Research article

All graphs of order $n \geq 11$ and diameter 2 with partition dimension $n-3$

Edy Tri Baskoro, Debi Oktia Haryeni *
Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132, Indonesia

ARTICLE INFO

Keywords:

Mathematics
Partition dimension
Graph
Characterization
Diameter

Abstract

All graphs of order n with partition dimension $2, n-2, n-1$, or n have been characterized. However, finding all graphs on n vertices with partition dimension other than these above numbers is still open. In this paper, we characterize all graphs of order $n \geq 11$ and diameter 2 with partition dimension $n-3$.

1. Introduction

Characterizing all graphs of order n with partition dimension k is a difficult problem. There are few results concerning this problem, in particular for k equal to $2, n$ or $n-1$ [1] and $n-2$ [2]. In this paper, we characterize all graphs with partition dimension $n-3$.

Let G be a connected graph. The distance of two vertices $u, v \in V(G)$, denoted by $d(u, v)$, is the length of shortest paths connecting u and v in G. For a subset of vertices $S \subset V(G)$, the distance between $u \in V(G)$ and S is defined by $d(u, S)=\min \{d(u, x): x \in S\}$. The eccentricity of a vertex $u \in V(G)$, denoted by ecc (u), is the maximum distance of vertex u to any other vertices of G, namely $\operatorname{ecc}(u)=\max \{d(u, v): v \in V(G)\}$. The diameter of G, denoted by $\operatorname{diam}(G)$, is the maximum eccentricity of the vertices in G, or in $\operatorname{short} \operatorname{diam}(G)=\max \{\operatorname{ecc}(u): u \in V(G)\}$. Furthermore, $u \in V(G)$ is called a peripheral vertex if $\operatorname{ecc}(u)=\operatorname{diam}(G)$.

Let $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be an ordered set of $V(G)$. The metric representation of a vertex $u \in V(G)$ with respect to W is $r(u \mid W)=$ $\left(d\left(u, w_{1}\right), d\left(u, w_{2}\right), \ldots, d\left(u, w_{k}\right)\right)$. A set W is called a resolving set of G if the metric representations of any two vertices of G are distinct with respect to W. The cardinality of a minimum resolving set of graph G is called metric dimension of G and denoted by $\operatorname{dim}(G)$. Some results related to the metric dimension can be seen in [3, 4].

In [5] Chartrand et al. presented another kind of metric dimension concept, as follows. Let $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ be a partition of a connected graph G. Define the partition representation of a vertex $u \in V(G)$ with respect to Π by $r(u \mid \Pi)=\left(d\left(u, S_{1}\right), d\left(u, S_{2}\right), \ldots, d\left(u, S_{k}\right)\right)$, where $d\left(u, S_{i}\right)=$ $\min \left\{d(u, x): x \in S_{i}\right\}$ for $1 \leq i \leq k$. If any two vertices $u, v \in V(G)$ have distinct representations with respect to Π, namely $r(u \mid \Pi) \neq r(v \mid \Pi)$, then such a partition Π is called a resolving partition of G. The partition dimen-
sion of G, denoted by $p d(G)$, is the smallest cardinality of a resolving partition Π of G.

In general, for a connected graph G we have $p d(G) \leq \operatorname{dim}(G)+1$. It is also natural to think that if two vertices $u, v \in V(G)$ have the same distance to all other vertices $V(G) \backslash\{u, v\}$, then these two vertices must be contained in distinct elements of any resolving partition Π of G. This result is shown as follows.

Remark 1 ([1]). Let Π be a resolving partition of G and $u, v \in V(G)$. If $d(u, x)=d(v, x)$ for any $x \in V(G) \backslash\{u, v\}$, then u and v belong to distinct elements of Π.

