(x)\ {a,c} and a singleton partition =, a contradiction.

2. If a# b and v; is adjacent to at least n — 5 vertices of N,;(x) \ {a}
(or similarly v; is adjacent to n — 5 vertices of Nj(x) \ {b}),
then (a)(v,)(vy.1,)(b,1,)(x, 13, v3)7 is a resolving (n — 4)-partition, for
t1,15,13 € N (x) \ {a, b}, a contradiction.

3. If vy is adjacent to n — 5 vertices of N,(x) \ {c¢} with all a,b,c are
distinct, then (a)(c)(vy)(v;,1,)(b,1,)(x,13,03)7 is a resolving (n — 4)-
partition, for ;,1,,13 € N;(x) \ {a,b,c}, a contradiction.

Remark 6. Let {a,b} C N,(x), v, be adjacent to n— 5 vertices of N (x)\
{a}, v, be adjacent to n—>5 vertices of and N (x)\ {b}, and v; is adjacent
to all vertices of N, (x).

1. If a=b, v v, ¢ E(G) and v; is not adjacent to one of v; or v,, then
(v1)(a,11)(Vy, 1)) (V3,13)(X, 14)7 OF (Vy)(a,t1)(vy,1,)(V3,13)(x,t4)7 is a re-
solving (n—4)-partition, for ¢,,1,,15,2, € N|(x)\ {a}, a contradiction.

2. If a # b and v; is neither adjacent to v; nor v,, then (v,)(v,)(a.t;)
(b, 1,)(x, 13, 03)7 OF (a)(Vy)(x, 11,01 )(b, 1,)(13, v3)x is a resolving (n —4)-
partition, for #,,t,,1; € N;(x) \ {a, b}, a contradiction.

Therefore, without loss of generality, the adjacency of any vertex of
U1, 0,,03 € Np(x) to N (x) is given in Table 2.
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Fig. 12. Graph (a) K,_s + (K, U Py), (b) K,_s + (K, U K3), (¢) Hy, (d) H;,, (e) H, (f) Hy, (8) Hy; and (h) Hyy.

(B2.1) v; € N,(x) is only adjacent to vertex a € N,(x). Let each v,
and v; be only adjacent to vertex b € N,(x) and ¢ € N, (x), respectively.
If all vertices a, b, ¢ are distinct, then v,v,,v,v3, v,0;3 € E(G) since other-
wise diam(G) = 3. We deduce G = H;. If only two of a,b, ¢ are equal,
namely a = b, then v,v3,v,05 € E(G) since otherwise diam(G) = 3. We
deduce G = Hy5 if v v, € E(G) or G = Hy, if v,v, € E(G). If all a,b,c are
equal, then we deduce G as depicted in Fig. 7 (d)-(g).

Now assume that v, is adjacent to a single vertex b € N,(x) and v; is
adjacent to all vertices of N,(x). If a=b, then we deduce G as in Fig. 8
(@-(). If a # b, then v,v, € E(G) or v,v;,v,03 € E(G), since otherwise
diam(G) = 3. We deduce G as depicted in Fig. 9 (a)-(d).

Now suppose that v, is adjacent to n — 5 vertices of N,(x) and v; is
adjacent to at least n—5 vertices of N(x). In this case, v,v; € E(G) since
otherwise (v,)(a,t)(v;,1,)(v3,13)(x, 1,)7 is a resolving (n—4)-partition for
ty,1y,13 € Nj(x)\ {a} and a singleton partition z, a contradiction. If v, is
also adjacent to n— 5 vertices of N;(x) \ {a} and v is adjacent to n —5
vertices of N,(x) \ {c}, then a =c by considering Remark 4 (1) and v,
is adjacent to at least one of v, or vs, since otherwise diam(G) = 3. We
deduce G = Hyg if v; is only adjacent to one of v, or v;, or G = Hy; if
v, is adjacent to both v, and v;. If v, is adjacent to n — 5 vertices of
N, (x)\ {b} with a # b, and v; is adjacent to n— 5 vertices of N,(x)\ {b},
then v v,,v,v; ¢ E(G), by considering Remark 4 (3). We deduce G =
H;y. Otherwise, v, is adjacent to n— 5 vertices of N,(x) \ {b} and v; is
adjacent to all vertices of N|(x). If a = b, then v, is adjacent to at least
one of v, or vy, since otherwise diam(G) = 3. We deduce G as depicted
in Fig. 10 (d)-(f). If a # b, then v,v; ¢ E(G) by considering Remark 4 (5)
and hence G = H,; for v,v, ¢ E(G) or G = Hj3, for v,v, € E(G).

For the remaining case, let both v, and v; be adjacent to all vertices
of N,(x). We deduce G as depicted in Fig. 11 (a)-(f).

(B2.2) v, is adjacent to n—5 vertices of N;(x)\ {a}. If each v, and v;
are also adjacent to n— 5 vertices of N,(x)\ {b} and N,(x)\ {c}, respec-
tively, then all a,b,c are equal, by considering Remark 5. In this case,

then N,(x) contains P, since otherwise (v;)(a,t,)(v,,1,)(v3,13)(X, 4)7, OF
()@, 1) (V1. 1) (V3, 13)(x, 14)7, OF (V3)(a,t)(V;, 1) (Vy, 13)(X, 1,)7 is a resolv-
ing (n — 4)-partition, a contradiction. We obtain G = K,,_5 + (K, U Py) if
N,(x) induces P3, or G = K,_s + (K, U K3) if N,(x) induces K3. Now as-
sume that v, is adjacent to n—>5 vertices of N|(x)\ {b} and v; is adjacent
to all vertices of N,(x). If a = b, then v,v, € E(G) or vy is adjacent to
both v; and v,, by considering Remark 6(1). We deduce G as depicted
in Fig. 12 (c)-(f). Otherwise, a # b and so that v; is adjacent to both
v; and v, by considering Remark 6(2) and we deduce G as depicted in
Fig. 12 (g)-(h).

For the remaining case, let both v, and v; be adjacent to all vertices
of N,(x). Then, v, is adjacent to at least one of v, or v;, since oth-
erwise (v)(a,1,)(v,,1,)(v3,13)(x,14)7 is a resolving (n — 4)-partition for
t,t5,13,.1, € N (x) \ {a}, a contradiction. We deduce G as depicted in
Fig. 13 (a)-(d).

(B2.3) All vertices of N,(x) are adjacent to all vertices of N,(x). We
deduce that G = K, — E(K,) if N,(x) induces K5, or G = K, — E(K, —e) if
U0y, 105 € E(G) and v,v; € E(G), or G2 K, — E(K| 3 +e) if vjv,, 0,05 €
E(G) and vyv; ¢ E(G) or G =K, — E(K, 3) if N,(x) induces K3, as de-
picted in Fig. 13 (e)-(h).

(O) [N (x)] =2 and | Ny(x)| =n—3. Let N,(x) = {uy,u, }. If N,(x) con-
tains five vertices z,a,b,c,d such that za,zb € E(G) and zc,zd & E(G),
then (x)(z)(a,c)(b,d)(u;,1,)(uy,t5)x is a resolving (n — 4)-partition, for
some t1,1, € Ny(x)\ {z,a,b,c,d} and a singleton partition z, a contra-
diction. Therefore, any vertex of N,(x) is either adjacent to at most one
vertex of N,(x) or it is adjacent to at least n — 5 vertices of N,(x). On
the other hand, if there exist a,b,a,,a,, b, b, € N,(x) such that aa,bb; €
E(G) and aa,,bb, & E(G), then (x)(@)(b)(a;,as)(by,by)(u;. 1)y, tp) is
a resolving (n — 4)-partition, for some #,t, € N,(x) \ {a,b,a;,a,,b;,b,}
and a singleton partition z, a contradiction. Furthermore, if there exist
aj,a,,by,by € Ny(x) such that a;b; € E(G) and a,b,,a,b,,a,b, & E(G),
then (x)(a;,a,)(by,by)(uy,t;)(uy,1,)7 is a resolving (n — 4)-partition, for
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Fig. 13. Graph (a) Ha,, (b) Hyg, (¢) Hyy, (d) Hy, (&) K, — E(K,), () K, — E(K, —e), (8) K, — E(K, 5 +e¢) and (h) K, — E(K, 5).

Fig. 14. Graph (a) K, ,_, +e, (b) Hy, (c) Hg, (d) Hsg, (€) Hy, (f) Hsy, (8) Hy, (h) Hyy, (i) Hjs, G) Hy and (k) Hyy.

some t,1, € N,(x) \ {a;,a,,b;,b,} and a singleton partition =, a con-
tradiction. Therefore, by considering Lemma 1, N,(x) induces one of
the graphs (C1) K,_;, (C2) K,_3, (C3) Ky ,-4, (C4) K,_4 UK, (C5)
K, 3 — E(K,_s), or (C6) K,_3 —e.

(C1) N,(x) induces m If there exists a vertex of N,(x), namely
uy, and ay,a,, by, by, € N,(x) such that uja;,u a, ¢ E(G) and u;by,u b, €
E(G), then (x)(a;,b,)(ay, by)(u;,1,)(uy,t,)7 is a resolving (n — 4)-partition,
for 1,1, € No(x) \ {ay,a,,b;,b,} and a singleton partition =, a contra-
diction. Therefore any vertex of N,(x) is either adjacent to at most one
vertex of N,(x) or it is adjacent to at least n — 4 vertices of N,(x).

