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All graphs of order 𝑛 with partition dimension 2, 𝑛 − 2, 𝑛 − 1, or 𝑛 have been characterized. However, finding 
all graphs on 𝑛 vertices with partition dimension other than these above numbers is still open. In this paper, we 
characterize all graphs of order 𝑛 ≥ 11 and diameter 2 with partition dimension 𝑛 − 3.
1. Introduction

Characterizing all graphs of order 𝑛 with partition dimension 𝑘 is 
a difficult problem. There are few results concerning this problem, in 
particular for 𝑘 equal to 2, 𝑛 or 𝑛 − 1 [1] and 𝑛 − 2 [2]. In this paper, we 
characterize all graphs with partition dimension 𝑛 − 3.

Let 𝐺 be a connected graph. The distance of two vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺), 
denoted by 𝑑(𝑢, 𝑣), is the length of shortest paths connecting 𝑢 and 𝑣
in 𝐺. For a subset of vertices 𝑆 ⊂ 𝑉 (𝐺), the distance between 𝑢 ∈ 𝑉 (𝐺)
and 𝑆 is defined by 𝑑(𝑢, 𝑆) = min{𝑑(𝑢, 𝑥) ∶ 𝑥 ∈ 𝑆}. The eccentricity of a 
vertex 𝑢 ∈ 𝑉 (𝐺), denoted by ecc(𝑢), is the maximum distance of vertex 
𝑢 to any other vertices of 𝐺, namely ecc(𝑢) = max{𝑑(𝑢, 𝑣) ∶ 𝑣 ∈ 𝑉 (𝐺)}. 
The diameter of 𝐺, denoted by diam(𝐺), is the maximum eccentricity of 
the vertices in 𝐺, or in short diam(𝐺) =max{ecc(𝑢) ∶ 𝑢 ∈ 𝑉 (𝐺)}. Further-

more, 𝑢 ∈ 𝑉 (𝐺) is called a peripheral vertex if ecc(𝑢) = diam(𝐺).
Let 𝑊 = {𝑤1, 𝑤2, … , 𝑤𝑘} be an ordered set of 𝑉 (𝐺). The metric 

representation of a vertex 𝑢 ∈ 𝑉 (𝐺) with respect to 𝑊 is 𝑟(𝑢|𝑊 ) =
(𝑑(𝑢, 𝑤1), 𝑑(𝑢, 𝑤2), … , 𝑑(𝑢, 𝑤𝑘)). A set 𝑊 is called a resolving set of 𝐺 if 
the metric representations of any two vertices of 𝐺 are distinct with re-

spect to 𝑊 . The cardinality of a minimum resolving set of graph 𝐺 is 
called metric dimension of 𝐺 and denoted by dim(𝐺). Some results re-

lated to the metric dimension can be seen in [3, 4].

In [5] Chartrand et al. presented another kind of metric dimension 
concept, as follows. Let Π = {𝑆1, 𝑆2, … , 𝑆𝑘} be a partition of a connected 
graph 𝐺. Define the partition representation of a vertex 𝑢 ∈ 𝑉 (𝐺) with 
respect to Π by 𝑟(𝑢|Π) = (𝑑(𝑢, 𝑆1), 𝑑(𝑢, 𝑆2), … , 𝑑(𝑢, 𝑆𝑘)), where 𝑑(𝑢, 𝑆𝑖) =
min{𝑑(𝑢, 𝑥) ∶ 𝑥 ∈ 𝑆𝑖} for 1 ≤ 𝑖 ≤ 𝑘. If any two vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺) have 
distinct representations with respect to Π, namely 𝑟(𝑢|Π) ≠ 𝑟(𝑣|Π), then 
such a partition Π is called a resolving partition of 𝐺. The partition dimen-
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sion of 𝐺, denoted by 𝑝𝑑(𝐺), is the smallest cardinality of a resolving 
partition Π of 𝐺.

In general, for a connected graph 𝐺 we have 𝑝𝑑(𝐺) ≤ dim(𝐺) + 1. It 
is also natural to think that if two vertices 𝑢, 𝑣 ∈ 𝑉 (𝐺) have the same 
distance to all other vertices 𝑉 (𝐺) ⧵ {𝑢, 𝑣}, then these two vertices must 
be contained in distinct elements of any resolving partition Π of 𝐺. This 
result is shown as follows.

Remark 1 ([1]). Let Π be a resolving partition of 𝐺 and 𝑢, 𝑣 ∈ 𝑉 (𝐺). If 
𝑑(𝑢, 𝑥) = 𝑑(𝑣, 𝑥) for any 𝑥 ∈ 𝑉 (𝐺) ⧵ {𝑢, 𝑣}, then 𝑢 and 𝑣 belong to distinct 
elements of Π.

In [1], Chartrand et al. characterized all connected graphs 𝐺 of order 
𝑛 with partition dimension 2, 𝑛 or 𝑛 − 1. They showed that for 𝑛 ≥ 2, the 
only graph with partition dimension 2 is a path and the only graph 𝐺
with 𝑝𝑑(𝐺) = 𝑛 is the complete graph. Furthermore, they characterized 
all graphs of order 𝑛 ≥ 3 with partition dimension 𝑛 − 1, namely 𝐾1,𝑛−1, 
𝐾𝑛 − 𝑒 for any edge 𝑒 ∈𝐸(𝐾𝑛), or 𝐾1 + (𝐾1 ∪𝐾𝑛−2). The characterization 
of connected graphs on 𝑛 ≥ 9 vertices with partition dimensions 𝑛 −2 has 
been done by Tomescu [2]. He showed that there are only 23 graphs 𝐺
of order 𝑛 ≥ 9 with 𝑝𝑑(𝐺) = 𝑛 − 2, namely 𝐾2,𝑛−2, 𝐾2 +𝐾𝑛−2, 𝐾𝑛 −𝐸(𝑃3), 
𝐾𝑛 − 𝐸(𝐾3), 𝐾𝑛 − 𝐸(𝑃4), 𝐾1 + (𝐾1 ∪ (𝐾𝑛−2 − 𝑒)), 𝐾𝑛 − 𝐸(𝐶4), 𝐾1,𝑛−1 + 𝑒, 
𝐾𝑛 −𝐸(2𝐾2), 𝐾2,𝑛−2 − 𝑒, 𝐾𝑛 −𝐸(𝐾1,3 + 𝑒), 𝐺1, 𝐺2, … , 𝐺12, where 𝑒 is any 
edge. The detail definitions of graphs 𝐺1, … , 𝐺12 can be found in [2]. 
However, in this paper we prove that two of these above graphs, namely 
𝐾1,𝑛−1 + 𝑒 and 𝐾𝑛 − 𝐸(𝐾1,3 + 𝑒), have partition dimension 𝑛 − 3 (not 
𝑛 −2). Furthermore, it is easy to verify that the graph 𝐹 on 𝑛 ≥ 9 vertices 
obtained by connecting a vertex 𝑣 to end vertex 𝑒 of 𝐾𝑛−1 − 𝑒 for any 
edge 𝑒 ∈𝐸(𝐾𝑛−1), has partition dimension 𝑛 − 2.
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In this paper, we study graphs of order 𝑛 with partition dimension 
𝑛 − 3. From [1], for all connected graphs 𝐺 we have that 𝑝𝑑(𝐺) ≤ 𝑛 −
diam(𝐺) + 1. Then, the graph 𝐺 with partition dimension 𝑛 − 3 must 
have diameter 2, 3 or 4. In this paper, we characterize all connected 
graphs on 𝑛 ≥ 11 vertices with diameter 2 and partition dimension 𝑛 −3. 
We will show that there are 114 non-isomorphic such graphs.

2. Main results

Before presenting the main results, we provide a useful property as 
follows.

Lemma 1. For 𝑛 ≥ 8, let 𝐺 be a graph on 𝑛 vertices. If 𝐺 does not contain 
the following three configurations:

(1) five vertices 𝑎, 𝑡1, 𝑡2, 𝑡3 and 𝑡4 forming 𝑎𝑡1, 𝑎𝑡2 ∈ 𝐸(𝐺) and 𝑎𝑡3, 𝑎𝑡4 ∉
𝐸(𝐺),

(2) six vertices 𝑎, 𝑏, 𝑡1, 𝑡2, 𝑡3 and 𝑡4 forming 𝑎𝑡1, 𝑏𝑡3 ∈ 𝐸(𝐺) and 𝑎𝑡2, 𝑏𝑡4 ∉
𝐸(𝐺), and

(3) four vertices 𝑡1, 𝑡2, 𝑡3 and 𝑡4 forming 𝑡1𝑡2 ∈ 𝐸(𝐺) and 𝑡1𝑡4, 𝑡2𝑡3, 𝑡3𝑡4 ∉
𝐸(𝐺),

then 𝐺 is isomorphic to either 𝐾𝑛, 𝐾𝑛, 𝐾1,𝑛−1, 𝐾𝑛−1 ∪𝐾1, 𝐾𝑛 − 𝐸(𝐾1,𝑛−2), 
or 𝐾𝑛 − 𝑒 for any edge 𝑒 ∈𝐸(𝐾𝑛).

Proof. Let 𝐾𝑟 be a maximum clique of 𝐺 for some integer 𝑟 ∈ [1, 𝑛]. We 
consider four following cases.

Case 1. 𝑟 = 1 or 𝑟 = 𝑛. We can easily see that 𝐺 ≅ 𝐾𝑛 or 𝐺 ≅ 𝐾𝑛, 
respectively.

Case 2. 𝑟 = 2. Let 𝑉 (𝐾2) = {𝑥, 𝑦} and 𝑉 (𝐺) − 𝑉 (𝐾2) = {𝑣𝑖 ∶ 1 ≤ 𝑖 ≤
𝑛 −2}. If all vertices of 𝐾2 are not adjacent to any vertex of 𝐺−𝐾2, then 
any two vertices of 𝐺 −𝐾2 must be adjacent, since otherwise we have 
Configuration (3) in 𝐺. Hence 𝐺−𝐾2 induces 𝐾𝑛−2, but this contradicts 
that 𝐾2 is the maximum clique in 𝐺. Now assume that there exists a 
vertex of 𝐾2, namely a vertex 𝑥, such that 𝑥 is adjacent to 𝑠 vertices of 
𝐺−𝐾2. If 1 ≤ 𝑠 ≤ 𝑛 −4, then we have Configuration (1) in 𝐺, a contradic-

tion. If 𝑠 = 𝑛 −3, namely 𝑥𝑣𝑖 ∈𝐸(𝐺) for all 1 ≤ 𝑖 ≤ 𝑛 −3 and 𝑥𝑣𝑛−2 ∉𝐸(𝐺), 
then 𝑣𝑖𝑣𝑗 , 𝑦𝑣𝑖 ∉ 𝐸(𝐺) for all 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 3, since otherwise 𝐾2 is not a 
maximum clique in 𝐺. Hence, we also obtain that 𝑦𝑣𝑛−2, 𝑣𝑖𝑣𝑛−2 ∉ 𝐸(𝐺)
for any 1 ≤ 𝑖 ≤ 𝑛 − 3, if not we have Configuration (1) in 𝐺. However, 
𝐺 ≅ 𝐾1,𝑛−2 ∪ 𝐾1 and it contains Configuration (3) in 𝐺, a contradic-

tion. Otherwise, assume that 𝑠 = 𝑛 −2. Note that 𝑣𝑖𝑣𝑗 , 𝑦𝑣𝑖 ∉𝐸(𝐺) for any 
1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 2, since otherwise 𝐾2 is not a maximum clique of 𝐺. Thus 
we obtain that 𝐺 ≅𝐾1,𝑛−1.

Case 3. 3 ≤ 𝑟 ≤ 𝑛 −2. Let 𝑉 (𝐾𝑟) = {𝑥𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑟} and 𝑉 (𝐺−𝐾𝑟) = {𝑣𝑖 ∶
1 ≤ 𝑖 ≤ 𝑛 − 𝑟}. Note that in this case, any vertex of 𝐾𝑟 is not adjacent to 
at most one vertex of 𝐺 −𝐾𝑟 and any vertex of 𝐺 −𝐾𝑟 is not adjacent 
to at least one vertex of 𝐾𝑟, since otherwise we have Configuration (1) 
or 𝐾𝑟+1 in 𝐺, respectively, a contradiction. Therefore, without loss of 
generality we can assume that 𝑥𝑖𝑣𝑖 ∉ 𝐸(𝐺) for all 1 ≤ 𝑖 ≤ min{𝑟, 𝑛 − 𝑟}
and 𝑥𝑖𝑣𝑗 ∈𝐸(𝐺) for all 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤min{𝑟, 𝑛 − 𝑟}. However, it leads us 
to Configuration (2) in 𝐺, a contradiction.

Case 4. For 𝑟 = 𝑛 − 1, let 𝑉 (𝐺 −𝐾𝑛−1) = {𝑣}. Note that a vertex 𝑣 is 
either adjacent to 0, 1 or 𝑛 −2 vertices of 𝐾𝑛−1, since otherwise we have 
Configuration (1) or 𝐾𝑛−1 is not a maximum clique of 𝐺, a contradiction. 
If 𝑣 is not adjacent to any vertex of 𝐾𝑛−1, then 𝐺 ≅𝐾𝑛−1 ∪𝐾1. If 𝑣 is only 
adjacent to a single vertex of 𝐾𝑛−1, then 𝐺 ≅𝐾𝑛 −𝐸(𝐾1,𝑛−2). Otherwise, 
𝑣 is adjacent to 𝑛 − 2 vertices of 𝐾𝑛−1 and we obtain 𝐺 ≅𝐾𝑛 − 𝑒. □

In the following result, we prove that there are exactly 114 non-

isomorphic graphs 𝐺 on 𝑛 ≥ 11 vertices and diam(𝐺) = 2 such that 
𝑝𝑑(𝐺) = 𝑛 − 3.

Theorem 1. Let 𝐺 be a connected graph of order 𝑛 ≥ 11 and diam(𝐺) = 2. 
Then 𝑝𝑑(𝐺) = 𝑛 − 3 if and only if 𝐺 is one of the following graphs:
2

(i) 𝐾𝑛−3 +𝐻 , where 𝐻 is any graph on three vertices,

(ii) 𝐾1 + (𝐾𝑛−4 ∪𝐻), where 𝐻 is any graph on three vertices,

(iii) 𝐾1 + (𝐾𝑛−3 − 𝑒 ∪𝐻), where 𝐻 is any graph on two vertices,

(iv) 𝐾1 + (𝐾1,𝑛−4 ∪𝐻), where 𝐻 is any graph on two vertices,

(v) 𝐾𝑛−𝐸(𝐾1,𝑛−4∪𝐻), where 𝐻 is any connected graph on three vertices,

(vi) 𝐾𝑛−5 + (𝐾2 ∪𝐻), where 𝐻 is any connected graph on three vertices,

(vii) 𝐾𝑛 − 𝐸(𝐻), where 𝐻 is any connected graph on four vertices other 
than 𝐶4 and 𝑃4,

(vii) 𝐾𝑛 −𝐸(𝐻), where 𝐻 is either 𝐶5, 𝑃5, 𝐾2,3, 𝐾2 ∪𝐾3, 𝐾2 ∪ 𝑃3, 3𝐾2, 
𝐾2 ∪𝐶4, or 𝐾2 ∪ 𝑃4,

(ix) 𝐾1 + (𝐾2,𝑛−4 ∪𝐾1),
(x) 𝐾𝑛 −𝐸(𝐾1,𝑛−4),

(xi) 𝐾1,𝑛−1 + 𝑒,

(xii) 𝐾𝑛 −𝐸(𝐾1,𝑛−3 + 𝑒),
(xiii) Graphs 𝐻1, 𝐻2, …, 𝐻82.

Proof. If 𝐺 is one of the above graphs, then it is easy to verify that 
𝑝𝑑(𝐺) = 𝑛 − 3. Now we are going to show the other direction. Let 
𝐺 be a connected graph of order 𝑛 ≥ 11 where 𝑝𝑑(𝐺) = 𝑛 − 3 and 
diam(𝐺) = 2. Let 𝑥 be a peripheral vertex of 𝐺 with ecc(𝑥) = 2. De-

note 𝑁𝑖(𝑥) as the set of vertices of 𝐺 with distance 𝑖 to a vertex 
𝑥, for 𝑖 = 1, 2. Let 𝑁1(𝑥) ⊇ {𝑢1, 𝑢2, 𝑢3, 𝑢4} and 𝑁2(𝑥) ⊇ {𝑣1, 𝑣2, 𝑣3, 𝑣4}. If 
min{|𝑁1(𝑥)|, |𝑁2(𝑥)|} ≥ 4, then (𝑥)(𝑢1, 𝑣1)(𝑢2, 𝑣2)(𝑢3, 𝑣3)(𝑢4, 𝑣4)𝜋 is a re-

solving (𝑛 − 4)-partition, for a singleton partition 𝜋 containing the 
vertices 𝑉 (𝐺) ⧵ {𝑥, 𝑢1, 𝑢2, 𝑢3, 𝑢4, 𝑣1, 𝑣2, 𝑣3, 𝑣4}, a contradiction. There-

fore, min{|𝑁1(𝑥)|, |𝑁2(𝑥)|} ≤ 3. We consider the following subcases: 
(A) |𝑁1(𝑥)| = 3, |𝑁2(𝑥)| = 𝑛 − 4; (B) |𝑁1(𝑥)| = 𝑛 − 4, |𝑁2(𝑥)| = 3; (C) 
|𝑁1(𝑥)| = 2, |𝑁2(𝑥)| = 𝑛 −3; (D) |𝑁1(𝑥)| = 𝑛 −3, |𝑁2(𝑥)| = 2; (E) |𝑁1(𝑥)| =
1, |𝑁2(𝑥)| = 𝑛 − 2 and (F) |𝑁1(𝑥)| = 𝑛 − 2, |𝑁2(𝑥)| = 1.

(A) |𝑁1(𝑥)| = 3 and |𝑁2(𝑥)| = 𝑛 − 4. Let 𝑁1(𝑥) = {𝑢1, 𝑢2, 𝑢3}. If 𝑁2(𝑥)
contains 3 vertices 𝑎, 𝑏, 𝑐 such that 𝑎𝑏 ∈𝐸(𝐺) and 𝑎𝑐 ∉𝐸(𝐺), then we can 
define a resolving (𝑛 − 4)-partition of 𝐺, namely (𝑥)(𝑎)(𝑏, 𝑐)(𝑢1, 𝑡1)(𝑢2, 𝑡2)
(𝑢3, 𝑡3)𝜋, for 𝑡1, 𝑡2, 𝑡3 ∈𝑁2(𝑥) ⧵ {𝑎, 𝑏, 𝑐} and a singleton partition 𝜋 of the 
remaining vertices, a contradiction. Therefore, 𝑁2(𝑥) induces (A1) 𝐾𝑛−4
or (A2) 𝐾𝑛−4.

(A1) 𝑁2(𝑥) induces 𝐾𝑛−4. If there exists a vertex of 𝑁1(𝑥), namely 
𝑢1, with 𝑢1𝑎 ∉𝐸(𝐺) and 𝑢1𝑏 ∈𝐸(𝐺) for some 𝑎, 𝑏 ∈𝑁2(𝑥), then we have 
a resolving (𝑛 − 4)-partition in 𝐺, namely (𝑥)(𝑎, 𝑏)(𝑢1, 𝑡1)(𝑢2, 𝑡2)(𝑢3, 𝑡3)𝜋, 
for 𝑡1, 𝑡2, 𝑡3 ∈𝑁2(𝑥) and a singleton partition 𝜋, a contradiction. There-

fore, any vertex of 𝑁1(𝑥) are adjacent to all vertices of 𝑁2(𝑥) or some of 
them are not adjacent to any vertex of 𝑁2(𝑥). If 𝑢1 ∈𝑁1(𝑥) is adjacent 
to all vertices of 𝑁2(𝑥) and 𝑢2 ∈𝑁1(𝑥) is not adjacent to any vertex of 
𝑁2(𝑥), then we can also define a resolving (𝑛 −4)-partition of 𝐺, namely 
(𝑢1, 𝑎1)(𝑢2, 𝑎2)(𝑢3, 𝑎3)(𝑥, 𝑎4)𝜋, for 𝑎1, 𝑎2, 𝑎3, 𝑎4 ∈𝑁2(𝑥) and a singleton par-

tition 𝜋 of the remaining vertices, a contradiction. Therefore, we can 
conclude that any vertex of 𝑁1(𝑥) are adjacent to all vertices of 𝑁2(𝑥). 
We obtain that 𝐺 ≅𝐾3,𝑛−3 if none of vertices of 𝑁1(𝑥) are connected, or 
𝐺 ≅ (𝐾1 ∪𝐾2) +𝐾𝑛−3 if 𝑁1(𝑥) induces 𝐾1 ∪𝐾2, or 𝐺 ≅ 𝑃3 +𝐾𝑛−3 if 𝑁1(𝑥)
induces 𝑃3, or 𝐺 ≅𝐾3 +𝐾𝑛−3 if any two vertices of 𝑁1(𝑥) are connected

(Fig. 1).

(A2) 𝑁2(𝑥) induces 𝐾𝑛−4. If there exist four distinct vertices 
𝑡1, 𝑡2, 𝑡3, 𝑡4 ∈𝑁2(𝑥) such that 𝑢1𝑡1, 𝑢1𝑡2 ∈ 𝐸(𝐺) but 𝑢1𝑡3, 𝑢1𝑡4 ∉ 𝐸(𝐺), then 
we have a resolving (𝑛 − 4)-partition of 𝐺, namely (𝑥)(𝑢1)(𝑡1, 𝑡3)(𝑡2, 𝑡4)
(𝑢2, 𝑡5)(𝑢3, 𝑡6)𝜋, for some 𝑡5, 𝑡6 ∈𝑁2(𝑥) ⧵{𝑡1, 𝑡2, 𝑡3, 𝑡4} and a singleton parti-

tion 𝜋, a contradiction. Therefore, any vertex of 𝑁1(𝑥) is either adjacent 
to at most one vertex of 𝑁2(𝑥) or it is adjacent at least to 𝑛 − 5 vertices 
of 𝑁2(𝑥). Note that for any 𝑡 ∈ 𝑁2(𝑥), there exists a vertex 𝑢𝑖 ∈ 𝑁1(𝑥)
such that 𝑢𝑖𝑡 ∈𝐸(𝐺), since otherwise diam(𝐺) = 3.

Remark 2. Let {𝑎, 𝑏, 𝑐} ⊂ 𝑁2(𝑥). If we have one of the following five 
conditions in G:

1. 𝑢1 is not adjacent to any vertex of 𝑁2(𝑥), 𝑢2 is only adjacent to 
vertex 𝑎 in 𝑁2(𝑥), and 𝑢3 is adjacent to 𝑛 −5 vertices of 𝑁2(𝑥) ⧵ {𝑎}, 
or
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Table 1

Adjacency of three vertices 𝑢1 , 𝑢2, 𝑢3 ∈𝑁1(𝑥) to the vertices of 𝑁2(𝑥).