In [1], Chartrand et al. characterized all connected graphs G of order n with partition dimension $2, n$ or $n-1$. They showed that for $n \geq 2$, the only graph with partition dimension 2 is a path and the only graph G with $\operatorname{pd}(G)=n$ is the complete graph. Furthermore, they characterized all graphs of order $n \geq 3$ with partition dimension $n-1$, namely $K_{1, n-1}$, $K_{n}-e$ for any edge $e \in E\left(K_{n}\right)$, or $K_{1}+\left(K_{1} \cup K_{n-2}\right)$. The characterization of connected graphs on $n \geq 9$ vertices with partition dimensions $n-2$ has been done by Tomescu [2]. He showed that there are only 23 graphs G of order $n \geq 9$ with $p d(G)=n-2$, namely $K_{2, n-2}, K_{2}+\overline{K_{n-2}}, K_{n}-E\left(P_{3}\right)$, $K_{n}-E\left(K_{3}\right), K_{n}-E\left(P_{4}\right), K_{1}+\left(K_{1} \cup\left(K_{n-2}-e\right)\right), K_{n}-E\left(C_{4}\right), K_{1, n-1}+e$, $K_{n}-E\left(2 K_{2}\right), K_{2, n-2}-e, K_{n}-E\left(K_{1,3}+e\right), G_{1}, G_{2}, \ldots, G_{12}$, where e is any edge. The detail definitions of graphs G_{1}, \ldots, G_{12} can be found in [2]. However, in this paper we prove that two of these above graphs, namely $K_{1, n-1}+e$ and $K_{n}-E\left(K_{1,3}+e\right)$, have partition dimension $n-3$ (not $n-2$). Furthermore, it is easy to verify that the graph F on $n \geq 9$ vertices obtained by connecting a vertex v to end vertex e of $K_{n-1}-e$ for any edge $e \in E\left(K_{n-1}\right)$, has partition dimension $n-2$.

[^0]In this paper, we study graphs of order n with partition dimension $n-3$. From [1], for all connected graphs G we have that $p d(G) \leq n-$ $\operatorname{diam}(G)+1$. Then, the graph G with partition dimension $n-3$ must have diameter 2,3 or 4 . In this paper, we characterize all connected graphs on $n \geq 11$ vertices with diameter 2 and partition dimension $n-3$. We will show that there are 114 non-isomorphic such graphs.

2. Main results

Before presenting the main results, we provide a useful property as follows.

Lemma 1. For $n \geq 8$, let G be a graph on n vertices. If G does not contain the following three configurations:
(1) five vertices a, t_{1}, t_{2}, t_{3} and t_{4} forming $a t_{1}, a t_{2} \in E(G)$ and $a t_{3}, a t_{4} \notin$ $E(G)$,
(2) six vertices $a, b, t_{1}, t_{2}, t_{3}$ and t_{4} forming $a t_{1}, b t_{3} \in E(G)$ and $a t_{2}, b t_{4} \notin$ $E(G)$, and
(3) four vertices t_{1}, t_{2}, t_{3} and t_{4} forming $t_{1} t_{2} \in E(G)$ and $t_{1} t_{4}, t_{2} t_{3}, t_{3} t_{4} \notin$ $E(G)$,
then G is isomorphic to either $\overline{K_{n}}, K_{n}, K_{1, n-1}, K_{n-1} \cup K_{1}, K_{n}-E\left(K_{1, n-2}\right)$, or $K_{n}-e$ for any edge $e \in E\left(K_{n}\right)$.

Proof. Let K_{r} be a maximum clique of G for some integer $r \in[1, n]$. We consider four following cases.

Case 1. $r=1$ or $r=n$. We can easily see that $G \cong \overline{K_{n}}$ or $G \cong K_{n}$, respectively.

Case 2. $r=2$. Let $V\left(K_{2}\right)=\{x, y\}$ and $V(G)-V\left(K_{2}\right)=\left\{v_{i}: 1 \leq i \leq\right.$ $n-2\}$. If all vertices of K_{2} are not adjacent to any vertex of $G-K_{2}$, then any two vertices of $G-K_{2}$ must be adjacent, since otherwise we have Configuration (3) in G. Hence $G-K_{2}$ induces K_{n-2}, but this contradicts that K_{2} is the maximum clique in G. Now assume that there exists a vertex of K_{2}, namely a vertex x, such that x is adjacent to s vertices of $G-K_{2}$. If $1 \leq s \leq n-4$, then we have Configuration (1) in G, a contradiction. If $s=n-3$, namely $x v_{i} \in E(G)$ for all $1 \leq i \leq n-3$ and $x v_{n-2} \notin E(G)$, then $v_{i} v_{j}, y v_{i} \notin E(G)$ for all $1 \leq i, j \leq n-3$, since otherwise K_{2} is not a maximum clique in G. Hence, we also obtain that $y v_{n-2}, v_{i} v_{n-2} \notin E(G)$ for any $1 \leq i \leq n-3$, if not we have Configuration (1) in G. However, $G \cong K_{1, n-2} \cup K_{1}$ and it contains Configuration (3) in G, a contradiction. Otherwise, assume that $s=n-2$. Note that $v_{i} v_{j}, y v_{i} \notin E(G)$ for any $1 \leq i, j \leq n-2$, since otherwise K_{2} is not a maximum clique of G. Thus we obtain that $G \cong K_{1, n-1}$.