If u; € N|(x) is not adjacent to any vertex of N,(x), then u, is
adjacent to all vertices of N,(x) since otherwise diam(G) = 3, and
uju, € E(G) since otherwise diam(G) = 3. We obtain G K, , | +e. If
u; is only adjacent to a single vertex a € N,(x), then u, is adjacent
to all vertices of N,(x) and u,u, € E(G), since otherwise diam(G) =
3. However, (x,1;)(uy,1,)(u,,a,t3)x is a resolving (n — 4)-partition, for
t,15,13 € No(x)\ {a} and a singleton partition z, a contradiction. If each
u; and u, are adjacent to n — 4 vertices of N,(x)\ {a} and N,(x) \ {b},
respectively, with a # b, then u,u, € E(G) since otherwise diam(G) =
3. However, (x)(u;,1,)(u,,1,)(a,t3)z is a resolving (n — 4)-partition, for
t,1y,13 € Ny(x) \ {a,b} and a singleton partition x, a contradiction. If
u; is only not adjacent to a vertex a € N,(x) and u, is adjacent to all
vertices of N,(x), then u u, € E(G) and we obtain G = Hs,. Now we
consider that both u;,u, € N|(x) are adjacent to all vertices of N,(x).
We deduce G = K, ,_, if uju, ¢ E(G) or G =K, + K,_, if uju, € E(G).
However for these two graphs, pd(G) =n—2 by [2].

(C2) N,(x) induces K,_;. If there exists a vertex of N,(x), namely u,
and ay,a,,a3,b,,b,, b3 € Ny(x) such that u;a; € E(G) and u,b; ¢ E(G) for
all 1 <i <3, then (x)(u;)(ay, by)(as, by)(az, b3)(uy, )7 is a resolving (n — 4)-
partition, for t € N,(x) \ {a,.a,,a3,b;,b,,b3} and a singleton partition =,
a contradiction. Therefore, any vertex of N,(x) is either adjacent to at
most two vertices of N,(x) or it is adjacent to at least n — 5 vertices of
Ny(x).

If u, is not adjacent to any vertex of N,(x), then u, is adjacent to
all vertices of N,(x) since otherwise diam(G) = 3, and u,u, € E(G) since

otherwise diam(G) = 3. We obtain G = Gy, but pd(Gg) =n —2 by [2].
Now assume that u; is adjacent to a single vertex a € N,(x). Then u,
is adjacent to at least n — 4 vertices of N,(x). If u, is adjacent to n — 4
vertices of N,(x)\ {a}, then we obtain G = Hy, if uju, ¢ E(G) or G = Hsq
if uju, € E(G), as depicted in Fig. 14 (c)-(d). Otherwise, suppose that u,
is adjacent to all vertices of N,(x). We obtain G = G; if u u, ¢ E(G) or
G = Hy; if uju, € E(G). However by [2], pd(G;)=n—2.

Let u; be only adjacent to two vertices a,b € N,(x). Then u, is ad-
jacent to at least n — 5 vertices of N,(x), since otherwise diam(G) =
3. If u, is only adjacent to n — 5 vertices of N,(x) \ {a,b}, then
(up)(x, 1)y, ty)(a, t3)(b, 1) is a resolving (n — 4)-partition, for ¢,1,,
13,14 € No(x) \ {a,b} and a singleton partition z, a contradiction. If
u, is adjacent to either n — 4 vertices of N,(x) \ {a} or it is ad-
jacent to all vertices of N,(x), then u,u, ¢ E(G) since otherwise
(u)(x, 1)y, 15)(a,13)(b,t4)x is also a resolving (n — 4)-partition, a con-
tradiction. Hence we obtain G = Hy, if u, is adjacent to n —5 vertices of
N,(x)\ {a} or G = Hy if u, is adjacent to all vertices of N,(x).

Now assume that u; is adjacent to n — 5 vertices of N,(x) \ {a,b}
for some a,b € N,(x). If u, is not adjacent to all vertices of N,(x),
then there exists ¢ € N,(x) different from « and b such that u,c ¢
E(G). However, (u)(uy)(x,t))(a,t,)(b,13)(c,t4)m is a resolving (n — 4)-
partition, for t,,7,,13,t4 € Ny(x) \ {a,b,c}, a contradiction. Therefore,
u, is adjacent to all vertices of N,(x). Furthermore, if u u, ¢ E(G),
then (u;)(x,uy,1;)(a,1,)(b,t3)x is also a resolving (n — 4)-partition, for
ty,15,13 € No(x) \ {a,b}, a contradiction. Therefore, u,u, € E(G) and we
obtain G~ H ;.

Let u; be only not adjacent to a vertex a € N,(x). If u, is also only
not adjacent to a single vertex b € N,(x) where a # b, then we obtain
G = Hys if uju, ¢ E(G), or G = H,, if uju, € E(G) as depicted in Fig. 14
(0)-(). Otherwise, assume that u, is adjacent to all vertices of N,(x).
Then u,u, ¢ E(G) since otherwise G = G4 and pd(Gg) =n—2 by [2]. We
deduce G = H,,. If both u; and u, are adjacent to all vertices of N,(x),
then we obtain G = G, if uju, ¢ E(G) or G = G, if u u, € E(G). However,
for these two graphs G we have pd(G) =n—2 by [2].
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Fig. 15. Graph (a) K, + (K,,_4 U (P; —¢)), (b) K, + (K,_4 U P3), (c) H;s, (d) Hgs, (€) Hyo, (f) Hys, (8) H;, and (h) Hy,.

(C3) N,(x) induces K;,_4. Let V(N,(x)) = {,t; : 1 <i<n—4} and
E(G) = {1t; : 1 <i<n—4}. However, (x,t;)(u,t,)(u,,13)(t,14)7 is a re-
solving (n — 4)-partition, a contradiction. Therefore, there is no graph G
with pd(G) = n — 3 satisfying (C3).

(C4) N,(x) induces K,_, UK. Let V(Ny(x))={t,t; : 1 <i <n—4}
and E(G) = {1;t; : 1 <i<j<n—4}. If there exist 1,1,,15,14 € Ny(x)
and u; € N,(x) such that u;z;,u;t, € E(G) but u;t3,uty ¢ E(G), then
)y )t 13)(t, 1)Uy, t5)(1, 1) is a resolving (n — 4)-partition, a contra-
diction. Therefore any vertex of N, (x) is adjacent to at most one vertex
of N,(x)\ {t} or it is adjacent to at least n — 5 vertices of N,(x)\ {t}.

If u; is not adjacent to any vertex of N,(x)\ {r}, then u, is adjacent to
all vertices of N,(x)\ {t} and u,u,,u,t € E(G), since otherwise diam(G) =
3. We deduce G = K, + (K,_, U(P; —e¢)) if tu; & E(G) or G = K, +(K,_4 U
Py) if tu; € E(G). If u; is only adjacent to a single vertex 1, € N,(x) \ {t}
and u, is adjacent to n — 5 vertices of N,(x) \ {#;,}, then u,t,u,r € E(G)
since otherwise diam(G) = 3. However, (¢,)(x,#)(u;,t3)(uy, 14)(t,t5)7 is
a resolving (n — 4)-partition, a contradiction. Therefore, if u; is only
adjacent to a single vertex t; € N,(x) \ {t}, then u, is adjacent to all ver-
tices N,(x) \ {1}, upt € E(G) and (u,u, € E(G) or u,t € E(G)). However,
if uyu, € E(G), then (u;)(t,1,)(x,13)(uy,1,)(t,15)7 is a resolving (n — 4)-
partition, a contradiction. Therefore we deduce G = Hys.

Now assume that u; is not adjacent to a single vertex t; € N,(x)
and it is adjacent to other vertices 1, € N,(x) for all 2<i<n—-4. If
u, is also only not adjacent to other single vertex t, € N,(x), then
() (ua)(ty, 1319, 14)(x, 15)(1, 1)7 is a resolving (n — 4)-partition, a con-
tradiction. Therefore, u, is adjacent to all vertices of N,(x) \ {r},
urt € E(G) and (uju, € E(G) or ujt € E(G)). If wyu, ¢ E(G), then
(uy)(t1,1)(x, 13)(up, 14)(1,15) is a resolving (n — 4)-partition, a contradic-
tion. Hence we obtain G = Hgs if uju, € E(G) and u;t ¢ E(G), or
G = Hgyy if uju,,u;t € E(G). Otherwise, let both u; and u, be adjacent
to all vertices of N,(x) \ {¢}. Then, u;t,u,u, € E(G) for some 1<i<2,
or tu;,tu, € E(G). Hence we deduce G =~ H; if u t,uju, € E(G) and
ust & E(G), or G = Ho, if ujt,upt € E(G) and uju, & E(G), or G = Hy,
if uju,y,u t,uyt € E(G) (Fig. 15 (f)-(h)).