𝑢1 0 0 0 0 1 1 1 𝑛− 5 𝑛− 5 𝑛− 4

𝑢2 0 1 𝑛− 5 𝑛− 4 1 𝑛− 5 𝑛− 4 𝑛− 5 𝑛− 4 𝑛− 4

𝑢3 𝑛− 4 𝑛− 4 𝑛− 4 𝑛− 4 𝑛− 4 𝑛− 4 𝑛− 4 𝑛− 4 𝑛− 4 𝑛− 4

Fig. 1. Graph (a) 𝐾3,𝑛−3 , (b) (𝐾1 ∪𝐾2) +𝐾𝑛−3, (c) 𝑃3 +𝐾𝑛−3 and (d) 𝐾3 +𝐾𝑛−3.
Fig. 2. Graph (a) 𝐾1 + (𝐾𝑛−4 ∪ 𝑃3), (b) 𝐾1 + (𝐾𝑛−4 ∪𝐾3), (c) 𝐻73 and (d) 𝐻74 .

2. 𝑢1 is not adjacent to any vertex of 𝑁2(𝑥), 𝑢2 is adjacent to 𝑛 − 5
vertices of 𝑁2(𝑥) ⧵{𝑎}, and 𝑢3 is adjacent to 𝑛 −5 vertices of 𝑁2(𝑥) ⧵
{𝑏}, or

3. 𝑢1 is only adjacent to vertex 𝑎 in 𝑁2(𝑥), 𝑢2 is only adjacent to vertex 
𝑏 in 𝑁2(𝑥), and 𝑢3 is adjacent to 𝑛 − 5 vertices of 𝑁2(𝑥) other than 
𝑎 or 𝑏, or

4. 𝑢1 and 𝑢2 are only adjacent to vertex 𝑎 in 𝑁2(𝑥), and 𝑢3 is adjacent 
to 𝑛 − 5 vertices of 𝑁2(𝑥) ⧵ {𝑎}, or

5. 𝑢1 is only adjacent to vertex 𝑎 in 𝑁2(𝑥), 𝑢2 is adjacent to 𝑛 − 5
vertices of 𝑁2(𝑥) ⧵ {𝑠} where 𝑠 ∈ {𝑎, 𝑏}, and 𝑢3 is adjacent to 𝑛 − 5
vertices of 𝑁2(𝑥) ⧵ {𝑐}, or

6. 𝑢1 is adjacent to 𝑛 − 5 vertices of 𝑁2(𝑥) ⧵ {𝑎}, 𝑢2 is adjacent to 
𝑛 − 5 vertices of 𝑁2(𝑥) ⧵ {𝑠}, and 𝑢3 is adjacent to 𝑛 − 5 vertices of 
𝑁2(𝑥) ⧵ {𝑡}, where 𝑠, 𝑡 ∈ {𝑏, 𝑐},

then there exists a resolving (𝑛 −4)-partition of 𝐺, namely (𝑎)(𝑏)(𝑐)(𝑢1, 𝑡1)
(𝑢2, 𝑡2)(𝑥, 𝑢3, 𝑡3)𝜋 for 𝑡1, 𝑡2, 𝑡3 ∈𝑁2(𝑥) ⧵{𝑎, 𝑏, 𝑐} and a singleton partition 𝜋, 
a contradiction.

By the previous facts and Remark 2, the adjacency of three vertices 
𝑢1, 𝑢2, 𝑢3 ∈𝑁1(𝑥) to the vertices of 𝑁2(𝑥) are shown in the Table 1.

(A2.1) 𝑢1 ∈𝑁1(𝑥) is not adjacent to any vertex of 𝑁2(𝑥). If 𝑢2 ∈𝑁1(𝑥)
is also not adjacent to any vertex of 𝑁2(𝑥), then 𝑢3 is adjacent to all 
vertices of 𝑁2(𝑥) and 𝑢1𝑢3, 𝑢2𝑢3 ∈𝐸(𝐺), since otherwise diam(𝐺) = 3. We 
Fig. 3. Graph (a) 𝐻51 , (b) 𝐻60 , (c) 𝐻

3

obtain that 𝐺 ≅𝐾1 + (𝐾𝑛−4 ∪ 𝑃3) if 𝑢1𝑢2 ∉ 𝐸(𝐺) or 𝐺 ≅𝐾1 + (𝐾𝑛−4 ∪𝐾3)
if 𝑢1𝑢2 ∈𝐸(𝐺). If 𝑢2 is only adjacent to a single vertex 𝑡1 ∈𝑁2(𝑥) and 𝑢3
is adjacent to all vertices of 𝑁2(𝑥), then 𝑢1𝑢3 ∈ 𝐸(𝐺) and 𝑢2𝑢3 ∉ 𝐸(𝐺), 
since otherwise diam(𝐺) = 3 or (𝑢2)(𝑡1, 𝑡2)(𝑢1, 𝑡3)(𝑥, 𝑢3, 𝑡4)𝜋 is a resolving 
(𝑛 − 4)-partition for 𝑡2, 𝑡3, 𝑡4 ∈𝑁2(𝑥) ⧵ {𝑡1} and 𝜋 is a singleton partition, 
respectively, a contradiction. We obtain that 𝐺 ≅𝐻73 if 𝑢1𝑢2 ∉ 𝐸(𝐺) or 
𝐺 ≅𝐻74 if 𝑢1𝑢2 ∈𝐸(𝐺) (Fig. 2).

If 𝑢2 is only not adjacent to a single vertex 𝑎 ∈ 𝑁2(𝑥) and 𝑢3 is 
adjacent to all vertices of 𝑁2(𝑥), then 𝑢1𝑢3 ∈ 𝐸(𝐺) and 𝑢2𝑢3 ∈ 𝐸(𝐺), 
since otherwise diam(𝐺) = 3 or (𝑢2)(𝑥, 𝑢3, 𝑡1)(𝑎, 𝑡2)(𝑢1, 𝑡3)𝜋 is a resolving 
(𝑛 − 4)-partition, for 𝑡1, 𝑡2, 𝑡3 ∈ 𝑁2(𝑥) ⧵ {𝑎} and a singleton partition 𝜋, 
contradiction. We deduce that 𝐺 ≅ 𝐻51 if 𝑢1𝑢2 ∉ 𝐸(𝐺) or 𝐺 ≅ 𝐻60 if 
𝑢1𝑢2 ∈ 𝐸(𝐺). For the remaining cases, assume that both 𝑢2 and 𝑢3 are 
adjacent to all vertices of 𝑁2(𝑥). Then 𝑢1 is adjacent to at least one ver-

tex of 𝑢2 or 𝑢3, since otherwise diam(𝐺) = 3. We obtain 𝐺 as depicted in 
Fig. 3 (c)-(f).

(A2.2) 𝑢1 ∈ 𝑁1(𝑥) is only adjacent to vertex 𝑎 in 𝑁2(𝑥). Let 𝑢2 be 
only adjacent to vertex 𝑏 in 𝑁2(𝑥) and 𝑢3 be adjacent to all vertices of 
𝑁2(𝑥). If 𝑎 = 𝑏 or 𝑎 ≠ 𝑏, then 𝑢3 is not adjacent to both 𝑢1 and 𝑢2, since 
otherwise one of (𝑢1)(𝑎, 𝑡1)(𝑢2, 𝑡2)(𝑥, 𝑢3, 𝑡3)𝜋, or (𝑢2)(𝑎, 𝑡1)(𝑢1, 𝑡2)(𝑥, 𝑢3, 𝑡3)𝜋, 
or (𝑢1)(𝑢2)(𝑎, 𝑡1)(𝑏, 𝑡2)(𝑥, 𝑢3, 𝑡3)𝜋 is a resolving (𝑛 − 4)-partition of 𝐺, for 
𝑡1, 𝑡2, 𝑡3 ∈𝑁2(𝑥) ⧵ {𝑎, 𝑏}, a contradiction. We deduce 𝐺 ≅𝐻75 if 𝑎 = 𝑏 and 
𝑢1𝑢2 ∉𝐸(𝐺), or 𝐺 ≅𝐻74 if 𝑎 = 𝑏 and 𝑢1𝑢2 ∈𝐸(𝐺), or 𝐺 ≅𝐻76 if 𝑎 ≠ 𝑏 and 
𝑢1𝑢2 ∉𝐸(𝐺), or 𝐺 ≅𝐻77 if 𝑎 ≠ 𝑏 and 𝑢1𝑢2 ∈𝐸(𝐺).

Now assume that 𝑢2 is only not adjacent to a single vertex 𝑏 ∈𝑁2(𝑥)
and 𝑢3 is adjacent to all vertices of 𝑁2(𝑥), so that 𝑢2𝑢3 ∈ 𝐸(𝐺), since 
otherwise (𝑢2)(𝑥, 𝑢3, 𝑡1)(𝑎, 𝑡2)(𝑢1, 𝑡3)𝜋 is a resolving (𝑛 − 4)-partition, for 
𝑡1, 𝑡2, 𝑡3 ∈𝑁2(𝑥) ⧵ {𝑎, 𝑏}, a contradiction. If 𝑎 = 𝑏, then 𝑢1 is not adjacent 
to at least one of 𝑢2 or 𝑢3, since otherwise (𝑢1)(𝑎, 𝑡1)(𝑢2, 𝑡2)(𝑥, 𝑢3, 𝑡3)𝜋 is a 
resolving (𝑛 −4)-partition, for 𝑡1, 𝑡2, 𝑡3 ∈𝑁2(𝑥) ⧵ {𝑎}, a contradiction. We 
deduce G as depicted in Fig. 4 (e)-(g). If 𝑎 ≠ 𝑏, then 𝑢1𝑢3 ∉ 𝐸(𝐺), since 
otherwise (𝑢1)(𝑢2)(𝑎, 𝑡1)(𝑏, 𝑡2)(𝑥, 𝑢3, 𝑡3) is a resolving (𝑛 − 4)-partition, for 
𝑡1, 𝑡2, 𝑡3 ∈ 𝑁2(𝑥) ⧵ {𝑎, 𝑏}, a contradiction. We obtain 𝐺 as depicted in 
Fig. 4 (h)-(i).
56 , (d) 𝐻47 , (e) 𝐻63 and (f) 𝐻48 .
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Fig. 4. Graph (a) 𝐻75 , (b) 𝐻74 , (c) 𝐻76 , (d) 𝐻77 , (e) 𝐻54 , (f) 𝐻61 , (g) 𝐻52 , (h) 𝐻58 , (i) 𝐻59 , (j) 𝐻55 , (k) 𝐻61 , (l) 𝐻46 and (m) 𝐻49 .

Fig. 5. Graph (a) 𝐻26 , (b) 𝐻17 , (c) 𝐻37 , (d) 𝐻27 , (e) 𝐻15 and (f) 𝐻5.

Fig. 6. Graph (a) 𝐻28 , (b) 𝐻6 , (c) 𝐻18 , (d) 𝐻1 , (e) 𝐾𝑛 −𝐸(𝐾1,𝑛−4 ∪𝐾3), (f) 𝐾𝑛 −𝐸(𝐾1,𝑛−4 ∪ 𝑃3), (g) 𝐻2 and (h) 𝐾𝑛 −𝐸(𝐾1,𝑛−4).
For the remaining cases, let both 𝑢2 and 𝑢3 be adjacent to all vertices 
of 𝑁2(𝑥). Then, 𝑢1 is not adjacent to at least one of 𝑢2 or 𝑢3, since 
otherwise (𝑢1)(𝑎, 𝑡1)(𝑢2, 𝑡2)(𝑥, 𝑢3, 𝑡3)𝜋 is a resolving (𝑛 − 4)-partition, for 
𝑡1, 𝑡2, 𝑡3 ∈𝑁2(𝑥) ⧵ {𝑎}, a contradiction. We obtain 𝐺 as depicted in Fig. 4

(j)-(m).

(A2.3) 𝑢1 is adjacent to 𝑛 − 5 vertices of 𝑁2(𝑥) ⧵ {𝑎}. Let 𝑢2
be also adjacent to 𝑛 − 5 vertices of 𝑁2(𝑥) ⧵ {𝑏} and 𝑢3 be adja-

cent to all vertices of 𝑁2(𝑥). If 𝑎 ≠ 𝑏 then 𝑢3 is adjacent to both 
𝑢1 and 𝑢2, since otherwise we have a resolving (𝑛 − 4)-partition, 
namely (𝑢1)(𝑢2)(𝑎, 𝑡1)(𝑏, 𝑡2)(𝑥, 𝑢3, 𝑡3)𝜋, for 𝑡1, 𝑡2, 𝑡3 ∈𝑁2(𝑥) ⧵ {𝑎, 𝑏}, a con-

tradiction. We obtain 𝐺 as depicted in Fig. 5 (a)-(b). If 𝑎 = 𝑏, then 
𝑢1, 𝑢2 ∈ 𝐸(𝐺) or (both 𝑢1 and 𝑢2 are adjacent to 𝑢3), since other-

wise (𝑢1)(𝑎, 𝑡1)(𝑢2, 𝑡2)(𝑥, 𝑢3, 𝑡3)𝜋 or (𝑢2)(𝑎, 𝑡1)(𝑢1, 𝑡2)(𝑥, 𝑢3, 𝑡3)𝜋) is a resolv-

ing (𝑛 − 4)-partition, for 𝑡1, 𝑡2, 𝑡3 ∈𝑁2(𝑥) ⧵ {𝑎}, a contradiction. We de-

duce 𝐺 as depicted in Fig. 5 (c)-(f).

Now assume that both 𝑢2 and 𝑢3 are adjacent to all vertices of 
𝑁2(𝑥). Then, 𝑢1 is adjacent to at least one of 𝑢2 or 𝑢3, since otherwise 
(𝑢1)(𝑎, 𝑡1)(𝑢2, 𝑡2)(𝑥, 𝑢3, 𝑡3)𝜋 is a resolving (𝑛 − 4)-partition, for 𝑡1, 𝑡2, 𝑡3 ∈
𝑁2(𝑥) ⧵ {𝑎}, a contradiction. We deduce 𝐺 ≅𝐻28 if 𝑢2𝑢3 ∉ 𝐸(𝐺) and 𝑢1
is only adjacent to one of 𝑢2 or 𝑢3, or 𝐺 ≅𝐻6 if 𝑢2𝑢3 ∈ 𝐸(𝐺) and 𝑢1 is 
only adjacent to one of 𝑢2 or 𝑢3, or 𝐺 ≅𝐻18 if 𝑢2𝑢3 ∉𝐸(𝐺) and 𝑢1 is ad-

jacent to both 𝑢2 and 𝑢3, or 𝐺 ≅𝐻1 if 𝑢2𝑢3 ∈ 𝐸(𝐺) and 𝑢1 is adjacent to 
both 𝑢2 and 𝑢3, as depicted in Fig. 6 (a)-(d), respectively.
4

(A2.4) All vertices of 𝑁1(𝑥) are adjacent to all vertices of 𝑁2(𝑥). 
We deduce that 𝐺 ≅ 𝐾𝑛 − 𝐸(𝐾1,𝑛−4 ∪ 𝐾3) if 𝑁1(𝑥) induces 𝐾3, or 𝐺 ≅
𝐾𝑛 − 𝐸(𝐾1,𝑛−4 ∪ 𝑃3) if 𝑢1𝑢2 ∈ 𝐸(𝐺) and 𝑢1𝑢3, 𝑢2𝑢3 ∉ 𝐸(𝐺), or 𝐺 ≅𝐻2 if 
𝑁1(𝑥) induces 𝑃3, or 𝐺 ≅𝐾𝑛−𝐸(𝐾1,𝑛−4) if 𝑁1(𝑥) induces 𝐾3, as depicted 
in Fig. 6 (e)-(h).

(B) |𝑁1(𝑥)| = 𝑛 − 4 and |𝑁2(𝑥)| = 3. Let 𝑁2(𝑥) = {𝑣1, 𝑣2, 𝑣3}. If 𝑁1(𝑥)
contains three vertices 𝑎, 𝑏, 𝑐 such that 𝑎𝑏 ∈ 𝐸(𝐺) and 𝑎𝑐 ∉ 𝐸(𝐺), 
then (𝑥)(𝑎)(𝑏, 𝑐)(𝑣1, 𝑡1)(𝑣2, 𝑡2)(𝑣3, 𝑡3)𝜋 is a resolving (𝑛 − 4)-partition, for 
𝑡1, 𝑡2, 𝑡3 ∈ 𝑁1(𝑥) ⧵ {𝑎, 𝑏, 𝑐} and a singleton partition 𝜋 of the remaining 
vertices, a contradiction. Therefore, 𝑁1(𝑥) induces (B1) 𝐾𝑛−4 or (B2) 
𝐾𝑛−4.

(B1) 𝑁1(𝑥) induces 𝐾𝑛−4. Note that for any vertex 𝑣𝑖 ∈𝑁2(𝑥), there 
exists 𝑡 ∈𝑁1(𝑥) such that 𝑣𝑖𝑡 ∈ 𝐸(𝐺), and conversely for any 𝑡 ∈𝑁1(𝑥), 
there exists 𝑣𝑖 ∈𝑁2(𝑥) such that 𝑡𝑣𝑖 ∈𝐸(𝐺), since otherwise diam(𝐺) = 3. 
Without loss of generality, we can assume that 𝑣1𝑎, 𝑣2𝑏, 𝑣3𝑐 ∈ 𝐸(𝐺) for 
some 𝑎, 𝑏, 𝑐 ∈𝑁2(𝑥). Then, (𝑎)(𝑏)(𝑐)(𝑥, 𝑡1)(𝑣1, 𝑡2)(𝑣2, 𝑡3)(𝑣3, 𝑡4)𝜋 is a resolv-

ing (𝑛 − 4)-partition for 𝑡1, 𝑡2, 𝑡3, 𝑡4 ∈ 𝑁2(𝑥) ⧵ {𝑎, 𝑏, 𝑐} and a singleton 
partition 𝜋, a contradiction. Hence we can conclude that there exists 
no graphs 𝐺 with 𝑝𝑑(𝐺) = 𝑛 − 3 where 𝑁1(𝑥) induces 𝐾𝑛−4.

(B2) 𝑁1(𝑥) induces 𝐾𝑛−4. If there exist four distinct vertices 
𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑁1(𝑥) such that 𝑣1𝑎, 𝑣1𝑏 ∈ 𝐸(𝐺) but 𝑣1𝑐, 𝑣1𝑑 ∉ 𝐸(𝐺), then 
(𝑥)(𝑣1)(𝑎, 𝑐)(𝑏, 𝑑)(𝑣2, 𝑡1)(𝑣3, 𝑡2)𝜋 is a resolving (𝑛 − 4)-partition, for 𝑡1, 𝑡2 ∈
𝑁1(𝑥) ⧵ {𝑎, 𝑏, 𝑐, 𝑑}, a contradiction. Additionally, any vertex of 𝑁2(𝑥) is 
adjacent to at least one vertex of 𝑁1(𝑥), since otherwise diam(𝐺) = 3. 
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Fig. 7. Graph (a) 𝐻77 , (b) 𝐻75 , (c) 𝐻74 , (d) 𝐾1 + (𝐾𝑛−4 ∪𝐾3), (e) 𝐾1 + (𝐾𝑛−4 ∪ (𝑃3 − 𝑒)), (f) 𝐾1 + (𝐾𝑛−4 ∪ 𝑃3) and (g) 𝐾1 + (𝐾𝑛−4 ∪𝐾3).

Fig. 8. Graph (a) 𝐾1 + (𝐾𝑛−3 − 𝑒 ∪ 2𝐾1), (b) 𝐾1 + (𝐾𝑛−3 − 𝑒 ∪𝐾2), (c) 𝐻65 , (d) 𝐻51 , (e) 𝐻69 and (f) 𝐻60 .
Therefore, any vertex of 𝑣1, 𝑣2, 𝑣3 ∈𝑁2(𝑥) is either adjacent to 1, 𝑛 − 5
or 𝑛 − 4 vertices of 𝑁1(𝑥). Now consider the following remarks.

Remark 3. Let {𝑎, 𝑏, 𝑐} ⊂𝑁1(𝑥), 𝑣1 be only adjacent to vertex 𝑎 in 𝑁1(𝑥)
and 𝑣2 be only adjacent to vertex 𝑏 in 𝑁1(𝑥).

1. If 𝑎 = 𝑏 and 𝑣3 is adjacent to 𝑛 − 5 vertices of 𝑁1(𝑥) ⧵ {𝑎}, 
then (𝑣3)(𝑎, 𝑡1)(𝑡2, 𝑣2)(𝑥, 𝑡3, 𝑣1)𝜋 is a resolving (𝑛 − 4)-partition, for 
𝑡1, 𝑡2, 𝑡3 ∈𝑁1(𝑥) ⧵ {𝑎} and a singleton partition 𝜋, a contradiction.

2. If 𝑎 = 𝑏 and 𝑣3 is adjacent to 𝑛 −5 vertices of 𝑁1(𝑥) ⧵{𝑐} where 𝑐 ≠ 𝑎, 
then (𝑣1)(𝑣3)(𝑎, 𝑡1)(𝑐, 𝑡2)(𝑥, 𝑡3, 𝑣2)𝜋 is a resolving (𝑛 − 4)-partition, for 
𝑡1, 𝑡2, 𝑡3 ∈𝑁1(𝑥) ⧵ {𝑎, 𝑐} and a singleton partition 𝜋, a contradiction.

3. If 𝑎 ≠ 𝑏 and 𝑣3 is adjacent to 𝑛 −5 vertices of 𝑁1(𝑥) other than 𝑎 (or 
similarly other than 𝑏), then (𝑣3)(𝑎, 𝑡1)(𝑏, 𝑣2)(𝑥, 𝑡2, 𝑣1)𝜋 is a resolving 
(𝑛 − 4)-partition, for 𝑡1, 𝑡2 ∈𝑁1(𝑥) ⧵ {𝑎, 𝑏} and a singleton partition 
𝜋, a contradiction.

4. If 𝑎 ≠ 𝑏 and 𝑣3 is adjacent to 𝑛 − 5 vertices of 𝑁1(𝑥) ⧵ {𝑐} where 
𝑐 ≠ 𝑎 and 𝑐 ≠ 𝑏, then (𝑣3)(𝑥, 𝑎, 𝑣1)(𝑏, 𝑣2)(𝑐, 𝑡1)𝜋 is a resolving (𝑛 −
4)-partition, for 𝑡1 ∈𝑁1(𝑥) ⧵ {𝑎, 𝑏, 𝑐} and a singleton partition 𝜋, a 
contradiction.

Remark 4. Let {𝑎, 𝑏, 𝑐} ⊂𝑁1(𝑥), 𝑣1 be only adjacent to vertex 𝑎 in 𝑁1(𝑥)
and 𝑣2 be adjacent to 𝑛 − 5 vertices of 𝑁1(𝑥) ⧵ {𝑏}.

1. If 𝑎 = 𝑏 and 𝑣3 is adjacent to 𝑛 −5 vertices of 𝑁1(𝑥) ⧵ {𝑐} with 𝑐 ≠ 𝑎, 
then (𝑣2)(𝑣3)(𝑎, 𝑡1)(𝑐, 𝑡2)(𝑥, 𝑡3, 𝑣1)𝜋 is a resolving (𝑛 − 4)-partition, for 
𝑡1, 𝑡2, 𝑡3 ∈𝑁1(𝑥) ⧵ {𝑎, 𝑐} and a singleton partition 𝜋, a contradiction.

2. If 𝑎 ≠ 𝑏 and 𝑣3 is adjacent to 𝑛 − 5 vertices of 𝑁1(𝑥) ⧵ {𝑎}, 
then (𝑣2)(𝑣3)(𝑎, 𝑡1)(𝑏, 𝑡2)(𝑥, 𝑡3, 𝑣1) is a resolving (𝑛 − 4)-partition for 
𝑡1, 𝑡2, 𝑡3 ∈𝑁1(𝑥) ⧵ {𝑎, 𝑏} and a singleton partition 𝜋, a contradiction.

3. If (𝑎 ≠ 𝑏, 𝑣3 is adjacent to 𝑛 − 5 vertices of 𝑁1(𝑥) ⧵ {𝑏} and 𝑣1𝑣3 ∈
𝐸(𝐺) (or similarly 𝑣1𝑣2 ∈𝐸(𝐺))) or (𝑎 ≠ 𝑏, 𝑣3 is adjacent to all ver-

tices of 𝑁1(𝑥) and 𝑣1𝑣3 ∈𝐸(𝐺)), then (𝑣1)(𝑣2)(𝑎, 𝑡1)(𝑏, 𝑡2)(𝑥, 𝑣3, 𝑡3)𝜋 is 
a resolving (𝑛 −4)-partition, for 𝑡1, 𝑡2, 𝑡3 ∈𝑁1(𝑥) ⧵{𝑎, 𝑏}, a contradic-

tion.

4. If 𝑣3 is adjacent to 𝑛 − 5 vertices of 𝑁1(𝑥) ⧵ {𝑐} with all 𝑎, 𝑏, 𝑐 are 
distinct, then (𝑣1)(𝑣2)(𝑣3)(𝑎, 𝑡1)(𝑏, 𝑡2)(𝑥, 𝑐, 𝑡3) is a resolving (𝑛 − 4)-
partition, for 𝑡1, 𝑡2, 𝑡3 ∈𝑁1(𝑥) ⧵ {𝑎, 𝑏, 𝑐} and a singleton partition 𝜋, 
a contradiction.

5. If 𝑎 ≠ 𝑏, 𝑣3 is adjacent to all vertices of 𝑁1(𝑥) and 𝑣1𝑣3 ∈ 𝐸(𝐺), 
then (𝑣1)(𝑣2)(𝑎, 𝑡1)(𝑏, 𝑡2)(𝑥, 𝑡3, 𝑣3)𝜋 is a resolving (𝑛 − 4)-partition, for 
𝑡1, 𝑡2, 𝑡3 ∈𝑁1(𝑥) ⧵ {𝑎, 𝑏} and a singleton partition 𝜋, a contradiction.
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Table 2

Adjacency of three vertices 𝑣1 , 𝑣2, 𝑣3 ∈𝑁2(𝑥) to the vertices of 𝑁1(𝑥).

𝑣1 1 1 1 1 1 𝑛− 5 𝑛− 5 𝑛− 5 𝑛− 4

𝑣2 1 1 𝑛− 5 𝑛− 5 𝑛− 4 𝑛− 5 𝑛− 5 𝑛− 4 𝑛− 4

𝑣3 1 𝑛− 4 𝑛− 5 𝑛− 4 𝑛− 4 𝑛− 5 𝑛− 4 𝑛− 4 𝑛− 4

Fig. 9. Graph (a) 𝐻57 , (b) 𝐻68 , (c) 𝐻58 and (d) 𝐻59 .

Remark 5. Let {𝑎, 𝑏, 𝑐} ⊂𝑁1(𝑥), 𝑣1 be adjacent to 𝑛 −5 vertices of 𝑁1(𝑥) ⧵
{𝑎} and 𝑣2 be adjacent to 𝑛 − 5 vertices of 𝑁1(𝑥) ⧵ {𝑏}.

1. If 𝑎 = 𝑏 and 𝑣3 is adjacent to 𝑛 −5 vertices of 𝑁1(𝑥) ⧵{𝑐} where 𝑐 ≠ 𝑎, 
then (𝑎)(𝑣3)(𝑐, 𝑡1)(𝑣1, 𝑡2)(𝑥, 𝑡3, 𝑣2)𝜋 is a resolving (𝑛 − 4)-partition, for 
𝑡1, 𝑡2, 𝑡3 ∈𝑁1(𝑥) ⧵ {𝑎, 𝑐} and a singleton partition 𝜋, a contradiction.

2. If 𝑎 ≠ 𝑏 and 𝑣3 is adjacent to at least 𝑛 − 5 vertices of 𝑁1(𝑥) ⧵ {𝑎}
(or similarly 𝑣3 is adjacent to 𝑛 − 5 vertices of 𝑁1(𝑥) ⧵ {𝑏}), 
then (𝑎)(𝑣2)(𝑣1, 𝑡1)(𝑏, 𝑡2)(𝑥, 𝑡3, 𝑣3)𝜋 is a resolving (𝑛 − 4)-partition, for 
𝑡1, 𝑡2, 𝑡3 ∈𝑁1(𝑥) ⧵ {𝑎, 𝑏}, a contradiction.

3. If 𝑣3 is adjacent to 𝑛 − 5 vertices of 𝑁1(𝑥) ⧵ {𝑐} with all 𝑎, 𝑏, 𝑐 are 
distinct, then (𝑎)(𝑐)(𝑣2)(𝑣1, 𝑡1)(𝑏, 𝑡2)(𝑥, 𝑡3, 𝑣3)𝜋 is a resolving (𝑛 − 4)-
partition, for 𝑡1, 𝑡2, 𝑡3 ∈𝑁1(𝑥) ⧵ {𝑎, 𝑏, 𝑐}, a contradiction.

Remark 6. Let {𝑎, 𝑏} ⊂𝑁1(𝑥), 𝑣1 be adjacent to 𝑛 −5 vertices of 𝑁1(𝑥) ⧵
{𝑎}, 𝑣2 be adjacent to 𝑛 −5 vertices of and 𝑁1(𝑥) ⧵{𝑏}, and 𝑣3 is adjacent 
to all vertices of 𝑁1(𝑥).

1. If 𝑎 = 𝑏, 𝑣1𝑣2 ∉ 𝐸(𝐺) and 𝑣3 is not adjacent to one of 𝑣1 or 𝑣2, then 
(𝑣1)(𝑎, 𝑡1)(𝑣2, 𝑡2)(𝑣3, 𝑡3)(𝑥, 𝑡4)𝜋 or (𝑣2)(𝑎, 𝑡1)(𝑣1, 𝑡2)(𝑣3, 𝑡3)(𝑥, 𝑡4)𝜋 is a re-

solving (𝑛 −4)-partition, for 𝑡1, 𝑡2, 𝑡3, 𝑡4 ∈𝑁1(𝑥) ⧵{𝑎}, a contradiction.

2. If 𝑎 ≠ 𝑏 and 𝑣3 is neither adjacent to 𝑣1 nor 𝑣2, then (𝑣1)(𝑣2)(𝑎, 𝑡1)
(𝑏, 𝑡2)(𝑥, 𝑡3, 𝑣3)𝜋 or (𝑎)(𝑣2)(𝑥, 𝑡1, 𝑣1)(𝑏, 𝑡2)(𝑡3, 𝑣3)𝜋 is a resolving (𝑛 −4)-
partition, for 𝑡1, 𝑡2, 𝑡3 ∈𝑁1(𝑥) ⧵ {𝑎, 𝑏}, a contradiction.

Therefore, without loss of generality, the adjacency of any vertex of 
𝑣1, 𝑣2, 𝑣3 ∈𝑁2(𝑥) to 𝑁1(𝑥) is given in Table 2.
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Fig. 10. Graph (a) 𝐻38 , (b) 𝐻37 , (c) 𝐻39 , (d) 𝐻30 , (e) 𝐻29 , (f) 𝐻27 , (g) 𝐻25 and (h) 𝐻31 .

Fig. 11. Graph (a) 𝐻13 , (b) 𝐻14 , (c) 𝐻7, (d) 𝐻15 , (e) 𝐻8 and (f) 𝐻5 .

Fig. 12. Graph (a) 𝐾𝑛−5 + (𝐾2 ∪ 𝑃3), (b) 𝐾𝑛−5 + (𝐾2 ∪𝐾3), (c) 𝐻40 , (d) 𝐻32 , (e) 𝐻16 , (f) 𝐻9 , (g) 𝐻33 and (h) 𝐻19 .
(B2.1) 𝑣1 ∈𝑁2(𝑥) is only adjacent to vertex 𝑎 ∈𝑁1(𝑥). Let each 𝑣2
and 𝑣3 be only adjacent to vertex 𝑏 ∈𝑁1(𝑥) and 𝑐 ∈𝑁1(𝑥), respectively. 
If all vertices 𝑎, 𝑏, 𝑐 are distinct, then 𝑣1𝑣2, 𝑣1𝑣3, 𝑣2𝑣3 ∈𝐸(𝐺) since other-

wise diam(𝐺) = 3. We deduce 𝐺 ≅𝐻77. If only two of 𝑎, 𝑏, 𝑐 are equal, 
namely 𝑎 = 𝑏, then 𝑣1𝑣3, 𝑣2𝑣3 ∈ 𝐸(𝐺) since otherwise diam(𝐺) = 3. We 
deduce 𝐺 ≅𝐻75 if 𝑣1𝑣2 ∉𝐸(𝐺) or 𝐺 ≅𝐻74 if 𝑣1𝑣2 ∈𝐸(𝐺). If all 𝑎, 𝑏, 𝑐 are 
equal, then we deduce 𝐺 as depicted in Fig. 7 (d)-(g).

Now assume that 𝑣2 is adjacent to a single vertex 𝑏 ∈𝑁1(𝑥) and 𝑣3 is 
adjacent to all vertices of 𝑁1(𝑥). If 𝑎 = 𝑏, then we deduce 𝐺 as in Fig. 8

(a)-(f). If 𝑎 ≠ 𝑏, then 𝑣1𝑣2 ∈ 𝐸(𝐺) or 𝑣1𝑣3, 𝑣2𝑣3 ∈ 𝐸(𝐺), since otherwise 
diam(𝐺) = 3. We deduce 𝐺 as depicted in Fig. 9 (a)-(d).

Now suppose that 𝑣2 is adjacent to 𝑛 − 5 vertices of 𝑁1(𝑥) and 𝑣3 is 
adjacent to at least 𝑛 −5 vertices of 𝑁1(𝑥). In this case, 𝑣2𝑣3 ∈𝐸(𝐺) since 
otherwise (𝑣2)(𝑎, 𝑡1)(𝑣1, 𝑡2)(𝑣3, 𝑡3)(𝑥, 𝑡4)𝜋 is a resolving (𝑛 −4)-partition for 
𝑡1, 𝑡2, 𝑡3 ∈𝑁1(𝑥) ⧵ {𝑎} and a singleton partition 𝜋, a contradiction. If 𝑣2 is 
also adjacent to 𝑛 − 5 vertices of 𝑁1(𝑥) ⧵ {𝑎} and 𝑣3 is adjacent to 𝑛 − 5
vertices of 𝑁1(𝑥) ⧵ {𝑐}, then 𝑎 = 𝑐 by considering Remark 4 (1) and 𝑣1
is adjacent to at least one of 𝑣2 or 𝑣3, since otherwise diam(𝐺) = 3. We 
deduce 𝐺 ≅𝐻38 if 𝑣1 is only adjacent to one of 𝑣2 or 𝑣3, or 𝐺 ≅𝐻37 if 
𝑣1 is adjacent to both 𝑣2 and 𝑣3. If 𝑣2 is adjacent to 𝑛 − 5 vertices of 
𝑁1(𝑥) ⧵ {𝑏} with 𝑎 ≠ 𝑏, and 𝑣3 is adjacent to 𝑛 −5 vertices of 𝑁1(𝑥) ⧵ {𝑏}, 
then 𝑣1𝑣2, 𝑣1𝑣3 ∉ 𝐸(𝐺), by considering Remark 4 (3). We deduce 𝐺 ≅
𝐻39. Otherwise, 𝑣2 is adjacent to 𝑛 − 5 vertices of 𝑁1(𝑥) ⧵ {𝑏} and 𝑣3 is 
adjacent to all vertices of 𝑁1(𝑥). If 𝑎 = 𝑏, then 𝑣1 is adjacent to at least 
one of 𝑣2 or 𝑣3, since otherwise diam(𝐺) = 3. We deduce 𝐺 as depicted 
in Fig. 10 (d)-(f). If 𝑎 ≠ 𝑏, then 𝑣1𝑣3 ∉𝐸(𝐺) by considering Remark 4 (5) 
and hence 𝐺 ≅𝐻25 for 𝑣1𝑣2 ∉𝐸(𝐺) or 𝐺 ≅𝐻31 for 𝑣1𝑣2 ∈𝐸(𝐺).

For the remaining case, let both 𝑣2 and 𝑣3 be adjacent to all vertices 
of 𝑁1(𝑥). We deduce 𝐺 as depicted in Fig. 11 (a)-(f).

(B2.2) 𝑣1 is adjacent to 𝑛 −5 vertices of 𝑁1(𝑥) ⧵{𝑎}. If each 𝑣2 and 𝑣3
are also adjacent to 𝑛 −5 vertices of 𝑁1(𝑥) ⧵ {𝑏} and 𝑁1(𝑥) ⧵ {𝑐}, respec-

tively, then all 𝑎, 𝑏, 𝑐 are equal, by considering Remark 5. In this case, 
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then 𝑁2(𝑥) contains 𝑃3, since otherwise (𝑣1)(𝑎, 𝑡1)(𝑣2, 𝑡2)(𝑣3, 𝑡3)(𝑥, 𝑡4)𝜋, or 
(𝑣2)(𝑎, 𝑡1)(𝑣1, 𝑡2)(𝑣3, 𝑡3)(𝑥, 𝑡4)𝜋, or (𝑣3)(𝑎, 𝑡1)(𝑣1, 𝑡2)(𝑣2, 𝑡3)(𝑥, 𝑡4)𝜋 is a resolv-

ing (𝑛 − 4)-partition, a contradiction. We obtain 𝐺 ≅𝐾𝑛−5 + (𝐾2 ∪ 𝑃3) if 
𝑁2(𝑥) induces 𝑃3, or 𝐺 ≅𝐾𝑛−5 + (𝐾2 ∪𝐾3) if 𝑁2(𝑥) induces 𝐾3. Now as-

sume that 𝑣2 is adjacent to 𝑛 −5 vertices of 𝑁1(𝑥) ⧵{𝑏} and 𝑣3 is adjacent 
to all vertices of 𝑁2(𝑥). If 𝑎 = 𝑏, then 𝑣1𝑣2 ∈ 𝐸(𝐺) or 𝑣3 is adjacent to 
both 𝑣1 and 𝑣2, by considering Remark 6(1). We deduce 𝐺 as depicted 
in Fig. 12 (c)-(f). Otherwise, 𝑎 ≠ 𝑏 and so that 𝑣3 is adjacent to both 
𝑣1 and 𝑣2 by considering Remark 6(2) and we deduce 𝐺 as depicted in 
Fig. 12 (g)-(h).

For the remaining case, let both 𝑣2 and 𝑣3 be adjacent to all vertices 
of 𝑁1(𝑥). Then, 𝑣1 is adjacent to at least one of 𝑣2 or 𝑣3, since oth-

erwise (𝑣1)(𝑎, 𝑡1)(𝑣2, 𝑡2)(𝑣3, 𝑡3)(𝑥, 𝑡4)𝜋 is a resolving (𝑛 − 4)-partition for 
𝑡1, 𝑡2, 𝑡3, 𝑡4 ∈ 𝑁1(𝑥) ⧵ {𝑎}, a contradiction. We deduce 𝐺 as depicted in 
Fig. 13 (a)-(d).

(B2.3) All vertices of 𝑁2(𝑥) are adjacent to all vertices of 𝑁1(𝑥). We 
deduce that 𝐺 ≅𝐾𝑛−𝐸(𝐾4) if 𝑁2(𝑥) induces 𝐾3, or 𝐺 ≅𝐾𝑛−𝐸(𝐾4 −𝑒) if 
𝑣1𝑣2, 𝑣1𝑣3 ∉𝐸(𝐺) and 𝑣2𝑣3 ∈𝐸(𝐺), or 𝐺 ≅𝐾𝑛 −𝐸(𝐾1,3 + 𝑒) if 𝑣1𝑣2, 𝑣1𝑣3 ∈
𝐸(𝐺) and 𝑣2𝑣3 ∉ 𝐸(𝐺) or 𝐺 ≅ 𝐾𝑛 − 𝐸(𝐾1,3) if 𝑁2(𝑥) induces 𝐾3, as de-

picted in Fig. 13 (e)-(h).

(C) |𝑁1(𝑥)| = 2 and |𝑁2(𝑥)| = 𝑛 −3. Let 𝑁1(𝑥) = {𝑢1, 𝑢2}. If 𝑁2(𝑥) con-

tains five vertices 𝑧, 𝑎, 𝑏, 𝑐, 𝑑 such that 𝑧𝑎, 𝑧𝑏 ∈ 𝐸(𝐺) and 𝑧𝑐, 𝑧𝑑 ∉ 𝐸(𝐺), 
then (𝑥)(𝑧)(𝑎, 𝑐)(𝑏, 𝑑)(𝑢1, 𝑡1)(𝑢2, 𝑡2)𝜋 is a resolving (𝑛 − 4)-partition, for 
some 𝑡1, 𝑡2 ∈𝑁2(𝑥) ⧵ {𝑧, 𝑎, 𝑏, 𝑐, 𝑑} and a singleton partition 𝜋, a contra-

diction. Therefore, any vertex of 𝑁2(𝑥) is either adjacent to at most one 
vertex of 𝑁2(𝑥) or it is adjacent to at least 𝑛 − 5 vertices of 𝑁2(𝑥). On 
the other hand, if there exist 𝑎, 𝑏, 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈𝑁2(𝑥) such that 𝑎𝑎1, 𝑏𝑏1 ∈
𝐸(𝐺) and 𝑎𝑎2, 𝑏𝑏2 ∉ 𝐸(𝐺), then (𝑥)(𝑎)(𝑏)(𝑎1, 𝑎2)(𝑏1, 𝑏2)(𝑢1, 𝑡1)(𝑢2, 𝑡2)𝜋 is 
a resolving (𝑛 − 4)-partition, for some 𝑡1, 𝑡2 ∈𝑁2(𝑥) ⧵ {𝑎, 𝑏, 𝑎1, 𝑎2, 𝑏1, 𝑏2}
and a singleton partition 𝜋, a contradiction. Furthermore, if there exist 
𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ 𝑁2(𝑥) such that 𝑎1𝑏1 ∈ 𝐸(𝐺) and 𝑎1𝑏2, 𝑎2𝑏1, 𝑎2𝑏2 ∉ 𝐸(𝐺), 
then (𝑥)(𝑎1, 𝑎2)(𝑏1, 𝑏2)(𝑢1, 𝑡1)(𝑢2, 𝑡2)𝜋 is a resolving (𝑛 − 4)-partition, for 
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Fig. 13. Graph (a) 𝐻34 , (b) 𝐻10 , (c) 𝐻20 , (d) 𝐻3, (e) 𝐾𝑛 −𝐸(𝐾4), (f) 𝐾𝑛 −𝐸(𝐾4 − 𝑒), (g) 𝐾𝑛 −𝐸(𝐾1,3 + 𝑒) and (h) 𝐾𝑛 −𝐸(𝐾1,3).

Fig. 14. Graph (a) 𝐾1,𝑛−1 + 𝑒, (b) 𝐻50 , (c) 𝐻64 (d) 𝐻56 , (e) 𝐻47 , (f) 𝐻54 , (g) 𝐻46 , (h) 𝐻11 , (i) 𝐻35 , (j) 𝐻21 and (k) 𝐻12 .
some 𝑡1, 𝑡2 ∈ 𝑁2(𝑥) ⧵ {𝑎1, 𝑎2, 𝑏1, 𝑏2} and a singleton partition 𝜋, a con-

tradiction. Therefore, by considering Lemma 1, 𝑁2(𝑥) induces one of 
the graphs (C1) 𝐾𝑛−3, (C2) 𝐾𝑛−3, (C3) 𝐾1,𝑛−4, (C4) 𝐾𝑛−4 ∪ 𝐾1, (C5) 
𝐾𝑛−3 −𝐸(𝐾1,𝑛−5), or (C6) 𝐾𝑛−3 − 𝑒.

(C1) 𝑁2(𝑥) induces 𝐾𝑛−3. If there exists a vertex of 𝑁1(𝑥), namely 
𝑢1, and 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈𝑁2(𝑥) such that 𝑢1𝑎1, 𝑢1𝑎2 ∉ 𝐸(𝐺) and 𝑢1𝑏1, 𝑢1𝑏2 ∈
𝐸(𝐺), then (𝑥)(𝑎1, 𝑏1)(𝑎2, 𝑏2)(𝑢1, 𝑡1)(𝑢2, 𝑡2)𝜋 is a resolving (𝑛 −4)-partition, 
for 𝑡1, 𝑡2 ∈ 𝑁2(𝑥) ⧵ {𝑎1, 𝑎2, 𝑏1, 𝑏2} and a singleton partition 𝜋, a contra-

diction. Therefore any vertex of 𝑁1(𝑥) is either adjacent to at most one 
vertex of 𝑁2(𝑥) or it is adjacent to at least 𝑛 − 4 vertices of 𝑁2(𝑥).

If 𝑢1 ∈ 𝑁1(𝑥) is not adjacent to any vertex of 𝑁2(𝑥), then 𝑢2 is 
adjacent to all vertices of 𝑁2(𝑥) since otherwise diam(𝐺) = 3, and 
𝑢1𝑢2 ∈ 𝐸(𝐺) since otherwise diam(𝐺) = 3. We obtain 𝐺 ≅ 𝐾1,𝑛−1 + 𝑒. If 
𝑢1 is only adjacent to a single vertex 𝑎 ∈ 𝑁2(𝑥), then 𝑢2 is adjacent 
to all vertices of 𝑁2(𝑥) and 𝑢1𝑢2 ∈ 𝐸(𝐺), since otherwise diam(𝐺) =
3. However, (𝑥, 𝑡1)(𝑢1, 𝑡2)(𝑢2, 𝑎, 𝑡3)𝜋 is a resolving (𝑛 − 4)-partition, for 
𝑡1, 𝑡2, 𝑡3 ∈𝑁2(𝑥) ⧵{𝑎} and a singleton partition 𝜋, a contradiction. If each 
𝑢1 and 𝑢2 are adjacent to 𝑛 − 4 vertices of 𝑁2(𝑥) ⧵ {𝑎} and 𝑁2(𝑥) ⧵ {𝑏}, 
respectively, with 𝑎 ≠ 𝑏, then 𝑢1𝑢2 ∈ 𝐸(𝐺) since otherwise diam(𝐺) =
3. However, (𝑥)(𝑢1, 𝑡1)(𝑢2, 𝑡2)(𝑎, 𝑡3)𝜋 is a resolving (𝑛 − 4)-partition, for 
𝑡1, 𝑡2, 𝑡3 ∈ 𝑁2(𝑥) ⧵ {𝑎, 𝑏} and a singleton partition 𝜋, a contradiction. If 
𝑢1 is only not adjacent to a vertex 𝑎 ∈ 𝑁2(𝑥) and 𝑢2 is adjacent to all 
vertices of 𝑁2(𝑥), then 𝑢1𝑢2 ∈ 𝐸(𝐺) and we obtain 𝐺 ≅ 𝐻50. Now we 
consider that both 𝑢1, 𝑢2 ∈𝑁1(𝑥) are adjacent to all vertices of 𝑁2(𝑥). 
We deduce 𝐺 ≅ 𝐾2,𝑛−2 if 𝑢1𝑢2 ∉ 𝐸(𝐺) or 𝐺 ≅ 𝐾2 + 𝐾𝑛−2 if 𝑢1𝑢2 ∈ 𝐸(𝐺). 
However for these two graphs, 𝑝𝑑(𝐺) = 𝑛 − 2 by [2].