(C5) N,(x) induces K, 3 — E(K; ,_s). Let V(N,(x)) = {v,w,w; : 1 <
i <n=>5} and E(N,(x)) = {vw,vw;, ww; @ 1 <i,j <n—5}. If there ex-
ist u; € N{(x) and w;,w,,ws3,w, € N,(x) such that uyw;,u;w, € E(G)
but u,ws,uyw, ¢ E(G), then (x)(u))(w)(w;, w3)(W,, wy)(Uy, ws)(v, we)x is
a resolving (n — 4)-partition, a contradiction. Therefore, any vertex of
N, (x) is either adjacent to at most one vertex of w; € N,(x) or it is ad-
jacent at least n — 6 vertices of w; € N,(x), for 1 <i<n->5.

(C5.1) u, is not adjacent to any vertex w; € N,(x) and so that u,
is adjacent to all vertices w; € Ny(x) for 1 <i <n-5. If u, is not
adjacent to any other vertices v, w € N,(x), then u;v,u;w,uu, € E(G)
since otherwise diam(G) = 3. However, (v)(x, w;)(u;, w,) Uy, w3)(w, wy)x
is a resolving (n — 4)-partition, a contradiction. If u, is also adjacent
to a single vertex w € N,(x), then (w)(v, w)(x, w,)(u;, w3)(Uy, wy)z is a
resolving (n — 4)-partition, a contradiction. Otherwise, u, is also adja-
cent to a single vertex v € N,(x) and u,w ¢ E(G), so that u;w € E(G).
If vuy,uju, € E(G), then (u;)(w, w)(u,, w,)(v, ws)(x, w,)x is a resolving
(n — 4)-partition, a contradiction. This implies that u, is adjacent to at
most one of the vertex v or u,. If u; is not adjacent to any v or u,, then
diam(G) = 3, a contradiction. Otherwise, u, is only adjacent to one of
the vertex u, or v, so that we deduce G = H; for these two conditions.
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Fig. 16. Graph (a) H3, (b) H;; and (¢) Hy.

(C5.2) If (u; is only adjacent to a single vertex w; € N,(x) and
u, is adjacent to n — 6 vertices w; € N,(x) for all 2 <i<n-15) or
(u; and u, are not adjacent to distinct vertices w, and w,, respec-
tively, and they are adjacent to other n — 6 vertices of w; € N,(x)),
then (w)(uy)(wy, wy)(uy, w3)(V, Wa)(x, ws)x O (W)(uy)(x)(Wy, W3) (W, wy)
(v, ws)(x, we)x is a resolving (n — 4)-partition, a contradiction.

(C5.3) u, is adjacent to a single vertex w; € N,(x) and u, is ad-
jacent to all vertices w; € N,(x) for all 1 <i<n-5. If u, is not
adjacent to any other vertices v,w € N,(x) or it is adjacent to a
single vertex w € N,(x), then (u;)(uy)(w,w,)(w, w3)(w, w,)(x, ws)x or
()W) (wy, w,)(v, w3)(uy, wy)(x, ws)x is a resolving (n — 4)-partition, re-
spectively, a contradiction. Otherwise u, is adjacent to a vertex v €
N,(x) but it is not adjacent to a vertex w € N,(x) so that u;w € E(G).
For this case, if uu, € E(G) or u;v € E(G), then we obtain a re-
solving (n — 4)-partition, namely (u;)(w)(w;, w,)(v, w3)(uy, wy)(x, wWs)7
or (u))(w;, wy)(v, w3)(w,uy)(x, wy), respectively. Hence, uju,,u;v & E(G)
and we deduce G =~ H,¢ as depicted in Fig. 16 (c).

(C5.4) u, is only not adjacent to a single vertex w; € N,(x) and it is
adjacent to all remaining vertices w; € N,(x) for all i # 1, and u, is ad-
jacent to all vertices w; € N,(x) for all 1 <i <n-35. If u, is adjacent to
w or it is not adjacent to u;, then (u))(wW)(w;, w,)(v, w3)(Uy, Wy)(x, Ws)7
is a resolving (n — 4)-partition, a contradiction. Therefore, u,w ¢ E(G)
and u;u,,u;w € E(G). Hence we only need to consider the adjacency
of a vertex v to the vertices u;,u, € N (x). Note that v is adjacent
to at least one of u;,u, € N (x), since otherwise diam(G) =3. If v is
not adjacent to one of u; or u,, then (u))(w;, w,)(u,, w)(v, w3)(x, wy)w
or (uy)(uy)(wy, wy)(w, ws)(v, wy)(x, ws)x is a resolving (n — 4)-partition,
a contradiction. Therefore, v is adjacent to both u;,u, € N;(x) and we
deduce G = Hy; as depicted in Fig. 17 (a).

Now assume that both u; and u, are adjacent to all vertices
w; € Ny(x) for 1 <i<n-5.1If wis adjacent to both u; and u,,
then (w)(u;, w)(u,, wy)(v, w3)(x,w,)n is a resolving (n — 4)-partition,
a contradiction. Furthermore, if both v and w are not adjacent
to a single vertex u; € N (x) (or similarly to a single vertex u, €
Ni(x)) and wuju, ¢ E(G), then (u;)(uy, w;)(v,wy)(w,ws)(x,wy)x (or
() (uy, Wy )V, W) (W, w3)(x, wy)x) is also a resolving (n — 4)-partition,
a contradiction. Therefore without loss of generality, we can assume
that w is adjacent to u; € N (x) and it is not adjacent to u, € N (x). If
vu, € E(G) and vu, € E(G), then u u, € E(G) and we obtain G = Hy as
depicted in Fig. 17 (b). If vu; ¢ E(G) and vu, € E(G), then u,u, € E(G)
since otherwise (u;)(u,, w)(w, w,)(v, w3)(x,w,)x is a resolving (n — 4)-
partition, a contradiction. We deduce G = H-, as depicted in Fig. 17
(c). Otherwise vu,,vu, € E(G) and we obtain G = H if u u, ¢ E(G) or
G = Hys if uyu, € E(G).
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Fig. 17. Graph (a) Hg;, (b) Hyg, (¢) Hy, (d) Hy, and (e) Hys.
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Fig. 19. Graph (a) H;;, (b) Hy,, (c) Hyy, (d) Hyg, (€) Hyy, () Hyy, (8) Hg, (h) Hy;, and (i) K, — E(K,,_3 +e).

(C6) N,(x) induces K,_; — e. Let e = ab and other vertices of N,(x)
by ¢, for 1 <i <n-S5. If there exists u; € N;(x) such that u,t,,u;t, € E(G)
and u;13,u1, € E(G), then (x)(u)(@)(t},13)(t5.14)(Uy,15)(b, 1)7 is a resolv-
ing (n — 4)-partition, a contradiction. Therefore, any vertex of N,(x) is
either adjacent to at most one vertex of N,(x) \ {a,b} or it is adjacent
to at least (n — 6) vertices of N,(x)\ {a,b}. Furthermore, if one vertex of
N, (x), namely u;, is not adjacent to at least one vertex ¢; € N,(x) \ {a, b}
and one other vertex u, € N,(x) is not adjacent to a vertex a € N,(x)
(similarly to a vertex b € N,(x)), then (a)(#)(u;,1,)(b, 13)(uy,14)(x, t5)7 (Or
D)Wy, 1p)(a,13)(uy, 14)(x,5)7) is a resolving (n — 4)-partition, a contra-
diction.

(C6.1) u, is not adjacent to any vertex of N,(x)\ {a,b}. Then u, is
adjacent to all vertices of N,(x). If u; is not adjacent to two remaining
vertices a,b € N,(x), then u,u, € E(G) and we obtain G = K| + (K,_3 —
eV K,). If u; is either adjacent to a single vertex a € N,(x) or b € N,(x),
then u,u, € E(G) and we obtain G = Hy,. Otherwise, u; is adjacent to
both a,b € N,(x) and we deduce G = Hss if uju, ¢ E(G) or G = Hs; if
uuy € E(G) (Fig. 18 (a)-(d)).

(C6.2) u, is adjacent to a single vertex t; € N,(x) \ {a,b}. If u, is ad-
jacent to n—4 vertices N, (x) other than ¢,, then (a)(t,)(u;,1,)(uy, 13)(x,14)
(b,t5)x is a resolving (n — 4)-partition, a contradiction. Therefore, u,
is adjacent to all vertices of N,(x). If u; is not adjacent to other
two vertices a,b € N,(x) or it is only adjacent to a € N,(x) (or sim-
ilarly to b € N,(x)), then uu, ¢ E(G), since otherwise we have a
resolving (n — 4)-partition, namely (a)(u;)(t,.t,)(u,,13)(x,1,)(b,t5)x (Or
Byt 1)Uy, 13)(x,14)(a, t5)7). Hence we deduce G = Hs; if uja,u;b ¢
E(G) or G = Hsg if uy is either adjacent to a or b. Otherwise, u, is ad-
jacent to both a and b, but (u))(u,)(t,15)(a,13)(b,t4)(x,15)x is a resolving
(n — 4)-partition, a contradiction.