(C2) 𝑁2(𝑥) induces 𝐾𝑛−3. If there exists a vertex of 𝑁1(𝑥), namely 𝑢1, 
and 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3 ∈𝑁2(𝑥) such that 𝑢1𝑎𝑖 ∈𝐸(𝐺) and 𝑢1𝑏𝑖 ∉𝐸(𝐺) for 
all 1 ≤ 𝑖 ≤ 3, then (𝑥)(𝑢1)(𝑎1, 𝑏1)(𝑎2, 𝑏2)(𝑎3, 𝑏3)(𝑢2, 𝑡)𝜋 is a resolving (𝑛 −4)-
partition, for 𝑡 ∈𝑁2(𝑥) ⧵ {𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3} and a singleton partition 𝜋, 
a contradiction. Therefore, any vertex of 𝑁1(𝑥) is either adjacent to at 
most two vertices of 𝑁2(𝑥) or it is adjacent to at least 𝑛 − 5 vertices of 
𝑁2(𝑥).

If 𝑢1 is not adjacent to any vertex of 𝑁2(𝑥), then 𝑢2 is adjacent to 
all vertices of 𝑁2(𝑥) since otherwise diam(𝐺) = 3, and 𝑢1𝑢2 ∈𝐸(𝐺) since 
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otherwise diam(𝐺) = 3. We obtain 𝐺 ≅ 𝐺8, but 𝑝𝑑(𝐺8) = 𝑛 − 2 by [2]. 
Now assume that 𝑢1 is adjacent to a single vertex 𝑎 ∈𝑁2(𝑥). Then 𝑢2
is adjacent to at least 𝑛 − 4 vertices of 𝑁2(𝑥). If 𝑢2 is adjacent to 𝑛 − 4
vertices of 𝑁2(𝑥) ⧵{𝑎}, then we obtain 𝐺 ≅𝐻64 if 𝑢1𝑢2 ∉𝐸(𝐺) or 𝐺 ≅𝐻56
if 𝑢1𝑢2 ∈𝐸(𝐺), as depicted in Fig. 14 (c)-(d). Otherwise, suppose that 𝑢2
is adjacent to all vertices of 𝑁2(𝑥). We obtain 𝐺 ≅ 𝐺7 if 𝑢1𝑢2 ∉ 𝐸(𝐺) or 
𝐺 ≅𝐻47 if 𝑢1𝑢2 ∈𝐸(𝐺). However by [2], 𝑝𝑑(𝐺7) = 𝑛 − 2.

Let 𝑢1 be only adjacent to two vertices 𝑎, 𝑏 ∈𝑁2(𝑥). Then 𝑢2 is ad-

jacent to at least 𝑛 − 5 vertices of 𝑁2(𝑥), since otherwise diam(𝐺) =
3. If 𝑢2 is only adjacent to 𝑛 − 5 vertices of 𝑁2(𝑥) ⧵ {𝑎, 𝑏}, then 
(𝑢2)(𝑥, 𝑡1)(𝑢1, 𝑡2)(𝑎, 𝑡3)(𝑏, 𝑡4)𝜋 is a resolving (𝑛 − 4)-partition, for 𝑡1, 𝑡2,
𝑡3, 𝑡4 ∈ 𝑁2(𝑥) ⧵ {𝑎, 𝑏} and a singleton partition 𝜋, a contradiction. If 
𝑢2 is adjacent to either 𝑛 − 4 vertices of 𝑁2(𝑥) ⧵ {𝑎} or it is ad-

jacent to all vertices of 𝑁2(𝑥), then 𝑢1𝑢2 ∉ 𝐸(𝐺) since otherwise 
(𝑢1)(𝑥, 𝑡1)(𝑢2, 𝑡2)(𝑎, 𝑡3)(𝑏, 𝑡4)𝜋 is also a resolving (𝑛 − 4)-partition, a con-

tradiction. Hence we obtain 𝐺 ≅𝐻54 if 𝑢2 is adjacent to 𝑛 −5 vertices of 
𝑁2(𝑥) ⧵ {𝑎} or 𝐺 ≅𝐻46 if 𝑢2 is adjacent to all vertices of 𝑁2(𝑥).

Now assume that 𝑢1 is adjacent to 𝑛 − 5 vertices of 𝑁2(𝑥) ⧵ {𝑎, 𝑏}
for some 𝑎, 𝑏 ∈ 𝑁2(𝑥). If 𝑢2 is not adjacent to all vertices of 𝑁2(𝑥), 
then there exists 𝑐 ∈ 𝑁2(𝑥) different from 𝑎 and 𝑏 such that 𝑢2𝑐 ∉
𝐸(𝐺). However, (𝑢1)(𝑢2)(𝑥, 𝑡1)(𝑎, 𝑡2)(𝑏, 𝑡3)(𝑐, 𝑡4)𝜋 is a resolving (𝑛 − 4)-
partition, for 𝑡1, 𝑡2, 𝑡3, 𝑡4 ∈ 𝑁2(𝑥) ⧵ {𝑎, 𝑏, 𝑐}, a contradiction. Therefore, 
𝑢2 is adjacent to all vertices of 𝑁2(𝑥). Furthermore, if 𝑢1𝑢2 ∉ 𝐸(𝐺), 
then (𝑢1)(𝑥, 𝑢2, 𝑡1)(𝑎, 𝑡2)(𝑏, 𝑡3)𝜋 is also a resolving (𝑛 − 4)-partition, for 
𝑡1, 𝑡2, 𝑡3 ∈𝑁2(𝑥) ⧵ {𝑎, 𝑏}, a contradiction. Therefore, 𝑢1𝑢2 ∈ 𝐸(𝐺) and we 
obtain 𝐺 ≅𝐻11.

Let 𝑢1 be only not adjacent to a vertex 𝑎 ∈𝑁2(𝑥). If 𝑢2 is also only 
not adjacent to a single vertex 𝑏 ∈𝑁2(𝑥) where 𝑎 ≠ 𝑏, then we obtain 
𝐺 ≅𝐻35 if 𝑢1𝑢2 ∉𝐸(𝐺), or 𝐺 ≅𝐻21 if 𝑢1𝑢2 ∈𝐸(𝐺) as depicted in Fig. 14

(i)-(j). Otherwise, assume that 𝑢2 is adjacent to all vertices of 𝑁2(𝑥). 
Then 𝑢1𝑢2 ∉𝐸(𝐺) since otherwise 𝐺 ≅𝐺6 and 𝑝𝑑(𝐺6) = 𝑛 − 2 by [2]. We 
deduce 𝐺 ≅𝐻12. If both 𝑢1 and 𝑢2 are adjacent to all vertices of 𝑁2(𝑥), 
then we obtain 𝐺 ≅𝐺1 if 𝑢1𝑢2 ∉𝐸(𝐺) or 𝐺 ≅𝐺2 if 𝑢1𝑢2 ∈𝐸(𝐺). However, 
for these two graphs 𝐺 we have 𝑝𝑑(𝐺) = 𝑛 − 2 by [2].
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Fig. 15. Graph (a) 𝐾1 + (𝐾𝑛−4 ∪ (𝑃3 − 𝑒)), (b) 𝐾1 + (𝐾𝑛−4 ∪ 𝑃3), (c) 𝐻75 , (d) 𝐻65 , (e) 𝐻69 , (f) 𝐻43 , (g) 𝐻72 and (h) 𝐻44 .
(C3) 𝑁2(𝑥) induces 𝐾1,𝑛−4. Let 𝑉 (𝑁2(𝑥)) = {𝑡, 𝑡𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛 − 4} and 
𝐸(𝐺) = {𝑡𝑡𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛 − 4}. However, (𝑥, 𝑡1)(𝑢1, 𝑡2)(𝑢2, 𝑡3)(𝑡, 𝑡4)𝜋 is a re-

solving (𝑛 −4)-partition, a contradiction. Therefore, there is no graph 𝐺

with 𝑝𝑑(𝐺) = 𝑛 − 3 satisfying (C3).

(C4) 𝑁2(𝑥) induces 𝐾𝑛−4 ∪ 𝐾1. Let 𝑉 (𝑁2(𝑥)) = {𝑡, 𝑡𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛 − 4}
and 𝐸(𝐺) = {𝑡𝑖𝑡𝑗 ∶ 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 − 4}. If there exist 𝑡1, 𝑡2, 𝑡3, 𝑡4 ∈ 𝑁2(𝑥)
and 𝑢1 ∈ 𝑁1(𝑥) such that 𝑢1𝑡1, 𝑢1𝑡2 ∈ 𝐸(𝐺) but 𝑢1𝑡3, 𝑢1𝑡4 ∉ 𝐸(𝐺), then 
(𝑥)(𝑢1)(𝑡1, 𝑡3)(𝑡2, 𝑡4)(𝑢2, 𝑡5)(𝑡, 𝑡6)𝜋 is a resolving (𝑛 − 4)-partition, a contra-

diction. Therefore any vertex of 𝑁1(𝑥) is adjacent to at most one vertex 
of 𝑁2(𝑥) ⧵ {𝑡} or it is adjacent to at least 𝑛 − 5 vertices of 𝑁2(𝑥) ⧵ {𝑡}.

If 𝑢1 is not adjacent to any vertex of 𝑁2(𝑥) ⧵{𝑡}, then 𝑢2 is adjacent to 
all vertices of 𝑁2(𝑥) ⧵{𝑡} and 𝑢1𝑢2, 𝑢2𝑡 ∈𝐸(𝐺), since otherwise diam(𝐺) =
3. We deduce 𝐺 ≅𝐾1 + (𝐾𝑛−4 ∪ (𝑃3 − 𝑒)) if 𝑡𝑢1 ∉𝐸(𝐺) or 𝐺 ≅𝐾1 + (𝐾𝑛−4 ∪
𝑃3) if 𝑡𝑢1 ∈𝐸(𝐺). If 𝑢1 is only adjacent to a single vertex 𝑡1 ∈𝑁2(𝑥) ⧵ {𝑡}
and 𝑢2 is adjacent to 𝑛 − 5 vertices of 𝑁2(𝑥) ⧵ {𝑡1, 𝑡}, then 𝑢1𝑡, 𝑢2𝑡 ∈𝐸(𝐺)
since otherwise diam(G) = 3. However, (𝑡1)(𝑥, 𝑡2)(𝑢1, 𝑡3)(𝑢2, 𝑡4)(𝑡, 𝑡5)𝜋 is 
a resolving (𝑛 − 4)-partition, a contradiction. Therefore, if 𝑢1 is only 
adjacent to a single vertex 𝑡1 ∈𝑁2(𝑥) ⧵ {𝑡}, then 𝑢2 is adjacent to all ver-

tices 𝑁2(𝑥) ⧵ {𝑡}, 𝑢2𝑡 ∈ 𝐸(𝐺) and (𝑢1𝑢2 ∈ 𝐸(𝐺) or 𝑢1𝑡 ∈ 𝐸(𝐺)). However, 
if 𝑢1𝑢2 ∈ 𝐸(𝐺), then (𝑢1)(𝑡1, 𝑡2)(𝑥, 𝑡3)(𝑢2, 𝑡4)(𝑡, 𝑡5)𝜋 is a resolving (𝑛 − 4)-
partition, a contradiction. Therefore we deduce 𝐺 ≅𝐻75.

Now assume that 𝑢1 is not adjacent to a single vertex 𝑡1 ∈ 𝑁2(𝑥)
and it is adjacent to other vertices 𝑡𝑖 ∈ 𝑁2(𝑥) for all 2 ≤ 𝑖 ≤ 𝑛 − 4. If 
𝑢2 is also only not adjacent to other single vertex 𝑡2 ∈ 𝑁2(𝑥), then 
(𝑢1)(𝑢2)(𝑡1, 𝑡3)(𝑡2, 𝑡4)(𝑥, 𝑡5)(𝑡, 𝑡6)𝜋 is a resolving (𝑛 − 4)-partition, a con-

tradiction. Therefore, 𝑢2 is adjacent to all vertices of 𝑁2(𝑥) ⧵ {𝑡}, 
𝑢2𝑡 ∈ 𝐸(𝐺) and (𝑢1𝑢2 ∈ 𝐸(𝐺) or 𝑢1𝑡 ∈ 𝐸(𝐺)). If 𝑢1𝑢2 ∉ 𝐸(𝐺), then 
(𝑢1)(𝑡1, 𝑡2)(𝑥, 𝑡3)(𝑢2, 𝑡4)(𝑡, 𝑡5) is a resolving (𝑛 − 4)-partition, a contradic-

tion. Hence we obtain 𝐺 ≅ 𝐻65 if 𝑢1𝑢2 ∈ 𝐸(𝐺) and 𝑢1𝑡 ∉ 𝐸(𝐺), or 
𝐺 ≅𝐻69 if 𝑢1𝑢2, 𝑢1𝑡 ∈ 𝐸(𝐺). Otherwise, let both 𝑢1 and 𝑢2 be adjacent 
to all vertices of 𝑁1(𝑥) ⧵ {𝑡}. Then, 𝑢𝑖𝑡, 𝑢1𝑢2 ∈ 𝐸(𝐺) for some 1 ≤ 𝑖 ≤ 2, 
or 𝑡𝑢1, 𝑡𝑢2 ∈ 𝐸(𝐺). Hence we deduce 𝐺 ≅ 𝐻43 if 𝑢1𝑡, 𝑢1𝑢2 ∈ 𝐸(𝐺) and 
𝑢2𝑡 ∉ 𝐸(𝐺), or 𝐺 ≅ 𝐻72 if 𝑢1𝑡, 𝑢2𝑡 ∈ 𝐸(𝐺) and 𝑢1𝑢2 ∉ 𝐸(𝐺), or 𝐺 ≅ 𝐻44
if 𝑢1𝑢2, 𝑢1𝑡, 𝑢2𝑡 ∈𝐸(𝐺) (Fig. 15 (f)-(h)).

(C5) 𝑁2(𝑥) induces 𝐾𝑛−3 − 𝐸(𝐾1,𝑛−5). Let 𝑉 (𝑁2(𝑥)) = {𝑣, 𝑤, 𝑤𝑖 ∶ 1 ≤
𝑖 ≤ 𝑛 − 5} and 𝐸(𝑁2(𝑥)) = {𝑣𝑤, 𝑣𝑤𝑖, 𝑤𝑖𝑤𝑗 ∶ 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 5}. If there ex-

ist 𝑢1 ∈ 𝑁1(𝑥) and 𝑤1, 𝑤2, 𝑤3, 𝑤4 ∈ 𝑁2(𝑥) such that 𝑢1𝑤1, 𝑢1𝑤2 ∈ 𝐸(𝐺)
but 𝑢1𝑤3, 𝑢1𝑤4 ∉ 𝐸(𝐺), then (𝑥)(𝑢1)(𝑤)(𝑤1, 𝑤3)(𝑤2, 𝑤4)(𝑢2, 𝑤5)(𝑣, 𝑤6)𝜋 is 
a resolving (𝑛 − 4)-partition, a contradiction. Therefore, any vertex of 
𝑁1(𝑥) is either adjacent to at most one vertex of 𝑤𝑖 ∈𝑁2(𝑥) or it is ad-

jacent at least 𝑛 − 6 vertices of 𝑤𝑖 ∈𝑁2(𝑥), for 1 ≤ 𝑖 ≤ 𝑛 − 5.

(C5.1) 𝑢1 is not adjacent to any vertex 𝑤𝑖 ∈ 𝑁2(𝑥) and so that 𝑢2
is adjacent to all vertices 𝑤𝑖 ∈ 𝑁2(𝑥) for 1 ≤ 𝑖 ≤ 𝑛 − 5. If 𝑢2 is not 
adjacent to any other vertices 𝑣, 𝑤 ∈ 𝑁2(𝑥), then 𝑢1𝑣, 𝑢1𝑤, 𝑢1𝑢2 ∈ 𝐸(𝐺)
since otherwise diam(𝐺) = 3. However, (𝑣)(𝑥, 𝑤1)(𝑢1, 𝑤2)(𝑢2, 𝑤3)(𝑤, 𝑤4)𝜋
is a resolving (𝑛 − 4)-partition, a contradiction. If 𝑢2 is also adjacent 
to a single vertex 𝑤 ∈𝑁2(𝑥), then (𝑤)(𝑣, 𝑤1)(𝑥, 𝑤2)(𝑢1, 𝑤3)(𝑢2, 𝑤4)𝜋 is a 
resolving (𝑛 − 4)-partition, a contradiction. Otherwise, 𝑢2 is also adja-

cent to a single vertex 𝑣 ∈𝑁2(𝑥) and 𝑢2𝑤 ∉ 𝐸(𝐺), so that 𝑢1𝑤 ∈ 𝐸(𝐺). 
If 𝑣𝑢1, 𝑢1𝑢2 ∈ 𝐸(𝐺), then (𝑢1)(𝑤, 𝑤1)(𝑢2, 𝑤2)(𝑣, 𝑤3)(𝑥, 𝑤4)𝜋 is a resolving 
(𝑛 − 4)-partition, a contradiction. This implies that 𝑢1 is adjacent to at 
most one of the vertex 𝑣 or 𝑢2. If 𝑢1 is not adjacent to any 𝑣 or 𝑢2, then 
diam(𝐺) = 3, a contradiction. Otherwise, 𝑢1 is only adjacent to one of 
the vertex 𝑢2 or 𝑣, so that we deduce 𝐺 ≅𝐻73 for these two conditions.
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Fig. 16. Graph (a) 𝐻73 , (b) 𝐻73 and (c) 𝐻76 .

(C5.2) If (𝑢1 is only adjacent to a single vertex 𝑤1 ∈ 𝑁2(𝑥) and 
𝑢2 is adjacent to 𝑛 − 6 vertices 𝑤𝑖 ∈ 𝑁2(𝑥) for all 2 ≤ 𝑖 ≤ 𝑛 − 5) or 
(𝑢1 and 𝑢2 are not adjacent to distinct vertices 𝑤1 and 𝑤2, respec-

tively, and they are adjacent to other 𝑛 − 6 vertices of 𝑤𝑖 ∈ 𝑁2(𝑥)), 
then (𝑤)(𝑢2)(𝑤1, 𝑤2)(𝑢1, 𝑤3)(𝑣, 𝑤4)(𝑥, 𝑤5)𝜋 or (𝑤)(𝑢1)(𝑢2)(𝑤1, 𝑤3)(𝑤2, 𝑤4)
(𝑣, 𝑤5)(𝑥, 𝑤6)𝜋 is a resolving (𝑛 − 4)-partition, a contradiction.

(C5.3) 𝑢1 is adjacent to a single vertex 𝑤1 ∈ 𝑁2(𝑥) and 𝑢2 is ad-

jacent to all vertices 𝑤𝑖 ∈ 𝑁2(𝑥) for all 1 ≤ 𝑖 ≤ 𝑛 − 5. If 𝑢2 is not 
adjacent to any other vertices 𝑣, 𝑤 ∈ 𝑁2(𝑥) or it is adjacent to a 
single vertex 𝑤 ∈ 𝑁2(𝑥), then (𝑢1)(𝑢2)(𝑤1, 𝑤2)(𝑣, 𝑤3)(𝑤, 𝑤4)(𝑥, 𝑤5)𝜋 or 
(𝑢1)(𝑤)(𝑤1, 𝑤2)(𝑣, 𝑤3)(𝑢2, 𝑤4)(𝑥, 𝑤5)𝜋 is a resolving (𝑛 − 4)-partition, re-

spectively, a contradiction. Otherwise 𝑢2 is adjacent to a vertex 𝑣 ∈
𝑁2(𝑥) but it is not adjacent to a vertex 𝑤 ∈𝑁2(𝑥) so that 𝑢1𝑤 ∈ 𝐸(𝐺). 
For this case, if 𝑢1𝑢2 ∈ 𝐸(𝐺) or 𝑢1𝑣 ∈ 𝐸(𝐺), then we obtain a re-

solving (𝑛 − 4)-partition, namely (𝑢1)(𝑤)(𝑤1, 𝑤2)(𝑣, 𝑤3)(𝑢2, 𝑤4)(𝑥, 𝑤5)𝜋
or (𝑢1)(𝑤1, 𝑤2)(𝑣, 𝑤3)(𝑤, 𝑢2)(𝑥, 𝑤4), respectively. Hence, 𝑢1𝑢2, 𝑢1𝑣 ∉ 𝐸(𝐺)
and we deduce 𝐺 ≅𝐻76 as depicted in Fig. 16 (c).

(C5.4) 𝑢1 is only not adjacent to a single vertex 𝑤1 ∈𝑁2(𝑥) and it is 
adjacent to all remaining vertices 𝑤𝑖 ∈𝑁2(𝑥) for all 𝑖 ≠ 1, and 𝑢2 is ad-

jacent to all vertices 𝑤𝑖 ∈𝑁2(𝑥) for all 1 ≤ 𝑖 ≤ 𝑛 − 5. If 𝑢2 is adjacent to 
𝑤 or it is not adjacent to 𝑢1, then (𝑢1)(𝑤)(𝑤1, 𝑤2)(𝑣, 𝑤3)(𝑢2, 𝑤4)(𝑥, 𝑤5)𝜋
is a resolving (𝑛 − 4)-partition, a contradiction. Therefore, 𝑢2𝑤 ∉ 𝐸(𝐺)
and 𝑢1𝑢2, 𝑢1𝑤 ∈ 𝐸(𝐺). Hence we only need to consider the adjacency 
of a vertex 𝑣 to the vertices 𝑢1, 𝑢2 ∈ 𝑁1(𝑥). Note that 𝑣 is adjacent 
to at least one of 𝑢1, 𝑢2 ∈ 𝑁1(𝑥), since otherwise diam(𝐺) = 3. If 𝑣 is 
not adjacent to one of 𝑢1 or 𝑢2, then (𝑢1)(𝑤1, 𝑤2)(𝑢2, 𝑤)(𝑣, 𝑤3)(𝑥, 𝑤4)𝜋
or (𝑢1)(𝑢2)(𝑤1, 𝑤2)(𝑤, 𝑤3)(𝑣, 𝑤4)(𝑥, 𝑤5)𝜋 is a resolving (𝑛 − 4)-partition, 
a contradiction. Therefore, 𝑣 is adjacent to both 𝑢1, 𝑢2 ∈𝑁1(𝑥) and we 
deduce 𝐺 ≅𝐻67 as depicted in Fig. 17 (a).