(C6.3) u; is only not adjacent to a single vertex 1, € N,(x) \ {a,b}. If
u, is adjacent to n—4 vertices of N,(x)\ {t,}, then (u;)(uy)(a)(t;,13)(t5,14)
(x,t5)(b,tg)w is a resolving (n — 4)-partition, a contradiction. There-

fore, u, is adjacent to all vertices N,(x). In this case, u u, € E(G),
since otherwise we also have a resolving (n — 4)-partition, namely
) (@)(ty,1)(uy, t3)(b, 1,)(x, t5)x. Furthermore, if u; is not adjacent to
both a,b € N,(x), then (u;)(wy)(t;.1,)(a,13)(b,1,)(x,t5)r is a resolving
(n — 4)-partition, a contradiction. Thus we obtain G = Hj if u; is only
adjacent to one of vertices a or b, or G = H,, if u; is adjacent to both
vertices a and b (Fig. 19 (a)-(b)).

(C6.4) u; and u, are adjacent to n—5 vertices of N,(x)\ {a,b}. There-
fore we only need to consider adjacency of vertices N,(x)uU{a,b}. If both
a and b are only adjacent to a single vertex of N,(x), namely u,, then
uu, € E(G) since otherwise (uy)(u;,1;)(a,1,)(b,13)(x,t4)7 is a resolving
(n — 4)-partition, a contradiction. Thus we obtain G = H,. If a and b
are adjacent to different vertices of N,(x), namely au,,bu, € E(G) and
au,,bu; ¢ E(G), then we obtain G = H;g or G = H,q for uyu, ¢ E(G) or
uu, € E(G), respectively. Now assume that one vertex of a or b is ad-
jacent to all vertices N,(x) and one other vertex is only adjacent to a
single vertex of N|(x), namely au,, au,, bu; € E(G) and bu, ¢ E(G). Then
we deduce G = Hj, or G = Hy for uju, ¢ E(G) or uju, € E(G), respec-
tively. Otherwise, both a and b are adjacent to all vertices of N,(x), and
thus G = H,; or G K, — E(K, ,_3 +e) for uju, & E(G) or uu, € E(G),
respectively.

(D) |N(x)|=n—3 and | N,(x)| =2. Let N,(x)={v,,0,}. By a similar
reason to Subcase (C), if N,(x) contains vertices z|, z,,a, b, c,d such that

(i) z;a,z,b€ E(G) and z,¢,z,d ¢ E(G), or
(ii) z,a,z,b € E(G) and zc, z,d & E(G), or
(iii) ab € E(G) and ad, be,cd & E(G),

then (x)(z;)(z5)(a, ¢)(b, d)(vy,1,)(vy,1;)x is a resolving (n—4) partition, for
t1,t, € Ny (x)\ {2}, 25,a,b,¢,d}, a contradiction. Therefore, by consider-
ing Lemma 1, N,(x) induces one of the graphs (D1) K,_s;, (D2) K,,_3,
(D3) K;,_4, (D4) K,_4 UK,, (D5) K,_3 — E(K,,_s), or (D6) K,_3 —e.
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Fig. 20. Graph (a) K;,,_3, (b) (K; UK,) + K, _3, (¢) Hys, (d) Hyy, (€) Hye, (f) Hyy, (8) Hy and (h) Hy,.
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Fig. 21. Graph (a) H,,, (b) Hy, (¢) Hys, (d) Hy, (e) Hg, (f) Hg, (8) H, and (h) H,.

(D1) N,(x) induces m Note that for any vertex v; € N,(x),1 <i <
2, there exists at least one vertex r € N,(x) such that v;t € E(G), and
conversely for any 7 € N, (x) there exist v; € N,(x) such that tv; € E(G),
since otherwise diam(G) = 3. If there exists a vertex of N,(x), namely
vy, and a,b,c,d € Ni(x) such that v,a,v,b € E(G) and v,c,v,d & E(G),
then (x)(v;,1;)(a, c)(b,d)(v,,1,)x is a resolving (n —4)-partition, for ¢,,1, €
N,(x)\ {a,b,c,d}, a contradiction. Therefore, any vertex of N,(x) is ad-
jacent to 1, n —4 or n — 3 vertices of N,(x). Now consider the following
4 conditions.

1. If v; is adjacent to a single vertex t; € N (x) and v, is adjacent to
n—4 vertices of N;(x)\ {#;}, or

2. if v, is adjacent to a single vertex 7, € N,(x) and v, is adjacent to
all vertices of N,(x), or

3. if each v; and v, are only not adjacent to a single vertex t; € N;(x)
and t, € N|(x), respectively, or

4. if v, is only not adjacent to a single vertex 7, € N;(x) and v, is
adjacent to all vertices of N,(x),

then (x, y)(vy,1)(t,,13)(v,. 1,)7 is a resolving (n — 4)-partition, for y,z,t; €
N, (x)\ {t;,1,}, a contradiction. Thus, we can conclude that any vertex
of N,(x) is adjacent to all vertices N, (x). We deduce G= K; ,_; if vjv, &
E(G) or G= (K, UK,)+K,_; if v,v, € E(G), as depicted in Fig. 20 (a)-
(b).

(D2) N(x) induces K,_;. If there exists a vertex v; € N,(x) and
ay,ay,a3,by,by, by € Ni(x) such that v,q; € E(G) and v,b; ¢ E(G) for all
1 <i <3, then (x)(v))(a;,b))(ay, by)az, b3)(vy, )7 is a resolving (n — 4)-
partition, for r € N,(x) \ {a,,a,,a3,b;,b,, b3} and a singleton partition ,
a contradiction. Therefore, any vertex of N,(x) is either adjacent to at
most two vertices of N,(x) or it is adjacent to at least n — 5 vertices of
N (x).

(D2.1) v, is only adjacent to a single vertex t € N;(x). If v, is
also only adjacent to a vertex t € N (x), then G = Gy or G = Gy for
v v, & E(G) or for v v, € E(G), respectively. But, pd(Gy) = pd(Gg) =n—2
by [2]. If v, is only adjacent to a single vertex s € N,(x) where
s #t, then v v, € E(G), since otherwise diam(G) = 3. However, we
obtain G = G; and pd(G;) =n —2 by [2]. If v, is adjacent to two
vertices 5,1 € N(x), then G = Hy; or G = Hy; for vv, ¢ E(G) or for
v v, € E(G), respectively. If v, is adjacent to two vertices s,r € N;(x)
distinct from ¢, then v,v, € E(G) and thus G = Hy. If v, is adjacent
to (n —5) vertices of N;(x)\ {s,7} (or N (x)\ {r,s} where r,s #1), then

(U2)(t,1)(5, 1) (03, 13)(X, 1) (OF () )(V2)(E, 11)(r, 12)(5,13)(x, 14)7r) s a resolv-
ing (n — 4)-partition, for 7,,1,,13,14 € N{(x) \ {t,r,s, }, a contradiction. If
v, is adjacent to (n — 4) vertices of N,(x)\ {}, then v,v, € E(G) since
otherwise diam(G) =3 and thus G = H,,. If v, is adjacent to (n — 4) ver-
tices of Ny(x)\ {s} for s #¢, then G= H; or G= H, for v v, & E(G) or
for v,v, € E(G), respectively. Otherwise, v, is adjacent to all vertices of
N,(x) and we obtain G = K| + (K, UK,_, —e) or G = G for v v, ¢ E(G)
or for v,v, € E(G), respectively. But pd(K; + (K| UK,_, —e)) = pd(Gg) =
n—2 by [2], a contradiction.

(D2.2) v, is only adjacent to two vertices s,t € N;(x). If v, is
also only adjacent to two vertices s,z € N,(x), then G = H,, or
G = Hyg for v,v, ¢ E(G) or for v,v, € E(G), respectively. If v, is
only adjacent to two vertices r,s € N;(x) where r # ¢, then G =
H,s or G = Hy for v,v, ¢ E(G) or for v,v, € E(G), respectively.
If v, is only adjacent to two vertices p,q € N;(x) distinct from
two vertices s,r € N;(x), then we have a resolving (n — 4) parti-
tion, namely (v))(v,)(s,s)(t,1)(p,p1)q,q))7 for sy,t1,p;.q; € Ny(x) \
{s,t,p.q}, a contradiction. If v, is adjacent to n — 5 vertices of
N, (x)\ {p,q} where p# s and ¢ may equal to ¢ (or N;(x) \ {s,7}), then
()8, 5, 1)(p, p)(X, q1) (OF (Vy)(s, 51)(t, 1) (V1. 1,)(x, 13)7) is a resolv-
ing (n — 4)-partition, for p,,q;,s,.t; € Ni(x)\ {s,t,p,q} (or s,,1;,15,13 €
N;(x) \ {s,t}), a contradiction. If v, is adjacent to n — 4 vertices of
N,(x)\ {p} where p # 5,1, then we have a resolving (n — 4) partition,
namely (v))(v,)(s, s))(t,1)(p, p)(x, x )7 for 51,71, py,x; € N1(x)\ {5.7,p},
a contradiction. If v, is adjacent to n — 4 vertices of N, (x) \ {s}, then we
obtain G = Hg or G = Hy for v v, ¢ E(G) or v,v, € E(G), respectively.
Otherwise, v, is adjacent to all vertices of N,(x) and we deduce G = H,
or G = H, for v,v, & E(G) or v,v, € E(G), respectively (Fig. 21).

(D2.3) v; is adjacent to (n — 5) vertices of N,(x)\ {#;,,}. Suppose
that v, is not adjacent to at least one vertex 13 € N, (x) different from 7,
and t,. However, (v))(0,)(t},14)(t5,15)(t3,1)(x,t;)7 is a resolving (n — 4)-
partition, for 1,,t5,t5 € N (x) \ {t;,15,13}, a contradiction. Therefore, if
v, is not adjacent to some vertices of N,(x), then they are elements of
{t;,1,}. Now, for the following conditions: (v, is also adjacent to n —5
vertices of N;(x)\ {1.7,}), or (v, is adjacent to n — 4 vertices N,(x)\
{t;}), or (v, is adjacent to all vertices of N,(x)), then v,v, € E(G) since
otherwise (v))(t],13)(t2.24)(V5,15)(x, )7 is a resolving (n — 4)-partition,
for t5,1,15,t¢ € Ni(x) \ {t;,1,} a contradiction. Hence we deduce G =
K, — E(K,3), or G = Hy, or G = H; for the previous three conditions,
respectively (Fig. 22 (a)—(c)).
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Fig. 22. Graph (a) K, — E(K,3), (b) H,, (¢) Hs, (d) K, — E(K, —e), (€) Hy,, (f) K, — E(Ps) and (g) K, — E(K, 5 +e).
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Fig. 23. Graph (a) K| + (K, U2K)), (b) K| +(K,,_4, UK),), (c) Hy, (d) Hy, (e) K| +(K,, 4UK)), () Hg, and (g) Hyg,.

(D2.4) v, is adjacent to (n — 4) vertices of N(x)\ {7,}. If v, is also
adjacent to (n —4) of N;(x)\ {7;}, then v,v, € E(G), since otherwise
G = K, — E(Cy) and pd(K, — E(Cy)) =n -2 by [2]. Thus we deduce
G =K, — E(K; —e). If v, is adjacent to n — 4 vertices of N;(x) \ {t,}
for 1, #1,, then we obtain G =~ Hy, or G = K, — E(Ps) for v,v, & E(G)
or v,v, € E(G), respectively. If v, is adjacent to all vertices of N(x),
then v,v, ¢ E(G), since otherwise G = K,, — E(P,) and pd(K, — E(P,)) =
n—2 by [2]. We deduce G = K, — E(K| 3 + ¢). Now for the remaining
condition, assume that both v, and v, are adjacent to all vertices of
N, (x). However, we obtain that G = K,, — E(K3) if v,v, & E(G) or G =
K, — E(Py) if v,0, € E(G) and pd(K,, — E(K3)) = pd(K, — E(Py)) =n -2
by [2], a contradiction.

(D3) N|(x) induces K, 4. Let V(N(x))={t,t; : 1 <i<n-4} and
E(N(x)) ={rt; : 1 <i <n-4}. Note that if a vertex of N,(x) is not
adjacent to a vertex tr € N (x), then it is adjacent to all vertices ¢; €
N, (x) for 1 <i<n-—4, since otherwise diam(G) = 3. Furthermore, if
each v, and v, are adjacent to at least one vertex t; € N,(x) and ¢; €
N, (x), respectively, for 1 <i <j<n—4, then (1,);){t,1)(v,1,)(x,14)7 is
a resolving (n—4)-partition, for i, j # 1,2,3,4, a contradiction. Therefore,
there exists at most one vertex of N,(x) which is adjacent the vertices
t; € N;(x) for some 1 <i <n—4. Furthermore, if there exists a vertex
of N,(x), namely v, and ¢,,,,#5,t, € N,(x) such that v,7,,0v,t, € E(G)
and v,13,0,14 & E(G), then (v))(t,.13)(t5,14)(t,15)(x, )7 is a resolving (n—
4)-partition, a contradiction. This implies that any vertex of N,(x) is
adjacent to at most one vertex of ¢; € N (x) or it is adjacent to at least
n—>5 vertices of 1; € N;(x).

Let both v, and v, are adjacent to a vertex t € N, (x). If v; and v, are
not adjacent to any other vertex #; € N, (x), we deduce G = K; + (K ,_4U
2K)) or G = K + (K, ,_4 UK,) for vjv, & E(G) or v,v, € E(G), respec-
tively. If one vertex of N,(x), namely v,, is also adjacent to a single
vertex t; € N (x) or it is only not adjacent to a single vertex t; € N, (x),
then v,v, ¢ E(G) or v v, € E(G), respectively. Since otherwise we have
a resolving (n — 4)-partition, namely (v)(t;,1,)(t,13)(v5,14)(x,15)x. Hence
for this case, v, is not adjacent to any other vertex N,(x) and we obtain
G = H,g or G = Hyy. If a vertex of N,(x), namely v,, is adjacent to all
vertices t; € N;(x) for 1 <i <n -4, then v, is not adjacent to any ver-
tex t; € Ny(x) and we obtain G = K, + (K, , 4 U K;) for v v, € E(G) or
G = Hy for v,v, € E(G). Otherwise, assume that v, is adjacent to a ver-
tex r € N (x) and v, is not adjacent to € N (x), so that v, is adjacent
to all vertices 7, € N;(x) for 1 <i <n— 4. This implies that v, is not ad-
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jacent to any other vertex t; € N, (x) and v,v, € E(G), since otherwise
diam(G) = 3. We deduce G = Hy, (Fig. 23).

(D4) N,(x) induces K,_, UK. Let V(N(x))={t,t; : 1 <i<n-—-4}
and E(N{(x)) = {t;t; : 1 <i<j<n—4}. If there exists a vertex of
N,(x), namely v,, such that v,t,,v,t, € E(G) and v, 13,014 & E(G), then
X))t 13)(t2, 1)1, 15)(0y, 1) 7 is a resolving (n — 4)-partition, a contra-
diction. Therefore, any vertex of N,(x) is adjacent to 1, n—5 or n —4
vertices of N;(x) \ {r}.

Let v; be only adjacent to a single vertex 7, € N;(x) \ {t}. If v, is also
only adjacent to a single ¢, € N,(x), then rv,,tv, € E(G) or tv;,v v, €
E(G) for some i = 1,2, since otherwise diam(G) = 3. We deduce G = H;5
if rvy,tv, € E(G) and v v, ¢ E(G), or G = Hy; if t is only adjacent to
one vertex of v; or v, and v;v, € E(G), or G = Hy, if tv,tv,,v 0, €
E(G). Similarly, if v, is only adjacent to a single vertex 1, € N|(x) \ {t},
then tv,tv, € E(G) or tv;,v v, € E(G) for some i =1,2. We deduce G =
Hy if (tv),tv, € E(G) and v,v, ¢ E(G)) or (¢ is only adjacent to one
vertex of v, or v, and v v, € E(G)), or G = Hy; if tv,tvy,v 0, € E(G).
If v, is adjacent to (n —5) vertices of N(x)\ {t,#;} or N;(x) \ {#.1,},
then (0,)(11,12)(2, 1)1, 14)(X, 15)T OF (0))(W2)(t1,13)(t2, 1)t 15)(X, 1g)T iS @
resolving (n — 4)-partition, respectively, a contradiction. Otherwise, v,
is adjacent to (n —4) vertices N (x) \ {¢}. In this case ¢ is adjacent to all
vertices of N,, or it is adjacent to a single vertex of N, and v,v, € E(G),
since otherwise diam(G) = 3. We deduce G = Hy;s if rv,tv, € E(G) and
0,0y & E(G), or G = Hs, if tv;,v,0, € E(G) and tv, & E(G), or G = Ho,
if tvy,v;v, € E(G) and tv; ¢ E(G), or G = Hy, if tv),tv,,v0, € E(G)
(Fig. 24).