Now assume that both 𝑢1 and 𝑢2 are adjacent to all vertices 
𝑤𝑖 ∈ 𝑁2(𝑥) for 1 ≤ 𝑖 ≤ 𝑛 − 5. If 𝑤 is adjacent to both 𝑢1 and 𝑢2, 
then (𝑤)(𝑢1, 𝑤1)(𝑢2, 𝑤2)(𝑣, 𝑤3)(𝑥, 𝑤4)𝜋 is a resolving (𝑛 − 4)-partition, 
a contradiction. Furthermore, if both 𝑣 and 𝑤 are not adjacent 
to a single vertex 𝑢1 ∈ 𝑁1(𝑥) (or similarly to a single vertex 𝑢2 ∈
𝑁1(𝑥)) and 𝑢1𝑢2 ∉ 𝐸(𝐺), then (𝑢1)(𝑢2, 𝑤1)(𝑣, 𝑤2)(𝑤, 𝑤3)(𝑥, 𝑤4)𝜋 (or 
(𝑢2)(𝑢1, 𝑤1)(𝑣, 𝑤2)(𝑤, 𝑤3)(𝑥, 𝑤4)𝜋) is also a resolving (𝑛 − 4)-partition, 
a contradiction. Therefore without loss of generality, we can assume 
that 𝑤 is adjacent to 𝑢1 ∈𝑁1(𝑥) and it is not adjacent to 𝑢2 ∈𝑁1(𝑥). If 
𝑣𝑢1 ∈ 𝐸(𝐺) and 𝑣𝑢2 ∈𝐸(𝐺), then 𝑢1𝑢2 ∈𝐸(𝐺) and we obtain 𝐺 ≅𝐻66 as 
depicted in Fig. 17 (b). If 𝑣𝑢1 ∉ 𝐸(𝐺) and 𝑣𝑢2 ∈ 𝐸(𝐺), then 𝑢1𝑢2 ∈ 𝐸(𝐺)
since otherwise (𝑢1)(𝑢2, 𝑤1)(𝑤, 𝑤2)(𝑣, 𝑤3)(𝑥, 𝑤4)𝜋 is a resolving (𝑛 − 4)-
partition, a contradiction. We deduce 𝐺 ≅ 𝐻70 as depicted in Fig. 17

(c). Otherwise 𝑣𝑢1, 𝑣𝑢2 ∈ 𝐸(𝐺) and we obtain 𝐺 ≅𝐻70 if 𝑢1𝑢2 ∉ 𝐸(𝐺) or 
𝐺 ≅𝐻45 if 𝑢1𝑢2 ∈𝐸(𝐺).
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Fig. 17. Graph (a) 𝐻67 , (b) 𝐻66 , (c) 𝐻70 , (d) 𝐻70 and (e) 𝐻45 .

Fig. 18. Graph (a) 𝐾1 + (𝐾𝑛−3 − 𝑒 ∪𝐾2), (b) 𝐻51 , (c) 𝐻55 , (d) 𝐻53 , (e) 𝐻57 and (f) 𝐻58 .

Fig. 19. Graph (a) 𝐻31 , (b) 𝐻22 , (c) 𝐻14 , (d) 𝐻38 , (e) 𝐻29 , (f) 𝐻30 , (g) 𝐻8 , (h) 𝐻23 , and (i) 𝐾𝑛 −𝐸(𝐾1,𝑛−3 + 𝑒).
(C6) 𝑁2(𝑥) induces 𝐾𝑛−3 − 𝑒. Let 𝑒 = 𝑎𝑏 and other vertices of 𝑁2(𝑥)
by 𝑡𝑖 for 1 ≤ 𝑖 ≤ 𝑛 −5. If there exists 𝑢1 ∈𝑁1(𝑥) such that 𝑢1𝑡1, 𝑢1𝑡2 ∈𝐸(𝐺)
and 𝑢1𝑡3, 𝑢1𝑡4 ∉𝐸(𝐺), then (𝑥)(𝑢1)(𝑎)(𝑡1, 𝑡3)(𝑡2, 𝑡4)(𝑢2, 𝑡5)(𝑏, 𝑡6)𝜋 is a resolv-

ing (𝑛 − 4)-partition, a contradiction. Therefore, any vertex of 𝑁1(𝑥) is 
either adjacent to at most one vertex of 𝑁2(𝑥) ⧵ {𝑎, 𝑏} or it is adjacent 
to at least (𝑛 −6) vertices of 𝑁2(𝑥) ⧵ {𝑎, 𝑏}. Furthermore, if one vertex of 
𝑁1(𝑥), namely 𝑢1, is not adjacent to at least one vertex 𝑡1 ∈𝑁2(𝑥) ⧵{𝑎, 𝑏}
and one other vertex 𝑢2 ∈ 𝑁1(𝑥) is not adjacent to a vertex 𝑎 ∈𝑁2(𝑥)
(similarly to a vertex 𝑏 ∈𝑁2(𝑥)), then (𝑎)(𝑡1)(𝑢1, 𝑡2)(𝑏, 𝑡3)(𝑢2, 𝑡4)(𝑥, 𝑡5)𝜋 (or 
(𝑏)(𝑡1)(𝑢1, 𝑡2)(𝑎, 𝑡3)(𝑢2, 𝑡4)(𝑥, 𝑡5)𝜋) is a resolving (𝑛 − 4)-partition, a contra-

diction.

(C6.1) 𝑢1 is not adjacent to any vertex of 𝑁2(𝑥) ⧵ {𝑎, 𝑏}. Then 𝑢2 is 
adjacent to all vertices of 𝑁2(𝑥). If 𝑢1 is not adjacent to two remaining 
vertices 𝑎, 𝑏 ∈𝑁2(𝑥), then 𝑢1𝑢2 ∈ 𝐸(𝐺) and we obtain 𝐺 ≅ 𝐾1 + (𝐾𝑛−3 −
𝑒 ∪𝐾2). If 𝑢1 is either adjacent to a single vertex 𝑎 ∈𝑁2(𝑥) or 𝑏 ∈𝑁2(𝑥), 
then 𝑢1𝑢2 ∈ 𝐸(𝐺) and we obtain 𝐺 ≅𝐻51. Otherwise, 𝑢1 is adjacent to 
both 𝑎, 𝑏 ∈𝑁2(𝑥) and we deduce 𝐺 ≅𝐻55 if 𝑢1𝑢2 ∉ 𝐸(𝐺) or 𝐺 ≅𝐻53 if 
𝑢1𝑢2 ∈𝐸(𝐺) (Fig. 18 (a)-(d)).

(C6.2) 𝑢1 is adjacent to a single vertex 𝑡1 ∈𝑁2(𝑥) ⧵ {𝑎, 𝑏}. If 𝑢2 is ad-

jacent to 𝑛 −4 vertices 𝑁1(𝑥) other than 𝑡1, then (𝑎)(𝑡1)(𝑢1, 𝑡2)(𝑢2, 𝑡3)(𝑥, 𝑡4)
(𝑏, 𝑡5)𝜋 is a resolving (𝑛 − 4)-partition, a contradiction. Therefore, 𝑢2
is adjacent to all vertices of 𝑁2(𝑥). If 𝑢1 is not adjacent to other 
two vertices 𝑎, 𝑏 ∈ 𝑁2(𝑥) or it is only adjacent to 𝑎 ∈ 𝑁2(𝑥) (or sim-

ilarly to 𝑏 ∈ 𝑁2(𝑥)), then 𝑢1𝑢2 ∉ 𝐸(𝐺), since otherwise we have a 
resolving (𝑛 − 4)-partition, namely (𝑎)(𝑢1)(𝑡1, 𝑡2)(𝑢2, 𝑡3)(𝑥, 𝑡4)(𝑏, 𝑡5)𝜋 (or 
(𝑏)(𝑢1)(𝑡1, 𝑡2)(𝑢2, 𝑡3)(𝑥, 𝑡4)(𝑎, 𝑡5)𝜋). Hence we deduce 𝐺 ≅𝐻57 if 𝑢1𝑎, 𝑢1𝑏 ∉
𝐸(𝐺) or 𝐺 ≅𝐻58 if 𝑢1 is either adjacent to 𝑎 or 𝑏. Otherwise, 𝑢1 is ad-

jacent to both 𝑎 and 𝑏, but (𝑢1)(𝑢2)(𝑡1, 𝑡2)(𝑎, 𝑡3)(𝑏, 𝑡4)(𝑥, 𝑡5)𝜋 is a resolving 
(𝑛 − 4)-partition, a contradiction.

(C6.3) 𝑢1 is only not adjacent to a single vertex 𝑡1 ∈𝑁2(𝑥) ⧵ {𝑎, 𝑏}. If 
𝑢2 is adjacent to 𝑛 −4 vertices of 𝑁2(𝑥) ⧵{𝑡2}, then (𝑢1)(𝑢2)(𝑎)(𝑡1, 𝑡3)(𝑡2, 𝑡4)
(𝑥, 𝑡5)(𝑏, 𝑡6)𝜋 is a resolving (𝑛 − 4)-partition, a contradiction. There-
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fore, 𝑢2 is adjacent to all vertices 𝑁2(𝑥). In this case, 𝑢1𝑢2 ∈ 𝐸(𝐺), 
since otherwise we also have a resolving (𝑛 − 4)-partition, namely 
(𝑢1)(𝑎)(𝑡1, 𝑡2)(𝑢2, 𝑡3)(𝑏, 𝑡4)(𝑥, 𝑡5)𝜋. Furthermore, if 𝑢1 is not adjacent to 
both 𝑎, 𝑏 ∈ 𝑁2(𝑥), then (𝑢1)(𝑢2)(𝑡1, 𝑡2)(𝑎, 𝑡3)(𝑏, 𝑡4)(𝑥, 𝑡5)𝜋 is a resolving 
(𝑛 − 4)-partition, a contradiction. Thus we obtain 𝐺 ≅𝐻31 if 𝑢1 is only 
adjacent to one of vertices 𝑎 or 𝑏, or 𝐺 ≅𝐻22 if 𝑢1 is adjacent to both 
vertices 𝑎 and 𝑏 (Fig. 19 (a)-(b)).

(C6.4) 𝑢1 and 𝑢2 are adjacent to 𝑛 −5 vertices of 𝑁2(𝑥) ⧵{𝑎, 𝑏}. There-

fore we only need to consider adjacency of vertices 𝑁1(𝑥) ∪{𝑎, 𝑏}. If both 
𝑎 and 𝑏 are only adjacent to a single vertex of 𝑁1(𝑥), namely 𝑢1, then 
𝑢1𝑢2 ∈ 𝐸(𝐺) since otherwise (𝑢2)(𝑢1, 𝑡1)(𝑎, 𝑡2)(𝑏, 𝑡3)(𝑥, 𝑡4)𝜋 is a resolving 
(𝑛 − 4)-partition, a contradiction. Thus we obtain 𝐺 ≅𝐻14. If 𝑎 and 𝑏
are adjacent to different vertices of 𝑁1(𝑥), namely 𝑎𝑢1, 𝑏𝑢2 ∈ 𝐸(𝐺) and 
𝑎𝑢2, 𝑏𝑢1 ∉ 𝐸(𝐺), then we obtain 𝐺 ≅𝐻38 or 𝐺 ≅𝐻29 for 𝑢1𝑢2 ∉ 𝐸(𝐺) or 
𝑢1𝑢2 ∈ 𝐸(𝐺), respectively. Now assume that one vertex of 𝑎 or 𝑏 is ad-

jacent to all vertices 𝑁1(𝑥) and one other vertex is only adjacent to a 
single vertex of 𝑁1(𝑥), namely 𝑎𝑢1, 𝑎𝑢2, 𝑏𝑢1 ∈𝐸(𝐺) and 𝑏𝑢2 ∉𝐸(𝐺). Then 
we deduce 𝐺 ≅𝐻30 or 𝐺 ≅𝐻8 for 𝑢1𝑢2 ∉ 𝐸(𝐺) or 𝑢1𝑢2 ∈ 𝐸(𝐺), respec-

tively. Otherwise, both 𝑎 and 𝑏 are adjacent to all vertices of 𝑁1(𝑥), and 
thus 𝐺 ≅𝐻23 or 𝐺 ≅ 𝐾𝑛 −𝐸(𝐾1,𝑛−3 + 𝑒) for 𝑢1𝑢2 ∉ 𝐸(𝐺) or 𝑢1𝑢2 ∈ 𝐸(𝐺), 
respectively.

(D) |𝑁1(𝑥)| = 𝑛 − 3 and |𝑁2(𝑥)| = 2. Let 𝑁2(𝑥) = {𝑣1, 𝑣2}. By a similar 
reason to Subcase (C), if 𝑁1(𝑥) contains vertices 𝑧1, 𝑧2, 𝑎, 𝑏, 𝑐, 𝑑 such that

(i) 𝑧1𝑎, 𝑧1𝑏 ∈𝐸(𝐺) and 𝑧1𝑐, 𝑧1𝑑 ∉𝐸(𝐺), or

(ii) 𝑧1𝑎, 𝑧2𝑏 ∈𝐸(𝐺) and 𝑧1𝑐, 𝑧2𝑑 ∉𝐸(𝐺), or

(iii) 𝑎𝑏 ∈𝐸(𝐺) and 𝑎𝑑, 𝑏𝑐, 𝑐𝑑 ∉𝐸(𝐺),

then (𝑥)(𝑧1)(𝑧2)(𝑎, 𝑐)(𝑏, 𝑑)(𝑣1, 𝑡1)(𝑣2, 𝑡2)𝜋 is a resolving (𝑛 −4) partition, for 
𝑡1, 𝑡2 ∈𝑁1(𝑥) ⧵ {𝑧1, 𝑧2, 𝑎, 𝑏, 𝑐, 𝑑}, a contradiction. Therefore, by consider-

ing Lemma 1, 𝑁1(𝑥) induces one of the graphs (D1) 𝐾𝑛−3, (D2) 𝐾𝑛−3, 
(D3) 𝐾1,𝑛−4, (D4) 𝐾𝑛−4 ∪𝐾1, (D5) 𝐾𝑛−3 −𝐸(𝐾1,𝑛−5), or (D6) 𝐾𝑛−3 − 𝑒.
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Fig. 20. Graph (a) 𝐾3,𝑛−3, (b) (𝐾1 ∪𝐾2) +𝐾𝑛−3, (c) 𝐻43 , (d) 𝐻47 , (e) 𝐻46 , (f) 𝐻12 , (g) 𝐻7 and (h) 𝐻11 .

Fig. 21. Graph (a) 𝐻44 , (b) 𝐻48 , (c) 𝐻45 , (d) 𝐻49 , (e) 𝐻8, (f) 𝐻6, (g) 𝐻4 and (h) 𝐻1.
(D1) 𝑁1(𝑥) induces 𝐾𝑛−3. Note that for any vertex 𝑣𝑖 ∈𝑁2(𝑥), 1 ≤ 𝑖 ≤
2, there exists at least one vertex 𝑡 ∈ 𝑁1(𝑥) such that 𝑣𝑖𝑡 ∈ 𝐸(𝐺), and 
conversely for any 𝑡 ∈𝑁1(𝑥) there exist 𝑣𝑖 ∈𝑁2(𝑥) such that 𝑡𝑣𝑖 ∈𝐸(𝐺), 
since otherwise diam(𝐺) = 3. If there exists a vertex of 𝑁2(𝑥), namely 
𝑣1, and 𝑎, 𝑏, 𝑐, 𝑑 ∈𝑁1(𝑥) such that 𝑣1𝑎, 𝑣1𝑏 ∈ 𝐸(𝐺) and 𝑣1𝑐, 𝑣1𝑑 ∉ 𝐸(𝐺), 
then (𝑥)(𝑣1, 𝑡1)(𝑎, 𝑐)(𝑏, 𝑑)(𝑣2, 𝑡2)𝜋 is a resolving (𝑛 −4)-partition, for 𝑡1, 𝑡2 ∈
𝑁1(𝑥) ⧵ {𝑎, 𝑏, 𝑐, 𝑑}, a contradiction. Therefore, any vertex of 𝑁2(𝑥) is ad-

jacent to 1, 𝑛 − 4 or 𝑛 − 3 vertices of 𝑁1(𝑥). Now consider the following 
4 conditions.

1. If 𝑣1 is adjacent to a single vertex 𝑡1 ∈𝑁1(𝑥) and 𝑣2 is adjacent to 
𝑛 − 4 vertices of 𝑁1(𝑥) ⧵ {𝑡1}, or

2. if 𝑣1 is adjacent to a single vertex 𝑡1 ∈𝑁1(𝑥) and 𝑣2 is adjacent to 
all vertices of 𝑁1(𝑥), or

3. if each 𝑣1 and 𝑣2 are only not adjacent to a single vertex 𝑡1 ∈𝑁1(𝑥)
and 𝑡2 ∈𝑁1(𝑥), respectively, or

4. if 𝑣1 is only not adjacent to a single vertex 𝑡1 ∈ 𝑁1(𝑥) and 𝑣2 is 
adjacent to all vertices of 𝑁1(𝑥),

then (𝑥, 𝑦)(𝑣1, 𝑡)(𝑡1, 𝑡3)(𝑣2, 𝑡2)𝜋 is a resolving (𝑛 − 4)-partition, for 𝑦, 𝑡, 𝑡3 ∈
𝑁1(𝑥) ⧵ {𝑡1, 𝑡2}, a contradiction. Thus, we can conclude that any vertex 
of 𝑁2(𝑥) is adjacent to all vertices 𝑁1(𝑥). We deduce 𝐺 ≅𝐾3,𝑛−3 if 𝑣1𝑣2 ∉
𝐸(𝐺) or 𝐺 ≅ (𝐾1 ∪𝐾2) +𝐾𝑛−3 if 𝑣1𝑣2 ∈ 𝐸(𝐺), as depicted in Fig. 20 (a)-

(b).

(D2) 𝑁1(𝑥) induces 𝐾𝑛−3. If there exists a vertex 𝑣1 ∈ 𝑁2(𝑥) and 
𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3 ∈𝑁1(𝑥) such that 𝑣1𝑎𝑖 ∈ 𝐸(𝐺) and 𝑣1𝑏𝑖 ∉ 𝐸(𝐺) for all 
1 ≤ 𝑖 ≤ 3, then (𝑥)(𝑣1)(𝑎1, 𝑏1)(𝑎2, 𝑏2)(𝑎3, 𝑏3)(𝑣2, 𝑡)𝜋 is a resolving (𝑛 − 4)-
partition, for 𝑡 ∈𝑁2(𝑥) ⧵ {𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3} and a singleton partition 𝜋, 
a contradiction. Therefore, any vertex of 𝑁2(𝑥) is either adjacent to at 
most two vertices of 𝑁2(𝑥) or it is adjacent to at least 𝑛 − 5 vertices of 
𝑁1(𝑥).

(D2.1) 𝑣1 is only adjacent to a single vertex 𝑡 ∈ 𝑁1(𝑥). If 𝑣2 is 
also only adjacent to a vertex 𝑡 ∈ 𝑁1(𝑥), then 𝐺 ≅ 𝐺9 or 𝐺 ≅ 𝐺8 for 
𝑣1𝑣2 ∉𝐸(𝐺) or for 𝑣1𝑣2 ∈𝐸(𝐺), respectively. But, 𝑝𝑑(𝐺9) = 𝑝𝑑(𝐺8) = 𝑛 −2
by [2]. If 𝑣2 is only adjacent to a single vertex 𝑠 ∈ 𝑁1(𝑥) where 
𝑠 ≠ 𝑡, then 𝑣1𝑣2 ∈ 𝐸(𝐺), since otherwise diam(𝐺) = 3. However, we 
obtain 𝐺 ≅ 𝐺7 and 𝑝𝑑(𝐺7) = 𝑛 − 2 by [2]. If 𝑣2 is adjacent to two 
vertices 𝑠, 𝑡 ∈ 𝑁1(𝑥), then 𝐺 ≅ 𝐻43 or 𝐺 ≅ 𝐻47 for 𝑣1𝑣2 ∉ 𝐸(𝐺) or for 
𝑣1𝑣2 ∈ 𝐸(𝐺), respectively. If 𝑣2 is adjacent to two vertices 𝑠, 𝑟 ∈𝑁1(𝑥)
distinct from 𝑡, then 𝑣1𝑣2 ∈ 𝐸(𝐺) and thus 𝐺 ≅ 𝐻46. If 𝑣2 is adjacent 
to (𝑛 − 5) vertices of 𝑁1(𝑥) ⧵ {𝑠, 𝑡} (or 𝑁1(𝑥) ⧵ {𝑟, 𝑠} where 𝑟, 𝑠 ≠ 𝑡), then 
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(𝑣2)(𝑡, 𝑡1)(𝑠, 𝑡2)(𝑣2, 𝑡3)(𝑥, 𝑡4)𝜋 (or (𝑣1)(𝑣2)(𝑡, 𝑡1)(𝑟, 𝑡2)(𝑠, 𝑡3)(𝑥, 𝑡4)𝜋) is a resolv-

ing (𝑛 − 4)-partition, for 𝑡1, 𝑡2, 𝑡3, 𝑡4 ∈𝑁1(𝑥) ⧵ {𝑡, 𝑟, 𝑠, }, a contradiction. If 
𝑣2 is adjacent to (𝑛 − 4) vertices of 𝑁1(𝑥) ⧵ {𝑡}, then 𝑣1𝑣2 ∈ 𝐸(𝐺) since 
otherwise diam(𝐺) = 3 and thus 𝐺 ≅𝐻12. If 𝑣2 is adjacent to (𝑛 − 4) ver-

tices of 𝑁1(𝑥) ⧵ {𝑠} for 𝑠 ≠ 𝑡, then 𝐺 ≅𝐻7 or 𝐺 ≅𝐻11 for 𝑣1𝑣2 ∉𝐸(𝐺) or 
for 𝑣1𝑣2 ∈𝐸(𝐺), respectively. Otherwise, 𝑣2 is adjacent to all vertices of 
𝑁1(𝑥) and we obtain 𝐺 ≅𝐾1 + (𝐾1 ∪𝐾𝑛−2 − 𝑒) or 𝐺 ≅𝐺6 for 𝑣1𝑣2 ∉𝐸(𝐺)
or for 𝑣1𝑣2 ∈𝐸(𝐺), respectively. But 𝑝𝑑(𝐾1 + (𝐾1 ∪𝐾𝑛−2 − 𝑒)) = 𝑝𝑑(𝐺6) =
𝑛 − 2 by [2], a contradiction.