Now assume that v, is adjacent to (n — 5) vertices of N;(x) \
{t,1;}. If v, is adjacent to (n —5) vertices of N,(x)\ {t,7,}, then
() )(t1,13)(ty,14)(t,15)(x,t6) is a resolving (n — 4)-partition, a con-
tradiction. If v, is adjacent to (n — 5) vertices of N,(x)\ {#,7;} or
it is adjacent to all (n — 4) vertices of N(x) \ {t}, then vv, €
E(G), since otherwise we have a resolving (n — 4)-partition, namely
(V)(t1, 1)1, 13) (05, 14)(x, t5)7, @ contradiction. Hence, (for v, is adjacent
to (n—5) vertices of N;(x) \ {t,7,}, we deduce G = Hsg if 7 is only ad-
jacent to one of v, or v,, or G = Hj; if tv,,tv, € E(G)) and (for v,
is adjacent to (n —4) vertices of N,(x) \ {r}, we deduce G = Hs; if
tv; € E(G) and tv, ¢ E(G), or G = Hy if tv, € E(G) and tv; ¢ E(G),
or G = Hoyg if tv;,tv, € E(G)). Otherwise, assume that both v; and v,
are adjacent to (n —4) vertices of N(x) \ {¢t}. Then rv,,7v, € E(G) or
(r is adjacent to one of v;,v, € N,(x) and v,v, € E(G)), since other-
wise diam(G) = 3. We deduce G = K, — E(K, ,_4 U K3) if tvy, 10, € E(G)



E.T. Baskoro, D.O. Haryeni

K,-4UK; K, 4UK, K,_4UK,; K, 4UK,

n—3 n—3

n—3

«

(c) (d)

n—3

Heliyon 6 (2020) e03694

K, 4UK, K, 4UK, K,_4UK,; K, 4UK,; K,-1U K,

n—3 n—3 n—3 n—3

W N

o e

a‘%
®

() (9 (h) U]

Fig. 24. Graph (a) Hs, (b) H3, (¢) Hyy, (d) Hy, (€) Hyp, (f) Hss, (8) Hsy, (h) Hyy and (i) Hg,.

n-3 wed

(a) (b) (c) (d)

K, 4UK, K, 4UK, K, 4UK,

K, 4UK, K,y UK, K, 4 UK, K,y UK,

n—3 n—3 n—3

(e) ® (9) (h)

Fig. 25. Graph (a) Hzg, (b) Hj;, (¢) Hss, (d) Hyy, (€) Hy, () K, — E(K,,,_4, UK3), (8) Hy, and (h) K, — E(K;,_, U P).
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Fig. 26. Graph (a) Hgs, (b) Hg, () Hsy, (d) Hy,, (€) Hsg, (f) H;; and (8) Hg,.

and v,v, ¢ E(G), or G = H,, if tv;,v,0, € E(G) and tv, & E(G), or
G=K,— E(K,,_4U Py) if tv,,1v,,0v,0, € E(G) (Fig. 25).

(D5) N,(x) induces K,_3 — E(K;,_s). Let V(N;(x)) = {v,w,w; : 1 <
i<n-35) and E(N(x) = {vw,vow;,w;w; : 1 <i,j <n—5). If there
exist a vertex of N,(x), namely v, and w,,w,,w;,w, € N;(x) such
that v w,,v,w, € E(G) but vw;,v,w, & E(G), then (x)(v)(w)(wy,w3)
(Wy, wy)(vy, ws)(v, we)r is a resolving (n — 4)-partition, a contradiction.
Therefore, any vertex of N,(x) is either adjacent to at most one vertex
of w; € N, (x) or it is adjacent to at least n — 6 vertices of w; € N, (x), for
1<i<n-5.

(D5.1) v, is not adjacent to any vertex w; € N,(x),1 <i<n-35, so
that v, is adjacent to a vertex v € N, (x), since otherwise diam(G) = 3. If
v, is not adjacent to at least one vertex w; € N;(x), then we have a re-
solving (n — 4)-partition, namely (w)(w;)(v}, W) (Vy, W3)(V, W4)(x, Ws)7, A
contradiction. Therefore, v, is adjacent to all vertices w; € N,(x) for all
1 <i <n->5. Furthermore, we have that v,w ¢ E(G) and v,v € E(G),
since otherwise (w)(vy,w;)(V,, W)V, W3)(x,wy)m or (Vy)(V;, w ) (W, w,)
(v,w3)(x,wy)r is a resolving (n — 4)-partition, a contradiction. We de-
duce G = Hgys if wuy,v0, & E(G), or G = Hyg if wuv, ¢ E(G) and
viv, € E(G), or G = Hs, if wv, € E(G) and v v, & E(G), or G = Hs,
if wv;,v v, € E(G), as depicted in Fig. 26 (a)-(d), respectively.

(D5.2) v, is only adjacent to a single vertex w; € N;(x) and
v,w; & E(G) for all other remaining i # 1. If (v, is also only adja-
cent to a single vertex w; € N(x) and v,w; ¢ E(G) for all j # 1) or
(v, is only adjacent to a single vertex w, € N(x) and v,w; & E(G)
for all j # 2), then we have a resolving (n — 4)-partition, namely
(W)(vy, W)y, wy)(V, w3)(x, w,)w, a contradiction. If v, is only not ad-

jacent to a single vertex w; € N;(x) and vw; € E(G) for all j #
1 (or v, is only not adjacent to a single vertex w, € N(x) and

v,w; € E(G) for all j #2), then (w)(w)(vy, w;)(vy, w3)(v, wy)(x, ws)x (or
(W) (W) (v, W)Uy, w3)(V, Wy)(x, ws)x) is a resolving (n — 4)-partition, a
contradiction. Therefore, v, is adjacent to all vertices w; € N,(x) for
all 1 <i<n->5. In this case, v,w,v,v, € E(G) and v,v € E(G), since
otherwise (w)(vy,w;)(Vy, W))W, W3)(x, W), OF (V)V}, W) (W, W,)(V, W3)
(x,wy)m, or (v))(W) (W, w,)(vy, w3)(V, w,)(x, ws)x is a resolving (n — 4)-
partition, a contradiction. This implies that v, is adjacent to at least one
of the vertex w or v, since otherwise diam(G) = 3. We deduce G =~ Hyg if
vyw € E(G) and v,v ¢ E(G), or G = Hy, if vjv € E(G) and v,w ¢ E(G),
or G = Hg, if vjv,v,w € E(G).
(D5.3) v, is only not adjacent to a single vertex w; € N;(x) and
vyw; € E(G) for all other i # 1. If (v, is only not adjacent to a
single vertex w; € Ny(x) and v,w; € E(G) for all j # 1) or (v, is
only not adjacent to a single vertex w, € N(x) and v,w; € E(G)
for all j #2), then we have a resolving (n — 4)-partition, namely
(W)W ) (v, W)V, w3)(V, W)X, ws)r  or (W) (w)(w,)(vy, w3)(Vy, Wy)
(v, ws)(x, wg)r, respectively, a contradiction. Therefore, v, is adjacent
to all vertices w; € N (x) for all 1 <i <n-—5. In this case, v,w & E(G)
and v, v,v,0,0,0, € E(G), since otherwise (w)(w)(vy, w,)(vy, w3)(V, Wy)
(x,ws)m, or (v)(wy, W))W, V)V, w3)(X, wy)m, or (V) (V) (Wy, wy) (v, w3)
(W, wy)(x,ws)r, or (W))W, wy)(Vy, w3)(V, wy)(x,ws)x is a resolving
(n — 4)-partition, a contradiction. We deduce G = Hj, if v,w ¢ E(G)
or G = Hy if vyw € E(G), as depicted in Fig. 27 (a)-(b), respectively.
For the remaining case, assume that both v; and v, are adjacent to all
vertices w; € N;(x) for all 1 <i <n—5. Then, other vertex w € N,(x)
is adjacent to at most one vertex of v;,v, € N,(x), since otherwise
(W)(vy, Wi vy, wy)(V, w3)(x, wy)x is a resolving (n — 4)-partition, a con-
tradiction. If w is not adjacent to any vertex v;,v, € N,(x), then v
is adjacent to both v; and v,, since otherwise diam(G) = 3. In this

12
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Fig. 27. Graph (a) Hy,, (b) Hy, (¢) Hyy, (d) Hyy, (e) Hyy, () Hy, (8) Hys, (h) Hy, and (i) Hy.
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Fig. 28. Graph (a) Hg,, (b) Hsg, (¢) Hy,, (d) Hgs, (€) Hss, (f) Hsy, (8) Hyy, (W) Hey, (1) His, () Hsy, (K) Hag, () Hyy, (m) Hy; and (n) Hyg.

case we deduce G = H,, if v,v, ¢ E(G) or G = H,, if v v, € E(G), as
depicted in Fig. 27 (c)-(d), respectively. Now assume that w is only ad-
jacent to one vertex of N,(x), namely v,w € E(G) and v,w & E(G).
Then, v,v, € E(G) or vv, € E(G), since otherwise diam(G) =3 and
v, is adjacent to at least one of the vertex v or v,, since otherwise
(01)(Vg, W, W) (W, w3)(x,w,)x is a resolving (n — 4)-partition, a con-
tradiction. We deduce G = Hy, if v v, € E(G) and v,v,v,0 ¢ E(G), or
G = Hyg if v v,,00, € E(G) and vv, ¢ E(G), or G = H 5 if vv,,vv, € E(G)
and v v, ¢ E(G), or G = H,; if v,v,,vv, € E(G) and vv, ¢ E(G), or
G = Hy if v v,,0v,,00, € E(G), as depicted in Fig. 27 (e)-(i), respec-
tively.

(D6) N,(x) induces K, _; —e. Let e = ab and other vertices of
N, (x) by r; where 1 <i <n-—5. If there exists a vertex of N,(x),
namely v, such that v,t;,0,t, € E(G) and v 15,0ty ¢ E(G), then
X))@, 13)(t5,14)(b, 15)(v,, t)7 is a resolving (n — 4)-partition, a con-
tradiction. Therefore any vertex of N,(x) is adjacent to at most one
vertex of N;(x)\ {a,b} or it is adjacent to at least n — 6 vertices of
Ny()\ {a,b).