(D2.2) 𝑣1 is only adjacent to two vertices 𝑠, 𝑡 ∈ 𝑁1(𝑥). If 𝑣2 is 
also only adjacent to two vertices 𝑠, 𝑡 ∈ 𝑁1(𝑥), then 𝐺 ≅ 𝐻44 or 
𝐺 ≅ 𝐻48 for 𝑣1𝑣2 ∉ 𝐸(𝐺) or for 𝑣1𝑣2 ∈ 𝐸(𝐺), respectively. If 𝑣2 is 
only adjacent to two vertices 𝑟, 𝑠 ∈ 𝑁1(𝑥) where 𝑟 ≠ 𝑡, then 𝐺 ≅
𝐻45 or 𝐺 ≅ 𝐻49 for 𝑣1𝑣2 ∉ 𝐸(𝐺) or for 𝑣1𝑣2 ∈ 𝐸(𝐺), respectively. 
If 𝑣2 is only adjacent to two vertices 𝑝, 𝑞 ∈ 𝑁1(𝑥) distinct from 
two vertices 𝑠, 𝑡 ∈ 𝑁1(𝑥), then we have a resolving (𝑛 − 4) parti-

tion, namely (𝑣1)(𝑣2)(𝑠, 𝑠1)(𝑡, 𝑡1)(𝑝, 𝑝1)(𝑞, 𝑞1)𝜋 for 𝑠1, 𝑡1, 𝑝1, 𝑞1 ∈ 𝑁1(𝑥) ⧵
{𝑠, 𝑡, 𝑝, 𝑞}, a contradiction. If 𝑣2 is adjacent to 𝑛 − 5 vertices of 
𝑁1(𝑥) ⧵ {𝑝, 𝑞} where 𝑝 ≠ 𝑠 and 𝑞 may equal to 𝑡 (or 𝑁1(𝑥) ⧵ {𝑠, 𝑡}), then 
(𝑣1)(𝑣2)(𝑠, 𝑠1)(𝑡, 𝑡1)(𝑝, 𝑝1)(𝑥, 𝑞1) (or (𝑣2)(𝑠, 𝑠1)(𝑡, 𝑡1)(𝑣1, 𝑡2)(𝑥, 𝑡3)𝜋) is a resolv-

ing (𝑛 − 4)-partition, for 𝑝1, 𝑞1, 𝑠1, 𝑡1 ∈𝑁1(𝑥) ⧵ {𝑠, 𝑡, 𝑝, 𝑞} (or 𝑠1, 𝑡1, 𝑡2, 𝑡3 ∈
𝑁1(𝑥) ⧵ {𝑠, 𝑡}), a contradiction. If 𝑣2 is adjacent to 𝑛 − 4 vertices of 
𝑁1(𝑥) ⧵ {𝑝} where 𝑝 ≠ 𝑠, 𝑡, then we have a resolving (𝑛 − 4) partition, 
namely (𝑣1)(𝑣2)(𝑠, 𝑠1)(𝑡, 𝑡1)(𝑝, 𝑝1)(𝑥, 𝑥1)𝜋 for 𝑠1, 𝑡1, 𝑝1, 𝑥1 ∈𝑁1(𝑥) ⧵ {𝑠, 𝑡, 𝑝}, 
a contradiction. If 𝑣2 is adjacent to 𝑛 −4 vertices of 𝑁1(𝑥) ⧵ {𝑠}, then we 
obtain 𝐺 ≅𝐻8 or 𝐺 ≅𝐻6 for 𝑣1𝑣2 ∉ 𝐸(𝐺) or 𝑣1𝑣2 ∈ 𝐸(𝐺), respectively. 
Otherwise, 𝑣2 is adjacent to all vertices of 𝑁1(𝑥) and we deduce 𝐺 ≅𝐻4
or 𝐺 ≅𝐻1 for 𝑣1𝑣2 ∉𝐸(𝐺) or 𝑣1𝑣2 ∈𝐸(𝐺), respectively (Fig. 21).

(D2.3) 𝑣1 is adjacent to (𝑛 − 5) vertices of 𝑁1(𝑥) ⧵ {𝑡1, 𝑡2}. Suppose 
that 𝑣2 is not adjacent to at least one vertex 𝑡3 ∈𝑁1(𝑥) different from 𝑡1
and 𝑡2. However, (𝑣1)(𝑣2)(𝑡1, 𝑡4)(𝑡2, 𝑡5)(𝑡3, 𝑡6)(𝑥, 𝑡7)𝜋 is a resolving (𝑛 − 4)-
partition, for 𝑡4, 𝑡5, 𝑡6 ∈𝑁1(𝑥) ⧵ {𝑡1, 𝑡2, 𝑡3}, a contradiction. Therefore, if 
𝑣2 is not adjacent to some vertices of 𝑁1(𝑥), then they are elements of 
{𝑡1, 𝑡2}. Now, for the following conditions: (𝑣2 is also adjacent to 𝑛 − 5
vertices of 𝑁1(𝑥) ⧵ {𝑡1, 𝑡2}), or (𝑣2 is adjacent to 𝑛 − 4 vertices 𝑁1(𝑥) ⧵
{𝑡1}), or (𝑣2 is adjacent to all vertices of 𝑁1(𝑥)), then 𝑣1𝑣2 ∈𝐸(𝐺) since 
otherwise (𝑣1)(𝑡1, 𝑡3)(𝑡2, 𝑡4)(𝑣2, 𝑡5)(𝑥, 𝑡6)𝜋 is a resolving (𝑛 − 4)-partition, 
for 𝑡3, 𝑡4, 𝑡5, 𝑡6 ∈ 𝑁1(𝑥) ⧵ {𝑡1, 𝑡2} a contradiction. Hence we deduce 𝐺 ≅
𝐾𝑛 − 𝐸(𝐾2,3), or 𝐺 ≅𝐻9, or 𝐺 ≅𝐻3 for the previous three conditions, 
respectively (Fig. 22 (a)–(c)).
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Fig. 22. Graph (a) 𝐾𝑛 −𝐸(𝐾2,3), (b) 𝐻9 , (c) 𝐻3 , (d) 𝐾𝑛 −𝐸(𝐾4 − 𝑒), (e) 𝐻82 , (f) 𝐾𝑛 −𝐸(𝑃5) and (g) 𝐾𝑛 −𝐸(𝐾1,3 + 𝑒).

Fig. 23. Graph (a) 𝐾1 + (𝐾1,𝑛−4 ∪ 2𝐾1), (b) 𝐾1 + (𝐾1,𝑛−4 ∪𝐾2), (c) 𝐻78 , (d) 𝐻79 , (e) 𝐾1 + (𝐾2,𝑛−4 ∪𝐾1), (f) 𝐻80 and (g) 𝐻81 .
(D2.4) 𝑣1 is adjacent to (𝑛 − 4) vertices of 𝑁1(𝑥) ⧵ {𝑡1}. If 𝑣2 is also 
adjacent to (𝑛 − 4) of 𝑁1(𝑥) ⧵ {𝑡1}, then 𝑣1𝑣2 ∉ 𝐸(𝐺), since otherwise 
𝐺 ≅ 𝐾𝑛 − 𝐸(𝐶4) and 𝑝𝑑(𝐾𝑛 − 𝐸(𝐶4)) = 𝑛 − 2 by [2]. Thus we deduce 
𝐺 ≅ 𝐾𝑛 − 𝐸(𝐾4 − 𝑒). If 𝑣2 is adjacent to 𝑛 − 4 vertices of 𝑁1(𝑥) ⧵ {𝑡2}
for 𝑡1 ≠ 𝑡2, then we obtain 𝐺 ≅𝐻82 or 𝐺 ≅ 𝐾𝑛 − 𝐸(𝑃5) for 𝑣1𝑣2 ∉ 𝐸(𝐺)
or 𝑣1𝑣2 ∈ 𝐸(𝐺), respectively. If 𝑣2 is adjacent to all vertices of 𝑁1(𝑥), 
then 𝑣1𝑣2 ∉𝐸(𝐺), since otherwise 𝐺 ≅𝐾𝑛 −𝐸(𝑃4) and 𝑝𝑑(𝐾𝑛 −𝐸(𝑃4)) =
𝑛 − 2 by [2]. We deduce 𝐺 ≅ 𝐾𝑛 − 𝐸(𝐾1,3 + 𝑒). Now for the remaining 
condition, assume that both 𝑣1 and 𝑣2 are adjacent to all vertices of 
𝑁1(𝑥). However, we obtain that 𝐺 ≅ 𝐾𝑛 − 𝐸(𝐾3) if 𝑣1𝑣2 ∉ 𝐸(𝐺) or 𝐺 ≅
𝐾𝑛 − 𝐸(𝑃3) if 𝑣1𝑣2 ∈ 𝐸(𝐺) and 𝑝𝑑(𝐾𝑛 − 𝐸(𝐾3)) = 𝑝𝑑(𝐾𝑛 − 𝐸(𝑃3)) = 𝑛 − 2
by [2], a contradiction.

(D3) 𝑁1(𝑥) induces 𝐾1,𝑛−4. Let 𝑉 (𝑁1(𝑥)) = {𝑡, 𝑡𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛 − 4} and 
𝐸(𝑁1(𝑥)) = {𝑡𝑡𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛 − 4}. Note that if a vertex of 𝑁2(𝑥) is not 
adjacent to a vertex 𝑡 ∈ 𝑁1(𝑥), then it is adjacent to all vertices 𝑡𝑖 ∈
𝑁1(𝑥) for 1 ≤ 𝑖 ≤ 𝑛 − 4, since otherwise diam(𝐺) = 3. Furthermore, if 
each 𝑣1 and 𝑣2 are adjacent to at least one vertex 𝑡𝑖 ∈𝑁1(𝑥) and 𝑡𝑗 ∈
𝑁1(𝑥), respectively, for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛 − 4, then (𝑡𝑖)(𝑡𝑗 )(𝑡, 𝑡1)(𝑣1, 𝑡2)(𝑥, 𝑡4)𝜋 is 
a resolving (𝑛 −4)-partition, for 𝑖, 𝑗 ≠ 1, 2, 3, 4, a contradiction. Therefore, 
there exists at most one vertex of 𝑁2(𝑥) which is adjacent the vertices 
𝑡𝑖 ∈ 𝑁1(𝑥) for some 1 ≤ 𝑖 ≤ 𝑛 − 4. Furthermore, if there exists a vertex 
of 𝑁2(𝑥), namely 𝑣1, and 𝑡1, 𝑡2, 𝑡3, 𝑡4 ∈𝑁2(𝑥) such that 𝑣1𝑡1, 𝑣2𝑡2 ∈ 𝐸(𝐺)
and 𝑣1𝑡3, 𝑣1𝑡4 ∉𝐸(𝐺), then (𝑣1)(𝑡1, 𝑡3)(𝑡2, 𝑡4)(𝑡, 𝑡5)(𝑥, 𝑡6)𝜋 is a resolving (𝑛 −
4)-partition, a contradiction. This implies that any vertex of 𝑁2(𝑥) is 
adjacent to at most one vertex of 𝑡𝑖 ∈𝑁1(𝑥) or it is adjacent to at least 
𝑛 − 5 vertices of 𝑡𝑖 ∈𝑁1(𝑥).

Let both 𝑣1 and 𝑣2 are adjacent to a vertex 𝑡 ∈𝑁1(𝑥). If 𝑣1 and 𝑣2 are 
not adjacent to any other vertex 𝑡𝑖 ∈𝑁1(𝑥), we deduce 𝐺 ≅𝐾1 +(𝐾1,𝑛−4 ∪
2𝐾1) or 𝐺 ≅ 𝐾1 + (𝐾1,𝑛−4 ∪𝐾2) for 𝑣1𝑣2 ∉ 𝐸(𝐺) or 𝑣1𝑣2 ∈ 𝐸(𝐺), respec-

tively. If one vertex of 𝑁1(𝑥), namely 𝑣1, is also adjacent to a single 
vertex 𝑡1 ∈𝑁1(𝑥) or it is only not adjacent to a single vertex 𝑡1 ∈𝑁1(𝑥), 
then 𝑣1𝑣2 ∉𝐸(𝐺) or 𝑣1𝑣2 ∈𝐸(𝐺), respectively. Since otherwise we have 
a resolving (𝑛 − 4)-partition, namely (𝑣1)(𝑡1, 𝑡2)(𝑡, 𝑡3)(𝑣2, 𝑡4)(𝑥, 𝑡5)𝜋. Hence 
for this case, 𝑣2 is not adjacent to any other vertex 𝑁1(𝑥) and we obtain 
𝐺 ≅𝐻78 or 𝐺 ≅𝐻79. If a vertex of 𝑁1(𝑥), namely 𝑣1, is adjacent to all 
vertices 𝑡𝑖 ∈𝑁1(𝑥) for 1 ≤ 𝑖 ≤ 𝑛 − 4, then 𝑣2 is not adjacent to any ver-

tex 𝑡𝑖 ∈𝑁1(𝑥) and we obtain 𝐺 ≅ 𝐾1 + (𝐾2,𝑛−4 ∪𝐾1) for 𝑣1𝑣2 ∉ 𝐸(𝐺) or 
𝐺 ≅𝐻80 for 𝑣1𝑣2 ∈𝐸(𝐺). Otherwise, assume that 𝑣1 is adjacent to a ver-

tex 𝑡 ∈𝑁1(𝑥) and 𝑣2 is not adjacent to 𝑡 ∈𝑁1(𝑥), so that 𝑣2 is adjacent 
to all vertices 𝑡𝑖 ∈𝑁1(𝑥) for 1 ≤ 𝑖 ≤ 𝑛 − 4. This implies that 𝑣1 is not ad-
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jacent to any other vertex 𝑡𝑖 ∈𝑁1(𝑥) and 𝑣1𝑣2 ∈ 𝐸(𝐺), since otherwise 
diam(𝐺) = 3. We deduce 𝐺 ≅𝐻81 (Fig. 23).

(D4) 𝑁1(𝑥) induces 𝐾𝑛−4 ∪ 𝐾1. Let 𝑉 (𝑁1(𝑥)) = {𝑡, 𝑡𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛 − 4}
and 𝐸(𝑁1(𝑥)) = {𝑡𝑖𝑡𝑗 ∶ 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 − 4}. If there exists a vertex of 
𝑁2(𝑥), namely 𝑣1, such that 𝑣1𝑡1, 𝑣1𝑡2 ∈𝐸(𝐺) and 𝑣1, 𝑡3, 𝑣1𝑡4 ∉𝐸(𝐺), then 
(𝑥)(𝑣1)(𝑡1, 𝑡3)(𝑡2, 𝑡4)(𝑡, 𝑡5)(𝑣2, 𝑡6)𝜋 is a resolving (𝑛 − 4)-partition, a contra-

diction. Therefore, any vertex of 𝑁2(𝑥) is adjacent to 1, 𝑛 − 5 or 𝑛 − 4
vertices of 𝑁1(𝑥) ⧵ {𝑡}.

Let 𝑣1 be only adjacent to a single vertex 𝑡1 ∈𝑁1(𝑥) ⧵ {𝑡}. If 𝑣2 is also 
only adjacent to a single 𝑡1 ∈ 𝑁1(𝑥), then 𝑡𝑣1, 𝑡𝑣2 ∈ 𝐸(𝐺) or 𝑡𝑣𝑖, 𝑣1𝑣2 ∈
𝐸(𝐺) for some 𝑖 = 1, 2, since otherwise diam(𝐺) = 3. We deduce 𝐺 ≅𝐻75
if 𝑡𝑣1, 𝑡𝑣2 ∈ 𝐸(𝐺) and 𝑣1𝑣2 ∉ 𝐸(𝐺), or 𝐺 ≅𝐻73 if 𝑡 is only adjacent to 
one vertex of 𝑣1 or 𝑣2 and 𝑣1𝑣2 ∈ 𝐸(𝐺), or 𝐺 ≅ 𝐻74 if 𝑡𝑣1, 𝑡𝑣2, 𝑣1𝑣2 ∈
𝐸(𝐺). Similarly, if 𝑣2 is only adjacent to a single vertex 𝑡2 ∈𝑁1(𝑥) ⧵ {𝑡}, 
then 𝑡𝑣1, 𝑡𝑣2 ∈ 𝐸(𝐺) or 𝑡𝑣𝑖, 𝑣1𝑣2 ∈ 𝐸(𝐺) for some 𝑖 = 1, 2. We deduce 𝐺 ≅
𝐻76 if (𝑡𝑣1, 𝑡𝑣2 ∈ 𝐸(𝐺) and 𝑣1𝑣2 ∉ 𝐸(𝐺)) or (𝑡 is only adjacent to one 
vertex of 𝑣1 or 𝑣2 and 𝑣1𝑣2 ∈ 𝐸(𝐺)), or 𝐺 ≅𝐻77 if 𝑡𝑣1, 𝑡𝑣2, 𝑣1𝑣2 ∈ 𝐸(𝐺). 
If 𝑣2 is adjacent to (𝑛 − 5) vertices of 𝑁1(𝑥) ⧵ {𝑡, 𝑡1} or 𝑁1(𝑥) ⧵ {𝑡, 𝑡2}, 
then (𝑣2)(𝑡1, 𝑡2)(𝑣2, 𝑡3)(𝑡, 𝑡4)(𝑥, 𝑡5)𝜋 or (𝑣1)(𝑣2)(𝑡1, 𝑡3)(𝑡2, 𝑡4)(𝑡, 𝑡5)(𝑥, 𝑡6)𝜋 is a 
resolving (𝑛 − 4)-partition, respectively, a contradiction. Otherwise, 𝑣2
is adjacent to (𝑛 − 4) vertices 𝑁1(𝑥) ⧵ {𝑡}. In this case 𝑡 is adjacent to all 
vertices of 𝑁2, or it is adjacent to a single vertex of 𝑁2 and 𝑣1𝑣2 ∈𝐸(𝐺), 
since otherwise diam(𝐺) = 3. We deduce 𝐺 ≅𝐻55 if 𝑡𝑣1, 𝑡𝑣2 ∈ 𝐸(𝐺) and 
𝑣1𝑣2 ∉ 𝐸(𝐺), or 𝐺 ≅𝐻54 if 𝑡𝑣1, 𝑣1𝑣2 ∈ 𝐸(𝐺) and 𝑡𝑣2 ∉ 𝐸(𝐺), or 𝐺 ≅𝐻70
if 𝑡𝑣2, 𝑣1𝑣2 ∈ 𝐸(𝐺) and 𝑡𝑣1 ∉ 𝐸(𝐺), or 𝐺 ≅ 𝐻61 if 𝑡𝑣1, 𝑡𝑣2, 𝑣1𝑣2 ∈ 𝐸(𝐺)
(Fig. 24).

Now assume that 𝑣1 is adjacent to (𝑛 − 5) vertices of 𝑁1(𝑥) ⧵
{𝑡, 𝑡1}. If 𝑣2 is adjacent to (𝑛 − 5) vertices of 𝑁1(𝑥) ⧵ {𝑡, 𝑡2}, then 
(𝑣1)(𝑣2)(𝑡1, 𝑡3)(𝑡2, 𝑡4)(𝑡, 𝑡5)(𝑥, 𝑡6)𝜋 is a resolving (𝑛 − 4)-partition, a con-

tradiction. If 𝑣2 is adjacent to (𝑛 − 5) vertices of 𝑁1(𝑥) ⧵ {𝑡, 𝑡1} or 
it is adjacent to all (𝑛 − 4) vertices of 𝑁1(𝑥) ⧵ {𝑡}, then 𝑣1𝑣2 ∈
𝐸(𝐺), since otherwise we have a resolving (𝑛 − 4)-partition, namely 
(𝑣1)(𝑡1, 𝑡2)(𝑡, 𝑡3)(𝑣2, 𝑡4)(𝑥, 𝑡5)𝜋, a contradiction. Hence, (for 𝑣2 is adjacent 
to (𝑛 − 5) vertices of 𝑁1(𝑥) ⧵ {𝑡, 𝑡1}, we deduce 𝐺 ≅𝐻38 if 𝑡 is only ad-

jacent to one of 𝑣1 or 𝑣2, or 𝐺 ≅ 𝐻37 if 𝑡𝑣1, 𝑡𝑣2 ∈ 𝐸(𝐺)) and (for 𝑣2
is adjacent to (𝑛 − 4) vertices of 𝑁1(𝑥) ⧵ {𝑡}, we deduce 𝐺 ≅ 𝐻35 if 
𝑡𝑣1 ∈ 𝐸(𝐺) and 𝑡𝑣2 ∉ 𝐸(𝐺), or 𝐺 ≅ 𝐻30 if 𝑡𝑣2 ∈ 𝐸(𝐺) and 𝑡𝑣1 ∉ 𝐸(𝐺), 
or 𝐺 ≅𝐻28 if 𝑡𝑣1, 𝑡𝑣2 ∈ 𝐸(𝐺)). Otherwise, assume that both 𝑣1 and 𝑣2
are adjacent to (𝑛 − 4) vertices of 𝑁1(𝑥) ⧵ {𝑡}. Then 𝑡𝑣1, 𝑡𝑣2 ∈ 𝐸(𝐺) or 
(𝑡 is adjacent to one of 𝑣1, 𝑣2 ∈ 𝑁2(𝑥) and 𝑣1𝑣2 ∈ 𝐸(𝐺)), since other-

wise diam(𝐺) = 3. We deduce 𝐺 ≅𝐾𝑛 −𝐸(𝐾1,𝑛−4 ∪𝐾3) if 𝑡𝑣1, 𝑡𝑣2 ∈ 𝐸(𝐺)



E.T. Baskoro, D.O. Haryeni Heliyon 6 (2020) e03694

Fig. 24. Graph (a) 𝐻75 , (b) 𝐻73 , (c) 𝐻74 , (d) 𝐻76 , (e) 𝐻77 , (f) 𝐻55 , (g) 𝐻54 , (h) 𝐻70 and (i) 𝐻61 .

Fig. 25. Graph (a) 𝐻38 , (b) 𝐻37 , (c) 𝐻35 , (d) 𝐻30 , (e) 𝐻28 , (f) 𝐾𝑛 −𝐸(𝐾1,𝑛−4 ∪𝐾3), (g) 𝐻12 and (h) 𝐾𝑛 −𝐸(𝐾1,𝑛−4 ∪ 𝑃3).

Fig. 26. Graph (a) 𝐻65 , (b) 𝐻66 , (c) 𝐻51 , (d) 𝐻52 , (e) 𝐻58 , (f) 𝐻71 and (g) 𝐻62 .
and 𝑣1𝑣2 ∉ 𝐸(𝐺), or 𝐺 ≅ 𝐻12 if 𝑡𝑣1, 𝑣1𝑣2 ∈ 𝐸(𝐺) and 𝑡𝑣2 ∉ 𝐸(𝐺), or 
𝐺 ≅𝐾𝑛 −𝐸(𝐾1,𝑛−4 ∪ 𝑃3) if 𝑡𝑣1, 𝑡𝑣2, 𝑣1𝑣2 ∈𝐸(𝐺) (Fig. 25).