(D6.1) v, is not adjacent to any vertex of N,(x)\ {a,b}. If v, is also
not adjacent to any vertex of N,(x)\ {a,b}, then (v, and v, are adja-
cent to different vertex of a and b, and v,v, € E(G)), or (one of the
vertex of N,(x) is adjacent to both a,b € N (x), one other vertex of
N, (x) is at least adjacent to one vertex a,b € N(x) and v,v, € E(G)), or
(all vertices of N,(x) are adjacent to both a,b € N,(x)), since otherwise
diam(G) = 3. We deduce G as depicted in Fig. 28 (a)-(d). If v, is adjacent
to a single vertex 1, € N;(x) \ {a,b} and v,t; ¢ E(G) for all remaining
i # 1, then at least one end vertex of e is not adjacent to v, since other-
wise (0,)(11,15)(a,13)(b, 14)(x, v )7 is a resolving (n—4)-partition, a contra-
diction. Hence we obtain G as depicted in Fig. 28 (e)-(h). Now suppose
that v, is only not adjacent to a single vertex ¢, € N(x) and v,t; € E(G)
for all i # 1. However, we obtain that (v;)(v,)(t;,1,)(a,13)(b,1,)(x,t5) Or
(0)(t1,15)(a, t3)(b,1,)(x,v) )7 is a resolving (n — 4)-partition, a contradic-
tion. Otherwise, assume that v, is adjacent to all vertices 7; € N|(x) for
all 1 <i<n-35. Then v, is adjacent to at least one end vertex of e
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or v,v, ¢ E(G), since otherwise (v,)(a,t,)(b,v;,1,)(x,t3)7 is a resolving
(n — 4)-partition, a contradiction. We deduce G as depicted in Fig. 28
®H-m).

(D6.2) v, is adjacent to a single vertex t; € N (x) and v,t; ¢ E(G)
for all i # 1. If v, is also adjacent to a single vertex t; € N;(x) and
vot; & E(G) for all i # 1, then vy (or similarly v,) is not adjacent to at
least one end vertex of e, since otherwise (v;)(x,#,)(v5,t,)(a,13)(b,1,)7 (or
(0)(x,1)(v;, 1) a,13)(b, t4)7) is a resolving (n — 4)-partition, a contradic-
tion. We deduce G = K| +(K,_3 —eU2K)) if both v, and v, are not adja-
cent to any end vertex of e and v, v, € E(G), or G = K| +(K,_3—eUK,) if
both v, and v, are not adjacent to any end vertex of e and v,v, € E(G),
or G = Hg;s if one of v; or v, is only adjacent to one end vertex of e
and v,v, € E(G), or G = Hy, if one of v; or v, is only adjacent to one
end vertex of e and v,v, € E(G), or G = Hy, if one of end vertex e is
adjacent to both v, and v,, and v,v, & E(G), or G = Hy, if one of end
vertex e is adjacent to both v, and v,, and v,v, € E(G), or G = Hg if
each v, and v, are adjacent to different end vertex of e and v,v, ¢ E(G),
or G = Hs, if each v, and v, are adjacent to different end vertex e and
Vv, € E(G). If v, is only adjacent to a single vertex 7, € N (x) and
vot; & E(G) for all i # 2, then both v, and v, are adjacent at most to
a single vertex a or b, since otherwise (v;)(vy)(t;,13)(t2,14)(a,t5)(b,tg)7
is a resolving (n — 4)-partition, a contradiction. Furthermore, if both v,
and v, are not adjacent to a vertex a (or similarly to a vertex b), then
v v, € E(G) since otherwise diam(G) = 3. We deduce G = Hs; if both
v; and v, are not adjacent to any end vertex of e and v,v, € E(G), or
G = Hsg if only one of v, or v, is adjacent to an end vertex of e and
vv, € E(G), or G = Hgg if both v, and v, are adjacent to a single end
vertex of e and v,v, ¢ E(G), or G = Hsy, if both v; and v, are adjacent
to one end vertex of e and v, v, € E(G) (Fig. 29).

Now suppose that (v, is only not adjacent to a vertex t; € N,(x)
and v,t; € E(G) for all other i # 1) or (v, is only not adjacent to
a vertex 1, € N (x) and v,1; € E(G) for all other i # 2). However,
(@)(Vy)(t).12)(v1,13)(b, 14)(x,t5)x is a resolving (n — 4)-partition, a contra-
diction. Otherwise, assume that v, is adjacent to all vertices r; € N (x)
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Fig. 29. Graph (a) K, + (K, ; — e U2K,), (b) K, + (K,_s — e UKy), (¢) Hys, (d) Hs,, (€) Hyy, () Hyy, (8) Hyg, (h) Hy, () Hyy, () Hsg, (k) Heg and (1) Ha,.
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Fig. 30. Graph (a) Hs, (b) Hjy, (¢) Hy, (d) Hyy, (€) Hy, (f) Hy,, (8) Hy and (h) Hy;.

for all 1 <i<n->5. In this case, v, is adjacent to at most one end ver-
tex of e and v, is adjacent to at least one end vertex of ¢, and also (if an
end vertex of e is adjacent to both v, and v,, then other end vertex of
e is also adjacent to v,), since otherwise (v;)(vy)(t},1,)(a,13)(b,14)(x,15)x
is a resolving (n — 4)-partition, a contradiction. We deduce G = H,s if
v, is not adjacent to any end vertex of e, v, is only adjacent to one end
vertex e and v v, ¢ E(G), or G = Hy; if (v, is not adjacent to any end
vertex of e, v, is only adjacent to one end vertex e and v,v, € E(G)) or
(v, and v, are adjacent to different end vertex of e and v,v, ¢ E(G)),
or G = H,, if v, is not adjacent to any end vertex of e, v, is adjacent to
end vertices of e and v,v, € E(G), or G = H,, if (v, is not adjacent to
any end vertex of e, v, is adjacent to end vertices of e and v,v, € E(G))
or (v, is adjacent to one end vertex of e, v, is adjacent to end vertices
of e, and v,v, & E(G)), or G = Hy if each v, and v, are adjacent to dis-
tinct end vertex of e and v,v, € E(G), or G = H; if v, is adjacent to
one end vertex of e, v, is adjacent to end vertices of e, and v, v, € E(G)
(Fig. 30).

(D6.3) v, is only not adjacent to a single vertex ¢, € N(x) and
v t; € E(G) for all remaining i # 1. If v, is also only not adjacent
to a single vertex f; € N (x) and v,t; € E(G) for all remaining i #
1, then v v, € E(G) and end vertices of e are adjacent to both v,
and v,, since otherwise we have a resolving (n — 4)-partition, namely
W@, 1), 13)(b, 1)(X, 15)7 OF (01)(V3)(t1, 1)@, 13)(b,14)(x,15), @ con-
tradiction. Hence we deduce G = K, — E(C4 U K,). If v, is also only
not adjacent to a single vertex 7, € N(x) and v,t; € E(G) for all re-
maining i # 2, then (v;)(v,)(a)(t},13)(t5,14)(b,15)(x,1g)w is a resolving
(n — 4)-partition, a contradiction. Otherwise, assume that v, is adja-
cent to all vertices 1, € N;(x) \ {a,b} for all 1 <i<n->5. In this case,
viv, € E(G), vy is adjacent to at least one of a or b, and v, is ad-
jacent to both a and b, since otherwise (v,)(a)(t|,1,)(vy,13)(b,14)(x,15)7m
or (v))(t;,1)(a,t3)(b,1,)(x,t5)x is a resolving (n — 4)-partition, a contra-
diction. We deduce G = H 4 if v, is only adjacent to one end vertex
of e, or G =K, — E(K, U P,) if v, is adjacent to end vertices of e.
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Now let both v; and v, be adjacent to all vertices 7, € N|(x) for all
1<i<n-5. Then v,v, € E(G) or any vertex of N,(x) is adjacent to at
least one end vertex of e, since otherwise (v,)(v,,1,)(a,1,)(b, t3)(x,14)m or
(0)(vy,1)(a,15)(b,13)(x,14)7 is a resolving (n — 4)-partition, a contradic-
tion. If v,v, ¢ E(G), then we deduce G as depicted in Fig. 31 (d)-(g).
Otherwise, we deduce G as depicted in Fig. 31 (h)-(n).

(E) IN;(x)| =1 and |N,(x)| =n—2. Let N(x) = {u} and so that u is
adjacent to all vertices of N,(x), since otherwise diam(G) > 3. If N,(x)
induces K,_, or K,_,, then G = K; + (K, UK, _,) or G = K -1, respec-
tively. However for these two different graphs G, pd(G)=n—1 by [1],
a contradiction. Otherwise, there exists a vertex z € N,(x) such that
2 < |N,(z)] £ n—3. By a similar reason with the previous case with
z as a peripheral vertex, then min{|N,(z)|,|N,(z)|} < 3, since other-
wise there exists a resolving (n — 4)-partition. Therefore, we obtain that
[N, (2)|,|Ny(2)| € {2,3,n—3,n—4} and we are again in one of the Case
(A), (B), (C) or (D).

(F) [N, (x)| =n—2 and |N,(x)| = 1. Let N,(x) = {v}. Then, x is adja-
cent to all vertices of N,(x) and v is adjacent to at least one vertex of
N,(x). If 1 <|N;(v)|] <n-3, then |[N,(v)| € {1,2,3,n—3,n—4} and we
are again in one of the Cases (A), (B), (C), (D) or (E) with v as a pe-
ripheral vertex. Now we assume that |N,(v)| =n — 2 or in other words
v is adjacent to all vertices of N,(x). Consider the vertices in N,(x). If
any two different vertices in N,(x) are adjacent, then G = K, — e but
pd(K, —e)=n—1 [1]. If there exists a vertex z € N (x) such that z is
not adjacent to at least two vertices N,(x), then |N,(z)| <n -3 and we
back in one of Cases (A), (B), (C) or (D) with z as a peripheral ver-
tex. Otherwise we assume that N,(x) form a matching M. If M =1,
then G = K, — EQ2K,) but pd(K,, — E2K,)) = n—2 by [2]. If M =2, then
G = K, — E(3K,). If M > 3, then there exist a,a,a,,b,b;,b,,¢,c|,c, €
N, (x) such that aa,,bb,cc; € E(G) but aa,,bb,,cc, & E(G). However,
@) @)(b)(c)ay, a))(by. by)(c;, ) (v, O is a resolving (n —4)-partition, for a
vertex t € Ny (x) \ {a,a;,a,,b,b;,b,,c,c;,¢,}, a contradiction. []
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Fig. 31. Graph (a) K, — E(K, UC,), (b) Hyy, (c) K, — E(K, U P,), (d) Hs, (e) Hs,, () Hy, (8) K, — E(K, UKj3), (h) Hy,, () Hs,, () Hyy, (k) K, — E(Cs), 1) Hyy, (M)

K,— E(Ps) and (n) K, — E(K, U P).
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Appendix A

Graphs of order » obtained from K,_, —e by adding one new vertex
adjacent to:

: three vertices, exactly two vertices with maximum degree;

: three vertices, two of them are the end points of e;

1 n—4 vertices, exactly one vertex is the end point of e;

: two vertices with maximum degree;

Graphs of order n obtained from K,_;, — E(P;) by adding one new
vertex adjacent to:

: three vertices, two are the end points of P; and one with maxi-
mum degree;

: three vertices with different degrees;

: one vertex with maximum degree;

: two vertices, one with maximum degree and one is the end point
of P;

: n— 4 vertices, one with minimum degree and n — 5 vertices with
maximum degree;
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Hy: n—4 vertices, one is the end point of P; and n — 5 vertices with
maximum degree;

H,,: two vertices, one with minimum degree and one with maximum
degree;
H,,: two vertices of P; with different degrees;

Graphs of order n obtained from K,_; — E(K;) by adding one new
vertex adjacent to:

: one vertex with maximum degree;

: two vertices with different degrees;

: three vertices, exactly two with minimum degree;

: n—4 vertices, exactly one with minimum degree;

Graphs of order » obtained from K,_, — E(2K,) by adding one new
vertex adjacent to:

: three vertices, two are the end points of different edges of E(2K,)
and one with maximum degree;

: three end points of E(2K,);

: n—4 vertices, two are the end points of different edges of E(2K;)
and n — 6 vertices with maximum degree;

. n—4 vertices, exactly one with minimum degree;

: two end points of different edges of E(2K,);

: two vertices with different degrees;

: two non-adjacent vertices;

: one vertex with maximum degree;

Graphs of order » obtained from K,_, — E(P,) by adding one new
vertex adjacent to:

: one vertex with maximum degree;

: three vertices, one with maximum degree and two are internal
vertices of P,;

: three vertices of P,, two are the end points of P,;

: three vertices of P,, two are the internal vertices of P;

: two end points of Py;

: two vertices of P, with different degrees;

: two vertices, one with minimum degree and one with maximum
degree;

: n—4 vertices, one with minimum degree and »n — 5 with maximum
degree;

: n—4 vertices, two are the end points of P; and n—6 with maximum
degree;

: n—4 vertices, one is the end point of P, and n — 5 with maximum
degree;

Hss: two internal vertices of Py;
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Hjg: n— 4 vertices, one is the end point of P, and n — 5 with maximum
degree;

Graphs of order n obtained from K,_, — E(C,) by adding one new
vertex adjacent to:

: three vertices with minimum degree;

: two vertices with minimum degrees;

: one vertex with maximum degree;

: n—4 vertices, one with minimum degree and n — 5 with maximum
degree;

Graphs of order n obtained from K, ; — E(K| ; + ¢) by adding one
new vertex adjacent to:

n—4 vertices, one with minimum degree and n — 5 with maximum
degree;

Hyy:

Graphs of order » obtained from K, _, — E(K, ;) by adding one new
vertex adjacent to:

H,,: n—3 vertices, n—5 with maximum degree, and two with different
degrees;

Graphs of order n obtained from K,_, by connecting two new ver-
tices x and y with:

: exactly two vertices a and b in K,,_, such that (a,x), (a, y), (b, x) are
new edges;

: exactly two vertices a and b in K,_, such that (a,x),(a,y),(b,x),
(b, y) are new edges;

: exactly three vertices a,b and ¢ in K,,_, such that (a,x), (a, ), (b, x),
(c,y) are new edges;

: exactly three vertices a,b and ¢ in K,,_, such that (a,x), (b, x), (c, y),
(x,y) are new edges;

: H,; by adding new edge (x, y);

: Hy, by adding new edge (x, y);

: H,s by adding new edge (x, y);

Graphs of order » obtained from K, _,:
Hsy: (K, + K,_,) — e, where e is an edge connecting a vertex of K, and
Kn—2;

Graphs of order » obtained from K,_, —e by connecting a path P, :=
(x,y) with:

: three new edges (a, x), (¢, x), (¢, y), where a is one of the end-points
of e and c is a vertex of K,_, with maximum degree;

: four new edges (a, x), (b, y), (¢, x),(c, y), where a and b are the end-
points of e and c¢ is a vertex of K,_, with maximum degree;

: four new edges (a, x), (b, x), (¢, x),(c, y), where a and b are the end-
points of e and c¢ is a vertex of K,_, with maximum degree;

: three new edges (a, x), (b, ), (c, y), where a and b are the end-points
of e and c is a vertex of K, _, with maximum degree;

: three new edges (a, x), (b, x), (¢, y), where a and b are the end-points
of e and c is a vertex of K,_, with maximum degree;

: three new edges (a, x), (b, x), (b, y), where a and b are the end-points
of e;

: two new edges (c, x), (d, x), where ¢ and d are vertices with maxi-
mum degree;

: three new edges (a, x), (¢, x), (d, y), where a is one of the end-points
of e and ¢ and d are vertices of K,_, with maximum degree;

: four new edges (a, x),(a, y),(c,x),(d,y), where a is one of the end-
points of e and ¢ and d are vertices of K,_, with maximum degree;

: four new edges (a, x), (a, ), (c, x),(c,y), where a is one of the end-
points of e and ¢ is a vertex of K,_, with maximum degree;
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: four new edges (a, x), (b, x), (a, ), (c,y), where a and b are the end-
points of e and c is a vertex of K,_, with maximum degree;

: four new edges (a,x),(c,x),(c,y),(d,y), where a is one of the end-
points of e and ¢ and d are vertices of K,_, with maximum degree;

: four new edges (a, x), (a,y), (b, x), (b, y), where a and b are the end-
points of e;

: two new edges (a, x), (b, y), where a and b are the end-points of e;

1 Hs, by removal of (x, y);

: Hs, by removal of (x, y);

1 Hsg by removal of (x, y);

: Hsg by removal of (x, y);

1 Hgy by removal of (x, y);

1 Hg, by removal of (x, y);

: Hg, by removal of (x, y);

1 Hg; by removal of (x, y);

Graphs of order »n obtained from K,_; by connecting a path P; =
(x,y,z) with:

: three new edges (a, x),(a,y), (b, z), where a and b are any two dis-
tinct vertices of K,,_s;

: H;; by adding a new edge (x, z);

: three new edges (a, x), (a, z), (b, y), where a and b are any two dis-
tinct vertices of K,,_3;

: three new edges (a, x), (b, ), (c, z), where a,b and ¢ are any three
distinct vertices of K,,_s;

: Hy¢ by adding a new edge (x, z);

Graphs of order n obtained from K,,_, by adding a new vertex
adjacent to:

Hyg: n—3 vertices of K, + e, including one vertex with maximum
degree and exactly one of the end points of e;

Graphs of order » obtained from K, ,_,:

H,y: the graph (K, + K| n—4) — e where e is an edge connecting a ver-
tex K, and a pendant vertex of K 1.n—4> added by one new vertex
adjacent to two vertices of (K, + K 1.n—4) — ¢, namely the center of
K, ,_4 and one of end points e of K,;

C Ky + K, 4 added by one new vertex adjacent to the center of
K, ,_4 and one vertex of Ky;

: (K + K 1.n—4) — e where e is an edge connecting a vertex K, and
a center of K , 4, and added by one new vertex adjacent to two
end points of e;

Graphs of order » obtained from K, :
Hg,: K, — E(Ps + ), where e is an edge connecting two vertices Ps of
degree 2;
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