(D5) 𝑁1(𝑥) induces 𝐾𝑛−3 − 𝐸(𝐾1,𝑛−5). Let 𝑉 (𝑁1(𝑥)) = {𝑣, 𝑤, 𝑤𝑖 ∶ 1 ≤
𝑖 ≤ 𝑛 − 5} and 𝐸(𝑁1(𝑥)) = {𝑣𝑤, 𝑣𝑤𝑖, 𝑤𝑖𝑤𝑗 ∶ 1 ≤ 𝑖, 𝑗 ≤ 𝑛 − 5}. If there 
exist a vertex of 𝑁2(𝑥), namely 𝑣1, and 𝑤1, 𝑤2, 𝑤3, 𝑤4 ∈ 𝑁1(𝑥) such 
that 𝑣1𝑤1, 𝑣1𝑤2 ∈ 𝐸(𝐺) but 𝑣1𝑤3, 𝑣1𝑤4 ∉ 𝐸(𝐺), then (𝑥)(𝑣1)(𝑤)(𝑤1, 𝑤3)
(𝑤2, 𝑤4)(𝑣2, 𝑤5)(𝑣, 𝑤6)𝜋 is a resolving (𝑛 − 4)-partition, a contradiction. 
Therefore, any vertex of 𝑁2(𝑥) is either adjacent to at most one vertex 
of 𝑤𝑖 ∈𝑁1(𝑥) or it is adjacent to at least 𝑛 −6 vertices of 𝑤𝑖 ∈𝑁1(𝑥), for 
1 ≤ 𝑖 ≤ 𝑛 − 5.

(D5.1) 𝑣1 is not adjacent to any vertex 𝑤𝑖 ∈𝑁1(𝑥), 1 ≤ 𝑖 ≤ 𝑛 − 5, so 
that 𝑣1 is adjacent to a vertex 𝑣 ∈𝑁1(𝑥), since otherwise diam(𝐺) = 3. If 
𝑣2 is not adjacent to at least one vertex 𝑤1 ∈𝑁1(𝑥), then we have a re-

solving (𝑛 − 4)-partition, namely (𝑤)(𝑤1)(𝑣1, 𝑤2)(𝑣2, 𝑤3)(𝑣, 𝑤4)(𝑥, 𝑤5)𝜋, a 
contradiction. Therefore, 𝑣2 is adjacent to all vertices 𝑤𝑖 ∈𝑁1(𝑥) for all 
1 ≤ 𝑖 ≤ 𝑛 − 5. Furthermore, we have that 𝑣2𝑤 ∉ 𝐸(𝐺) and 𝑣2𝑣 ∈ 𝐸(𝐺), 
since otherwise (𝑤)(𝑣1, 𝑤1)(𝑣2, 𝑤2)(𝑣, 𝑤3)(𝑥, 𝑤4)𝜋 or (𝑣2)(𝑣1, 𝑤1)(𝑤, 𝑤2)
(𝑣, 𝑤3)(𝑥, 𝑤4)𝜋 is a resolving (𝑛 − 4)-partition, a contradiction. We de-

duce 𝐺 ≅ 𝐻65 if 𝑤𝑣1, 𝑣1𝑣2 ∉ 𝐸(𝐺), or 𝐺 ≅ 𝐻66 if 𝑤𝑣1 ∉ 𝐸(𝐺) and 
𝑣1𝑣2 ∈ 𝐸(𝐺), or 𝐺 ≅ 𝐻51 if 𝑤𝑣1 ∈ 𝐸(𝐺) and 𝑣1𝑣2 ∉ 𝐸(𝐺), or 𝐺 ≅ 𝐻52
if 𝑤𝑣1, 𝑣1𝑣2 ∈𝐸(𝐺), as depicted in Fig. 26 (a)-(d), respectively.

(D5.2) 𝑣1 is only adjacent to a single vertex 𝑤1 ∈ 𝑁1(𝑥) and 
𝑣1𝑤𝑖 ∉ 𝐸(𝐺) for all other remaining 𝑖 ≠ 1. If (𝑣2 is also only adja-

cent to a single vertex 𝑤1 ∈ 𝑁1(𝑥) and 𝑣2𝑤𝑗 ∉ 𝐸(𝐺) for all 𝑗 ≠ 1) or 
(𝑣2 is only adjacent to a single vertex 𝑤2 ∈ 𝑁1(𝑥) and 𝑣2𝑤𝑗 ∉ 𝐸(𝐺)
for all 𝑗 ≠ 2), then we have a resolving (𝑛 − 4)-partition, namely 
(𝑤)(𝑣1, 𝑤1)(𝑣2, 𝑤2)(𝑣, 𝑤3)(𝑥, 𝑤4)𝜋, a contradiction. If 𝑣2 is only not ad-

jacent to a single vertex 𝑤1 ∈ 𝑁1(𝑥) and 𝑣2𝑤𝑗 ∈ 𝐸(𝐺) for all 𝑗 ≠

1 (or 𝑣2 is only not adjacent to a single vertex 𝑤2 ∈ 𝑁1(𝑥) and 
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𝑣2𝑤𝑗 ∈𝐸(𝐺) for all 𝑗 ≠ 2), then (𝑤)(𝑤1)(𝑣1, 𝑤2)(𝑣2, 𝑤3)(𝑣, 𝑤4)(𝑥, 𝑤5)𝜋 (or 
(𝑤)(𝑤2)(𝑣1, 𝑤1)(𝑣2, 𝑤3)(𝑣, 𝑤4)(𝑥, 𝑤5)𝜋) is a resolving (𝑛 − 4)-partition, a 
contradiction. Therefore, 𝑣2 is adjacent to all vertices 𝑤𝑖 ∈ 𝑁1(𝑥) for 
all 1 ≤ 𝑖 ≤ 𝑛 − 5. In this case, 𝑣2𝑤, 𝑣1𝑣2 ∉ 𝐸(𝐺) and 𝑣2𝑣 ∈ 𝐸(𝐺), since 
otherwise (𝑤)(𝑣1, 𝑤1)(𝑣2, 𝑤2)(𝑣, 𝑤3)(𝑥, 𝑤4)𝜋, or (𝑣2)(𝑣1, 𝑤1)(𝑤, 𝑤2)(𝑣, 𝑤3)
(𝑥, 𝑤4)𝜋, or (𝑣1)(𝑤)(𝑤1, 𝑤2)(𝑣2, 𝑤3)(𝑣, 𝑤4)(𝑥, 𝑤5)𝜋 is a resolving (𝑛 − 4)-
partition, a contradiction. This implies that 𝑣1 is adjacent to at least one 
of the vertex 𝑤 or 𝑣, since otherwise diam(𝐺) = 3. We deduce 𝐺 ≅𝐻58 if 
𝑣1𝑤 ∈ 𝐸(𝐺) and 𝑣1𝑣 ∉ 𝐸(𝐺), or 𝐺 ≅𝐻71 if 𝑣1𝑣 ∈ 𝐸(𝐺) and 𝑣1𝑤 ∉ 𝐸(𝐺), 
or 𝐺 ≅𝐻62 if 𝑣1𝑣, 𝑣1𝑤 ∈𝐸(𝐺).

(D5.3) 𝑣1 is only not adjacent to a single vertex 𝑤1 ∈ 𝑁1(𝑥) and 
𝑣1𝑤𝑖 ∈ 𝐸(𝐺) for all other 𝑖 ≠ 1. If (𝑣2 is only not adjacent to a 
single vertex 𝑤1 ∈ 𝑁1(𝑥) and 𝑣2𝑤𝑗 ∈ 𝐸(𝐺) for all 𝑗 ≠ 1) or (𝑣2 is 
only not adjacent to a single vertex 𝑤2 ∈ 𝑁1(𝑥) and 𝑣2𝑤𝑗 ∈ 𝐸(𝐺)
for all 𝑗 ≠ 2), then we have a resolving (𝑛 − 4)-partition, namely 
(𝑤)(𝑤1)(𝑣1, 𝑤2)(𝑣2, 𝑤3)(𝑣, 𝑤4)(𝑥, 𝑤5)𝜋 or (𝑤)(𝑤1)(𝑤2)(𝑣1, 𝑤3)(𝑣2, 𝑤4)
(𝑣, 𝑤5)(𝑥, 𝑤6)𝜋, respectively, a contradiction. Therefore, 𝑣2 is adjacent 
to all vertices 𝑤𝑖 ∈𝑁1(𝑥) for all 1 ≤ 𝑖 ≤ 𝑛 − 5. In this case, 𝑣2𝑤 ∉ 𝐸(𝐺)
and 𝑣1𝑣, 𝑣2𝑣, 𝑣1𝑣2 ∈ 𝐸(𝐺), since otherwise (𝑤)(𝑤1)(𝑣1, 𝑤2)(𝑣2, 𝑤3)(𝑣, 𝑤4)
(𝑥, 𝑤5)𝜋, or (𝑣1)(𝑤1, 𝑤2)(𝑤, 𝑣2)(𝑣, 𝑤3)(𝑥, 𝑤4)𝜋, or (𝑣1)(𝑣2)(𝑤1, 𝑤2)(𝑣, 𝑤3)
(𝑤, 𝑤4)(𝑥, 𝑤5)𝜋, or (𝑤)(𝑣1)(𝑤1, 𝑤2)(𝑣2, 𝑤3)(𝑣, 𝑤4)(𝑥, 𝑤5)𝜋 is a resolving 
(𝑛 − 4)-partition, a contradiction. We deduce 𝐺 ≅ 𝐻31 if 𝑣1𝑤 ∉ 𝐸(𝐺)
or 𝐺 ≅𝐻26 if 𝑣1𝑤 ∈ 𝐸(𝐺), as depicted in Fig. 27 (a)-(b), respectively. 
For the remaining case, assume that both 𝑣1 and 𝑣2 are adjacent to all 
vertices 𝑤𝑖 ∈ 𝑁1(𝑥) for all 1 ≤ 𝑖 ≤ 𝑛 − 5. Then, other vertex 𝑤 ∈ 𝑁1(𝑥)
is adjacent to at most one vertex of 𝑣1, 𝑣2 ∈ 𝑁2(𝑥), since otherwise 
(𝑤)(𝑣1, 𝑤1)(𝑣2, 𝑤2)(𝑣, 𝑤3)(𝑥, 𝑤4)𝜋 is a resolving (𝑛 − 4)-partition, a con-

tradiction. If 𝑤 is not adjacent to any vertex 𝑣1, 𝑣2 ∈ 𝑁2(𝑥), then 𝑣
is adjacent to both 𝑣1 and 𝑣2, since otherwise diam(𝐺) = 3. In this 
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Fig. 27. Graph (a) 𝐻31 , (b) 𝐻26 , (c) 𝐻14 , (d) 𝐻11 , (e) 𝐻37 , (f) 𝐻28 , (g) 𝐻15 , (h) 𝐻27 and (i) 𝐻6 .

Fig. 28. Graph (a) 𝐻64 , (b) 𝐻56 , (c) 𝐻72 , (d) 𝐻63 , (e) 𝐻55 , (f) 𝐻54 , (g) 𝐻70 , (h) 𝐻61 , (i) 𝐻35 , (j) 𝐻30 , (k) 𝐻28 , (l) 𝐻21 , (m) 𝐻23 and (n) 𝐻18 .
case we deduce 𝐺 ≅𝐻14 if 𝑣1𝑣2 ∉ 𝐸(𝐺) or 𝐺 ≅𝐻11 if 𝑣1𝑣2 ∈ 𝐸(𝐺), as 
depicted in Fig. 27 (c)-(d), respectively. Now assume that 𝑤 is only ad-

jacent to one vertex of 𝑁2(𝑥), namely 𝑣1𝑤 ∈ 𝐸(𝐺) and 𝑣2𝑤 ∉ 𝐸(𝐺). 
Then, 𝑣1𝑣2 ∈ 𝐸(𝐺) or 𝑣𝑣2 ∈ 𝐸(𝐺), since otherwise diam(𝐺) = 3 and 
𝑣1 is adjacent to at least one of the vertex 𝑣 or 𝑣2, since otherwise 
(𝑣1)(𝑣2, 𝑤1)(𝑣, 𝑤2)(𝑤, 𝑤3)(𝑥, 𝑤4)𝜋 is a resolving (𝑛 − 4)-partition, a con-

tradiction. We deduce 𝐺 ≅𝐻37 if 𝑣1𝑣2 ∈ 𝐸(𝐺) and 𝑣1𝑣, 𝑣2𝑣 ∉ 𝐸(𝐺), or 
𝐺 ≅𝐻28 if 𝑣1𝑣2, 𝑣𝑣2 ∈𝐸(𝐺) and 𝑣𝑣1 ∉𝐸(𝐺), or 𝐺 ≅𝐻15 if 𝑣𝑣1, 𝑣𝑣2 ∈𝐸(𝐺)
and 𝑣1𝑣2 ∉ 𝐸(𝐺), or 𝐺 ≅ 𝐻27 if 𝑣1𝑣2, 𝑣𝑣1 ∈ 𝐸(𝐺) and 𝑣𝑣2 ∉ 𝐸(𝐺), or 
𝐺 ≅ 𝐻6 if 𝑣1𝑣2, 𝑣𝑣1, 𝑣𝑣2 ∈ 𝐸(𝐺), as depicted in Fig. 27 (e)-(i), respec-

tively.

(D6) 𝑁1(𝑥) induces 𝐾𝑛−3 − 𝑒. Let 𝑒 = 𝑎𝑏 and other vertices of 
𝑁1(𝑥) by 𝑡𝑖 where 1 ≤ 𝑖 ≤ 𝑛 − 5. If there exists a vertex of 𝑁2(𝑥), 
namely 𝑣1, such that 𝑣1𝑡1, 𝑣1𝑡2 ∈ 𝐸(𝐺) and 𝑣1𝑡3, 𝑣1𝑡4 ∉ 𝐸(𝐺), then 
(𝑥)(𝑣1)(𝑎)(𝑡1, 𝑡3)(𝑡2, 𝑡4)(𝑏, 𝑡5)(𝑣2, 𝑡6)𝜋 is a resolving (𝑛 − 4)-partition, a con-

tradiction. Therefore any vertex of 𝑁2(𝑥) is adjacent to at most one 
vertex of 𝑁1(𝑥) ⧵ {𝑎, 𝑏} or it is adjacent to at least 𝑛 − 6 vertices of 
𝑁1(𝑥) ⧵ {𝑎, 𝑏}.

(D6.1) 𝑣1 is not adjacent to any vertex of 𝑁1(𝑥) ⧵ {𝑎, 𝑏}. If 𝑣2 is also 
not adjacent to any vertex of 𝑁1(𝑥) ⧵ {𝑎, 𝑏}, then (𝑣1 and 𝑣2 are adja-

cent to different vertex of 𝑎 and 𝑏, and 𝑣1𝑣2 ∈ 𝐸(𝐺)), or (one of the 
vertex of 𝑁1(𝑥) is adjacent to both 𝑎, 𝑏 ∈ 𝑁1(𝑥), one other vertex of 
𝑁1(𝑥) is at least adjacent to one vertex 𝑎, 𝑏 ∈𝑁1(𝑥) and 𝑣1𝑣2 ∈𝐸(𝐺)), or 
(all vertices of 𝑁1(𝑥) are adjacent to both 𝑎, 𝑏 ∈𝑁1(𝑥)), since otherwise 
diam(𝐺) = 3. We deduce 𝐺 as depicted in Fig. 28 (a)-(d). If 𝑣2 is adjacent 
to a single vertex 𝑡1 ∈ 𝑁1(𝑥) ⧵ {𝑎, 𝑏} and 𝑣2𝑡𝑖 ∉ 𝐸(𝐺) for all remaining 
𝑖 ≠ 1, then at least one end vertex of 𝑒 is not adjacent to 𝑣2 since other-

wise (𝑣2)(𝑡1, 𝑡2)(𝑎, 𝑡3)(𝑏, 𝑡4)(𝑥, 𝑣1)𝜋 is a resolving (𝑛 −4)-partition, a contra-

diction. Hence we obtain 𝐺 as depicted in Fig. 28 (e)-(h). Now suppose 
that 𝑣2 is only not adjacent to a single vertex 𝑡1 ∈𝑁1(𝑥) and 𝑣2𝑡𝑖 ∈𝐸(𝐺)
for all 𝑖 ≠ 1. However, we obtain that (𝑣1)(𝑣2)(𝑡1, 𝑡2)(𝑎, 𝑡3)(𝑏, 𝑡4)(𝑥, 𝑡5)𝜋 or 
(𝑣2)(𝑡1, 𝑡2)(𝑎, 𝑡3)(𝑏, 𝑡4)(𝑥, 𝑣1)𝜋 is a resolving (𝑛 − 4)-partition, a contradic-

tion. Otherwise, assume that 𝑣2 is adjacent to all vertices 𝑡𝑖 ∈𝑁1(𝑥) for 
all 1 ≤ 𝑖 ≤ 𝑛 − 5. Then 𝑣2 is adjacent to at least one end vertex of 𝑒
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or 𝑣1𝑣2 ∉ 𝐸(𝐺), since otherwise (𝑣2)(𝑎, 𝑡1)(𝑏, 𝑣1, 𝑡2)(𝑥, 𝑡3)𝜋 is a resolving 
(𝑛 − 4)-partition, a contradiction. We deduce 𝐺 as depicted in Fig. 28

(i)-(n).

(D6.2) 𝑣1 is adjacent to a single vertex 𝑡1 ∈ 𝑁1(𝑥) and 𝑣1𝑡𝑖 ∉ 𝐸(𝐺)
for all 𝑖 ≠ 1. If 𝑣2 is also adjacent to a single vertex 𝑡1 ∈ 𝑁1(𝑥) and 
𝑣2𝑡𝑖 ∉ 𝐸(𝐺) for all 𝑖 ≠ 1, then 𝑣1 (or similarly 𝑣2) is not adjacent to at 
least one end vertex of 𝑒, since otherwise (𝑣1)(𝑥, 𝑡1)(𝑣2, 𝑡2)(𝑎, 𝑡3)(𝑏, 𝑡4)𝜋 (or 
(𝑣2)(𝑥, 𝑡1)(𝑣1, 𝑡2)(𝑎, 𝑡3)(𝑏, 𝑡4)𝜋) is a resolving (𝑛 − 4)-partition, a contradic-

tion. We deduce 𝐺 ≅𝐾1 + (𝐾𝑛−3 − 𝑒 ∪2𝐾1) if both 𝑣1 and 𝑣2 are not adja-

cent to any end vertex of 𝑒 and 𝑣1𝑣2 ∉𝐸(𝐺), or 𝐺 ≅𝐾1 +(𝐾𝑛−3 −𝑒 ∪𝐾2) if 
both 𝑣1 and 𝑣2 are not adjacent to any end vertex of 𝑒 and 𝑣1𝑣2 ∈𝐸(𝐺), 
or 𝐺 ≅𝐻65 if one of 𝑣1 or 𝑣2 is only adjacent to one end vertex of 𝑒
and 𝑣1𝑣2 ∉ 𝐸(𝐺), or 𝐺 ≅𝐻51 if one of 𝑣1 or 𝑣2 is only adjacent to one 
end vertex of 𝑒 and 𝑣1𝑣2 ∈ 𝐸(𝐺), or 𝐺 ≅𝐻69 if one of end vertex 𝑒 is 
adjacent to both 𝑣1 and 𝑣2, and 𝑣1𝑣2 ∉ 𝐸(𝐺), or 𝐺 ≅𝐻60 if one of end 
vertex 𝑒 is adjacent to both 𝑣1 and 𝑣2, and 𝑣1𝑣2 ∈ 𝐸(𝐺), or 𝐺 ≅𝐻66 if 
each 𝑣1 and 𝑣2 are adjacent to different end vertex of 𝑒 and 𝑣1𝑣2 ∉𝐸(𝐺), 
or 𝐺 ≅𝐻52 if each 𝑣1 and 𝑣2 are adjacent to different end vertex 𝑒 and 
𝑣1𝑣2 ∈ 𝐸(𝐺). If 𝑣2 is only adjacent to a single vertex 𝑡2 ∈ 𝑁1(𝑥) and 
𝑣2𝑡𝑖 ∉ 𝐸(𝐺) for all 𝑖 ≠ 2, then both 𝑣1 and 𝑣2 are adjacent at most to 
a single vertex 𝑎 or 𝑏, since otherwise (𝑣1)(𝑣2)(𝑡1, 𝑡3)(𝑡2, 𝑡4)(𝑎, 𝑡5)(𝑏, 𝑡6)𝜋
is a resolving (𝑛 − 4)-partition, a contradiction. Furthermore, if both 𝑣1
and 𝑣2 are not adjacent to a vertex 𝑎 (or similarly to a vertex 𝑏), then 
𝑣1𝑣2 ∈ 𝐸(𝐺) since otherwise diam(𝐺) = 3. We deduce 𝐺 ≅𝐻57 if both 
𝑣1 and 𝑣2 are not adjacent to any end vertex of 𝑒 and 𝑣1𝑣2 ∈ 𝐸(𝐺), or 
𝐺 ≅𝐻58 if only one of 𝑣1 or 𝑣2 is adjacent to an end vertex of 𝑒 and 
𝑣1𝑣2 ∈ 𝐸(𝐺), or 𝐺 ≅𝐻68 if both 𝑣1 and 𝑣2 are adjacent to a single end 
vertex of 𝑒 and 𝑣1𝑣2 ∉ 𝐸(𝐺), or 𝐺 ≅𝐻59 if both 𝑣1 and 𝑣2 are adjacent 
to one end vertex of 𝑒 and 𝑣1𝑣2 ∈𝐸(𝐺) (Fig. 29).

Now suppose that (𝑣2 is only not adjacent to a vertex 𝑡1 ∈ 𝑁1(𝑥)
and 𝑣2𝑡𝑖 ∈ 𝐸(𝐺) for all other 𝑖 ≠ 1) or (𝑣2 is only not adjacent to 
a vertex 𝑡2 ∈ 𝑁1(𝑥) and 𝑣2𝑡𝑖 ∈ 𝐸(𝐺) for all other 𝑖 ≠ 2). However, 
(𝑎)(𝑣2)(𝑡1, 𝑡2)(𝑣1, 𝑡3)(𝑏, 𝑡4)(𝑥, 𝑡5)𝜋 is a resolving (𝑛 − 4)-partition, a contra-

diction. Otherwise, assume that 𝑣2 is adjacent to all vertices 𝑡𝑖 ∈𝑁1(𝑥)
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Fig. 29. Graph (a) 𝐾1 + (𝐾𝑛−3 − 𝑒 ∪ 2𝐾1), (b) 𝐾1 + (𝐾𝑛−3 − 𝑒 ∪𝐾2), (c) 𝐻65 , (d) 𝐻51 , (e) 𝐻69 , (f) 𝐻60 , (g) 𝐻66 , (h) 𝐻52 , (i) 𝐻57 , (j) 𝐻58 , (k) 𝐻68 and (l) 𝐻59 .

Fig. 30. Graph (a) 𝐻25 , (b) 𝐻31 , (c) 𝐻31 , (d) 𝐻24 , (e) 𝐻22 , (f) 𝐻22 , (g) 𝐻26 and (h) 𝐻17 .
for all 1 ≤ 𝑖 ≤ 𝑛 − 5. In this case, 𝑣1 is adjacent to at most one end ver-

tex of 𝑒 and 𝑣2 is adjacent to at least one end vertex of 𝑒, and also (if an 
end vertex of 𝑒 is adjacent to both 𝑣1 and 𝑣2, then other end vertex of 
𝑒 is also adjacent to 𝑣2), since otherwise (𝑣1)(𝑣2)(𝑡1, 𝑡2)(𝑎, 𝑡3)(𝑏, 𝑡4)(𝑥, 𝑡5)𝜋
is a resolving (𝑛 − 4)-partition, a contradiction. We deduce 𝐺 ≅𝐻25 if 
𝑣1 is not adjacent to any end vertex of 𝑒, 𝑣2 is only adjacent to one end 
vertex 𝑒 and 𝑣1𝑣2 ∉ 𝐸(𝐺), or 𝐺 ≅𝐻31 if (𝑣1 is not adjacent to any end 
vertex of 𝑒, 𝑣2 is only adjacent to one end vertex 𝑒 and 𝑣1𝑣2 ∈ 𝐸(𝐺)) or 
(𝑣1 and 𝑣2 are adjacent to different end vertex of 𝑒 and 𝑣1𝑣2 ∉ 𝐸(𝐺)), 
or 𝐺 ≅𝐻24 if 𝑣1 is not adjacent to any end vertex of 𝑒, 𝑣2 is adjacent to 
end vertices of 𝑒 and 𝑣1𝑣2 ∉ 𝐸(𝐺), or 𝐺 ≅𝐻22 if (𝑣1 is not adjacent to 
any end vertex of 𝑒, 𝑣2 is adjacent to end vertices of 𝑒 and 𝑣1𝑣2 ∈𝐸(𝐺)) 
or (𝑣1 is adjacent to one end vertex of 𝑒, 𝑣2 is adjacent to end vertices 
of 𝑒, and 𝑣1𝑣2 ∉𝐸(𝐺)), or 𝐺 ≅𝐻26 if each 𝑣1 and 𝑣2 are adjacent to dis-

tinct end vertex of 𝑒 and 𝑣1𝑣2 ∈ 𝐸(𝐺), or 𝐺 ≅𝐻17 if 𝑣1 is adjacent to 
one end vertex of 𝑒, 𝑣2 is adjacent to end vertices of 𝑒, and 𝑣1𝑣2 ∈𝐸(𝐺)
(Fig. 30).

(D6.3) 𝑣1 is only not adjacent to a single vertex 𝑡1 ∈ 𝑁1(𝑥) and 
𝑣1𝑡𝑖 ∈ 𝐸(𝐺) for all remaining 𝑖 ≠ 1. If 𝑣2 is also only not adjacent 
to a single vertex 𝑡1 ∈ 𝑁1(𝑥) and 𝑣2𝑡𝑖 ∈ 𝐸(𝐺) for all remaining 𝑖 ≠
1, then 𝑣1𝑣2 ∈ 𝐸(𝐺) and end vertices of 𝑒 are adjacent to both 𝑣1
and 𝑣2, since otherwise we have a resolving (𝑛 − 4)-partition, namely 
(𝑣1)(𝑎)(𝑡1, 𝑡2)(𝑣2, 𝑡3)(𝑏, 𝑡4)(𝑥, 𝑡5)𝜋 or (𝑣1)(𝑣2)(𝑡1, 𝑡2)(𝑎, 𝑡3)(𝑏, 𝑡4)(𝑥, 𝑡5), a con-

tradiction. Hence we deduce 𝐺 ≅ 𝐾𝑛 − 𝐸(𝐶4 ∪ 𝐾2). If 𝑣2 is also only 
not adjacent to a single vertex 𝑡2 ∈ 𝑁1(𝑥) and 𝑣2𝑡𝑖 ∈ 𝐸(𝐺) for all re-

maining 𝑖 ≠ 2, then (𝑣1)(𝑣2)(𝑎)(𝑡1, 𝑡3)(𝑡2, 𝑡4)(𝑏, 𝑡5)(𝑥, 𝑡6)𝜋 is a resolving 
(𝑛 − 4)-partition, a contradiction. Otherwise, assume that 𝑣2 is adja-

cent to all vertices 𝑡𝑖 ∈𝑁1(𝑥) ⧵ {𝑎, 𝑏} for all 1 ≤ 𝑖 ≤ 𝑛 − 5. In this case, 
𝑣1𝑣2 ∈ 𝐸(𝐺), 𝑣1 is adjacent to at least one of 𝑎 or 𝑏, and 𝑣2 is ad-

jacent to both 𝑎 and 𝑏, since otherwise (𝑣1)(𝑎)(𝑡1, 𝑡2)(𝑣2, 𝑡3)(𝑏, 𝑡4)(𝑥, 𝑡5)𝜋
or (𝑣1)(𝑡1, 𝑡2)(𝑎, 𝑡3)(𝑏, 𝑡4)(𝑥, 𝑡5)𝜋 is a resolving (𝑛 − 4)-partition, a contra-

diction. We deduce 𝐺 ≅ 𝐻19 if 𝑣1 is only adjacent to one end vertex 
of 𝑒, or 𝐺 ≅ 𝐾𝑛 − 𝐸(𝐾2 ∪ 𝑃4) if 𝑣2 is adjacent to end vertices of 𝑒. 
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Now let both 𝑣1 and 𝑣2 be adjacent to all vertices 𝑡𝑖 ∈ 𝑁1(𝑥) for all 
1 ≤ 𝑖 ≤ 𝑛 − 5. Then 𝑣1𝑣2 ∈ 𝐸(𝐺) or any vertex of 𝑁2(𝑥) is adjacent to at 
least one end vertex of 𝑒, since otherwise (𝑣1)(𝑣2, 𝑡1)(𝑎, 𝑡2)(𝑏, 𝑡3)(𝑥, 𝑡4)𝜋 or 
(𝑣2)(𝑣1, 𝑡1)(𝑎, 𝑡2)(𝑏, 𝑡3)(𝑥, 𝑡4)𝜋 is a resolving (𝑛 − 4)-partition, a contradic-

tion. If 𝑣1𝑣2 ∉ 𝐸(𝐺), then we deduce 𝐺 as depicted in Fig. 31 (d)-(g). 
Otherwise, we deduce 𝐺 as depicted in Fig. 31 (h)-(n).

(E) |𝑁1(𝑥)| = 1 and |𝑁2(𝑥)| = 𝑛 − 2. Let 𝑁1(𝑥) = {𝑢} and so that 𝑢 is 
adjacent to all vertices of 𝑁2(𝑥), since otherwise diam(𝐺) ≥ 3. If 𝑁2(𝑥)
induces 𝐾𝑛−2 or 𝐾𝑛−2, then 𝐺 ≅𝐾1 + (𝐾1 ∪𝐾𝑛−2) or 𝐺 ≅𝐾1,𝑛−1, respec-

tively. However for these two different graphs 𝐺, 𝑝𝑑(𝐺) = 𝑛 − 1 by [1], 
a contradiction. Otherwise, there exists a vertex 𝑧 ∈ 𝑁2(𝑥) such that 
2 ≤ |𝑁1(𝑧)| ≤ 𝑛 − 3. By a similar reason with the previous case with 
𝑧 as a peripheral vertex, then min{|𝑁1(𝑧)|, |𝑁2(𝑧)|} ≤ 3, since other-

wise there exists a resolving (𝑛 − 4)-partition. Therefore, we obtain that 
|𝑁1(𝑧)|, |𝑁2(𝑧)| ∈ {2, 3, 𝑛 − 3, 𝑛 − 4} and we are again in one of the Case 
(A), (B), (C) or (D).

(F) |𝑁1(𝑥)| = 𝑛 − 2 and |𝑁2(𝑥)| = 1. Let 𝑁2(𝑥) = {𝑣}. Then, 𝑥 is adja-

cent to all vertices of 𝑁1(𝑥) and 𝑣 is adjacent to at least one vertex of 
𝑁1(𝑥). If 1 ≤ |𝑁1(𝑣)| ≤ 𝑛 − 3, then |𝑁1(𝑣)| ∈ {1, 2, 3, 𝑛 − 3, 𝑛 − 4} and we 
are again in one of the Cases (A), (B), (C), (D) or (E) with 𝑣 as a pe-

ripheral vertex. Now we assume that |𝑁1(𝑣)| = 𝑛 − 2 or in other words 
𝑣 is adjacent to all vertices of 𝑁1(𝑥). Consider the vertices in 𝑁1(𝑥). If 
any two different vertices in 𝑁1(𝑥) are adjacent, then 𝐺 ≅ 𝐾𝑛 − 𝑒 but 
𝑝𝑑(𝐾𝑛 − 𝑒) = 𝑛 − 1 [1]. If there exists a vertex 𝑧 ∈𝑁1(𝑥) such that 𝑧 is 
not adjacent to at least two vertices 𝑁1(𝑥), then |𝑁1(𝑧)| ≤ 𝑛 − 3 and we 
back in one of Cases (A), (B), (C) or (D) with 𝑧 as a peripheral ver-

tex. Otherwise we assume that 𝑁1(𝑥) form a matching 𝑀 . If 𝑀 = 1, 
then 𝐺 ≅𝐾𝑛 −𝐸(2𝐾2) but 𝑝𝑑(𝐾𝑛 −𝐸(2𝐾2)) = 𝑛 −2 by [2]. If 𝑀 = 2, then 
𝐺 ≅ 𝐾𝑛 − 𝐸(3𝐾2). If 𝑀 ≥ 3, then there exist 𝑎, 𝑎1, 𝑎2, 𝑏, 𝑏1, 𝑏2, 𝑐, 𝑐1, 𝑐2 ∈
𝑁1(𝑥) such that 𝑎𝑎1, 𝑏𝑏1, 𝑐𝑐1 ∈ 𝐸(𝐺) but 𝑎𝑎2, 𝑏𝑏2, 𝑐𝑐2 ∉ 𝐸(𝐺). However, 
(𝑥)(𝑎)(𝑏)(𝑐)(𝑎1, 𝑎2)(𝑏1, 𝑏2)(𝑐1, 𝑐2)(𝑣, 𝑡)𝜋 is a resolving (𝑛 −4)-partition, for a 
vertex 𝑡 ∈𝑁1(𝑥) ⧵ {𝑎, 𝑎1, 𝑎2, 𝑏, 𝑏1, 𝑏2, 𝑐, 𝑐1, 𝑐2}, a contradiction. □
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Fig. 31. Graph (a) 𝐾𝑛 −𝐸(𝐾2 ∪𝐶4), (b) 𝐻19 , (c) 𝐾𝑛 −𝐸(𝐾2 ∪ 𝑃4), (d) 𝐻36 , (e) 𝐻32 , (f) 𝐻20 , (g) 𝐾𝑛 −𝐸(𝐾2 ∪𝐾3), (h) 𝐻41 , (i) 𝐻32 , (j) 𝐻20 , (k) 𝐾𝑛 −𝐸(𝐶5), (l) 𝐻42 , (m) 
𝐾𝑛 −𝐸(𝑃5) and (n) 𝐾𝑛 −𝐸(𝐾2 ∪ 𝑃3).
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Appendix A

Graphs of order 𝑛 obtained from 𝐾𝑛−1 − 𝑒 by adding one new vertex 
adjacent to:

𝐻1: three vertices, exactly two vertices with maximum degree;

𝐻2: three vertices, two of them are the end points of 𝑒;
𝐻3: 𝑛 − 4 vertices, exactly one vertex is the end point of 𝑒;
𝐻4: two vertices with maximum degree;

Graphs of order 𝑛 obtained from 𝐾𝑛−1 − 𝐸(𝑃3) by adding one new 
vertex adjacent to:

𝐻5: three vertices, two are the end points of 𝑃3 and one with maxi-

mum degree;

𝐻6: three vertices with different degrees;

𝐻7: one vertex with maximum degree;

𝐻8: two vertices, one with maximum degree and one is the end point 
of 𝑃3;

𝐻9: 𝑛 − 4 vertices, one with minimum degree and 𝑛 − 5 vertices with 
maximum degree;
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𝐻10: 𝑛 − 4 vertices, one is the end point of 𝑃3 and 𝑛 − 5 vertices with 
maximum degree;

𝐻11: two vertices, one with minimum degree and one with maximum 
degree;

𝐻12: two vertices of 𝑃3 with different degrees;

Graphs of order 𝑛 obtained from 𝐾𝑛−1 − 𝐸(𝐾3) by adding one new 
vertex adjacent to:

𝐻13: one vertex with maximum degree;

𝐻14: two vertices with different degrees;

𝐻15: three vertices, exactly two with minimum degree;

𝐻16: 𝑛 − 4 vertices, exactly one with minimum degree;

Graphs of order 𝑛 obtained from 𝐾𝑛−1 −𝐸(2𝐾2) by adding one new 
vertex adjacent to:

𝐻17: three vertices, two are the end points of different edges of 𝐸(2𝐾2)
and one with maximum degree;

𝐻18: three end points of 𝐸(2𝐾2);
𝐻19: 𝑛 − 4 vertices, two are the end points of different edges of 𝐸(2𝐾2)

and 𝑛 − 6 vertices with maximum degree;

𝐻20: 𝑛 − 4 vertices, exactly one with minimum degree;

𝐻21: two end points of different edges of 𝐸(2𝐾2);
𝐻22: two vertices with different degrees;

𝐻23: two non-adjacent vertices;

𝐻24: one vertex with maximum degree;

Graphs of order 𝑛 obtained from 𝐾𝑛−1 − 𝐸(𝑃4) by adding one new 
vertex adjacent to:

𝐻25: one vertex with maximum degree;

𝐻26: three vertices, one with maximum degree and two are internal 
vertices of 𝑃4;

𝐻27: three vertices of 𝑃4, two are the end points of 𝑃4;
𝐻28: three vertices of 𝑃4, two are the internal vertices of 𝑃4;
𝐻29: two end points of 𝑃4;
𝐻30: two vertices of 𝑃4 with different degrees;

𝐻31: two vertices, one with minimum degree and one with maximum 
degree;

𝐻32: 𝑛 −4 vertices, one with minimum degree and 𝑛 −5 with maximum 
degree;

𝐻33: 𝑛 −4 vertices, two are the end points of 𝑃4 and 𝑛 −6 with maximum 
degree;

𝐻34: 𝑛 − 4 vertices, one is the end point of 𝑃4 and 𝑛 − 5 with maximum 
degree;

𝐻35: two internal vertices of 𝑃4;
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𝐻36: 𝑛 − 4 vertices, one is the end point of 𝑃4 and 𝑛 − 5 with maximum 
degree;

Graphs of order 𝑛 obtained from 𝐾𝑛−1 − 𝐸(𝐶4) by adding one new 
vertex adjacent to:

𝐻37: three vertices with minimum degree;

𝐻38: two vertices with minimum degrees;

𝐻39: one vertex with maximum degree;

𝐻40: 𝑛 −4 vertices, one with minimum degree and 𝑛 −5 with maximum 
degree;

Graphs of order 𝑛 obtained from 𝐾𝑛−1 − 𝐸(𝐾1,3 + 𝑒) by adding one 
new vertex adjacent to:

𝐻41: 𝑛 −4 vertices, one with minimum degree and 𝑛 −5 with maximum 
degree;

Graphs of order 𝑛 obtained from 𝐾𝑛−1 −𝐸(𝐾1,3) by adding one new 
vertex adjacent to:

𝐻42: 𝑛 −3 vertices, 𝑛 −5 with maximum degree, and two with different 
degrees;

Graphs of order 𝑛 obtained from 𝐾𝑛−2 by connecting two new ver-

tices 𝑥 and 𝑦 with:

𝐻43: exactly two vertices 𝑎 and 𝑏 in 𝐾𝑛−2 such that (𝑎, 𝑥), (𝑎, 𝑦), (𝑏, 𝑥) are 
new edges;

𝐻44: exactly two vertices 𝑎 and 𝑏 in 𝐾𝑛−2 such that (𝑎, 𝑥), (𝑎, 𝑦), (𝑏, 𝑥),
(𝑏, 𝑦) are new edges;

𝐻45: exactly three vertices 𝑎, 𝑏 and 𝑐 in 𝐾𝑛−2 such that (𝑎, 𝑥), (𝑎, 𝑦), (𝑏, 𝑥),
(𝑐, 𝑦) are new edges;

𝐻46: exactly three vertices 𝑎, 𝑏 and 𝑐 in 𝐾𝑛−2 such that (𝑎, 𝑥), (𝑏, 𝑥), (𝑐, 𝑦),
(𝑥, 𝑦) are new edges;

𝐻47: 𝐻43 by adding new edge (𝑥, 𝑦);
𝐻48: 𝐻44 by adding new edge (𝑥, 𝑦);
𝐻49: 𝐻45 by adding new edge (𝑥, 𝑦);

Graphs of order 𝑛 obtained from 𝐾𝑛−2:

𝐻50: (𝐾2 +𝐾𝑛−2) − 𝑒, where 𝑒 is an edge connecting a vertex of 𝐾2 and 
𝐾𝑛−2;

Graphs of order 𝑛 obtained from 𝐾𝑛−2−𝑒 by connecting a path 𝑃2 ∶=
(𝑥, 𝑦) with:

𝐻51: three new edges (𝑎, 𝑥), (𝑐, 𝑥), (𝑐, 𝑦), where 𝑎 is one of the end-points 
of 𝑒 and 𝑐 is a vertex of 𝐾𝑛−2 with maximum degree;

𝐻52: four new edges (𝑎, 𝑥), (𝑏, 𝑦), (𝑐, 𝑥), (𝑐, 𝑦), where 𝑎 and 𝑏 are the end-

points of 𝑒 and 𝑐 is a vertex of 𝐾𝑛−2 with maximum degree;

𝐻53: four new edges (𝑎, 𝑥), (𝑏, 𝑥), (𝑐, 𝑥), (𝑐, 𝑦), where 𝑎 and 𝑏 are the end-

points of 𝑒 and 𝑐 is a vertex of 𝐾𝑛−2 with maximum degree;

𝐻54: three new edges (𝑎, 𝑥), (𝑏, 𝑦), (𝑐, 𝑦), where 𝑎 and 𝑏 are the end-points 
of 𝑒 and 𝑐 is a vertex of 𝐾𝑛−2 with maximum degree;

𝐻55: three new edges (𝑎, 𝑥), (𝑏, 𝑥), (𝑐, 𝑦), where 𝑎 and 𝑏 are the end-points 
of 𝑒 and 𝑐 is a vertex of 𝐾𝑛−2 with maximum degree;

𝐻56: three new edges (𝑎, 𝑥), (𝑏, 𝑥), (𝑏, 𝑦), where 𝑎 and 𝑏 are the end-points 
of 𝑒;

𝐻57: two new edges (𝑐, 𝑥), (𝑑, 𝑥), where 𝑐 and 𝑑 are vertices with maxi-

mum degree;

𝐻58: three new edges (𝑎, 𝑥), (𝑐, 𝑥), (𝑑, 𝑦), where 𝑎 is one of the end-points 
of 𝑒 and 𝑐 and 𝑑 are vertices of 𝐾𝑛−2 with maximum degree;

𝐻59: four new edges (𝑎, 𝑥), (𝑎, 𝑦), (𝑐, 𝑥), (𝑑, 𝑦), where 𝑎 is one of the end-

points of 𝑒 and 𝑐 and 𝑑 are vertices of 𝐾𝑛−2 with maximum degree;

𝐻60: four new edges (𝑎, 𝑥), (𝑎, 𝑦), (𝑐, 𝑥), (𝑐, 𝑦), where 𝑎 is one of the end-

points of 𝑒 and 𝑐 is a vertex of 𝐾𝑛−2 with maximum degree;

𝐻61: four new edges (𝑎, 𝑥), (𝑏, 𝑥), (𝑎, 𝑦), (𝑐, 𝑦), where 𝑎 and 𝑏 are the end-

points of 𝑒 and 𝑐 is a vertex of 𝐾𝑛−2 with maximum degree;

𝐻62: four new edges (𝑎, 𝑥), (𝑐, 𝑥), (𝑐, 𝑦), (𝑑, 𝑦), where 𝑎 is one of the end-

points of 𝑒 and 𝑐 and 𝑑 are vertices of 𝐾𝑛−2 with maximum degree;

𝐻63: four new edges (𝑎, 𝑥), (𝑎, 𝑦), (𝑏, 𝑥), (𝑏, 𝑦), where 𝑎 and 𝑏 are the end-

points of 𝑒;
𝐻64: two new edges (𝑎, 𝑥), (𝑏, 𝑦), where 𝑎 and 𝑏 are the end-points of 𝑒;
𝐻65: 𝐻51 by removal of (𝑥, 𝑦);
𝐻66: 𝐻52 by removal of (𝑥, 𝑦);
𝐻67: 𝐻58 by removal of (𝑥, 𝑦);
𝐻68: 𝐻59 by removal of (𝑥, 𝑦);
𝐻69: 𝐻60 by removal of (𝑥, 𝑦);
𝐻70: 𝐻61 by removal of (𝑥, 𝑦);
𝐻71: 𝐻62 by removal of (𝑥, 𝑦);
𝐻72: 𝐻63 by removal of (𝑥, 𝑦);

Graphs of order 𝑛 obtained from 𝐾𝑛−3 by connecting a path 𝑃3 =
(𝑥, 𝑦, 𝑧) with:

𝐻73: three new edges (𝑎, 𝑥), (𝑎, 𝑦), (𝑏, 𝑧), where 𝑎 and 𝑏 are any two dis-

tinct vertices of 𝐾𝑛−3;

𝐻74: 𝐻73 by adding a new edge (𝑥, 𝑧);
𝐻75: three new edges (𝑎, 𝑥), (𝑎, 𝑧), (𝑏, 𝑦), where 𝑎 and 𝑏 are any two dis-

tinct vertices of 𝐾𝑛−3;

𝐻76: three new edges (𝑎, 𝑥), (𝑏, 𝑦), (𝑐, 𝑧), where 𝑎, 𝑏 and 𝑐 are any three 
distinct vertices of 𝐾𝑛−3;

𝐻77: 𝐻76 by adding a new edge (𝑥, 𝑧);

Graphs of order 𝑛 obtained from 𝐾1,𝑛−2 by adding a new vertex 
adjacent to:

𝐻78: 𝑛 − 3 vertices of 𝐾1,𝑛−2 + 𝑒, including one vertex with maximum 
degree and exactly one of the end points of 𝑒;

Graphs of order 𝑛 obtained from 𝐾1,𝑛−4:

𝐻79: the graph (𝐾2 + 𝐾1,𝑛−4) − 𝑒 where 𝑒 is an edge connecting a ver-

tex 𝐾2 and a pendant vertex of 𝐾1,𝑛−4, added by one new vertex 
adjacent to two vertices of (𝐾2 +𝐾1,𝑛−4) − 𝑒, namely the center of 
𝐾1,𝑛−4 and one of end points 𝑒 of 𝐾2;

𝐻80: 𝐾2 + 𝐾1,𝑛−4 added by one new vertex adjacent to the center of 
𝐾1,𝑛−4 and one vertex of 𝐾2;

𝐻81: (𝐾2 + 𝐾1,𝑛−4) − 𝑒 where 𝑒 is an edge connecting a vertex 𝐾2 and 
a center of 𝐾1,𝑛−4, and added by one new vertex adjacent to two 
end points of 𝑒;

Graphs of order 𝑛 obtained from 𝐾𝑛:

𝐻82: 𝐾𝑛 − 𝐸(𝑃5 + 𝑒), where 𝑒 is an edge connecting two vertices 𝑃5 of 
degree 2;
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