Case 3. $3 \leq r \leq n-2$. Let $V\left(K_{r}\right)=\left\{x_{i}: 1 \leq i \leq r\right\}$ and $V\left(G-K_{r}\right)=\left\{v_{i}\right.$: $1 \leq i \leq n-r\}$. Note that in this case, any vertex of K_{r} is not adjacent to at most one vertex of $G-K_{r}$ and any vertex of $G-K_{r}$ is not adjacent to at least one vertex of K_{r}, since otherwise we have Configuration (1) or K_{r+1} in G, respectively, a contradiction. Therefore, without loss of generality we can assume that $x_{i} v_{i} \notin E(G)$ for all $1 \leq i \leq \min \{r, n-r\}$ and $x_{i} v_{j} \in E(G)$ for all $i \neq j, 1 \leq i, j \leq \min \{r, n-r\}$. However, it leads us to Configuration (2) in G, a contradiction.

Case 4. For $r=n-1$, let $V\left(G-K_{n-1}\right)=\{v\}$. Note that a vertex v is either adjacent to 0,1 or $n-2$ vertices of K_{n-1}, since otherwise we have Configuration (1) or K_{n-1} is not a maximum clique of G, a contradiction. If v is not adjacent to any vertex of K_{n-1}, then $G \cong K_{n-1} \cup K_{1}$. If v is only adjacent to a single vertex of K_{n-1}, then $G \cong K_{n}-E\left(K_{1, n-2}\right)$. Otherwise, v is adjacent to $n-2$ vertices of K_{n-1} and we obtain $G \cong K_{n}-e$.

In the following result, we prove that there are exactly 114 nonisomorphic graphs G on $n \geq 11$ vertices and $\operatorname{diam}(G)=2$ such that $p d(G)=n-3$.

Theorem 1. Let G be a connected graph of order $n \geq 11$ and $\operatorname{diam}(G)=2$. Then $p d(G)=n-3$ if and only if G is one of the following graphs:
(i) $\overline{K_{n-3}}+H$, where H is any graph on three vertices,
(ii) $K_{1}+\left(K_{n-4} \cup H\right)$, where H is any graph on three vertices,
(iii) $K_{1}+\left(K_{n-3}-e \cup H\right)$, where H is any graph on two vertices,
(iv) $K_{1}+\left(K_{1, n-4} \cup H\right)$, where H is any graph on two vertices,
(v) $K_{n}-E\left(K_{1, n-4} \cup H\right)$, where H is any connected graph on three vertices,
(vi) $K_{n-5}+\left(K_{2} \cup H\right)$, where H is any connected graph on three vertices,
(vii) $K_{n}-E(H)$, where H is any connected graph on four vertices other than C_{4} and P_{4},
(vii) $K_{n}-E(H)$, where H is either $C_{5}, P_{5}, K_{2,3}, K_{2} \cup K_{3}, K_{2} \cup P_{3}, 3 K_{2}$, $K_{2} \cup C_{4}$, or $K_{2} \cup P_{4}$,
(ix) $K_{1}+\left(K_{2, n-4} \cup K_{1}\right)$,
(x) $K_{n}-E\left(K_{1, n-4}\right)$,
(xi) $K_{1, n-1}+e$,
(xii) $K_{n}-E\left(K_{1, n-3}+e\right)$,
(xiii) Graphs $H_{1}, H_{2}, \ldots, H_{82}$.

Proof. If G is one of the above graphs, then it is easy to verify that $p d(G)=n-3$. Now we are going to show the other direction. Let G be a connected graph of order $n \geq 11$ where $p d(G)=n-3$ and $\operatorname{diam}(G)=2$. Let x be a peripheral vertex of G with $\operatorname{ecc}(x)=2$. Denote $N_{i}(x)$ as the set of vertices of G with distance i to a vertex x, for $i=1,2$. Let $N_{1}(x) \supseteq\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ and $N_{2}(x) \supseteq\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. If $\min \left\{\left|N_{1}(x)\right|,\left|N_{2}(x)\right|\right\} \geq 4$, then $(x)\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)\left(u_{3}, v_{3}\right)\left(u_{4}, v_{4}\right) \pi$ is a resolving ($n-4$)-partition, for a singleton partition π containing the vertices $V(G) \backslash\left\{x, u_{1}, u_{2}, u_{3}, u_{4}, v_{1}, v_{2}, v_{3}, v_{4}\right\}$, a contradiction. Therefore, $\min \left\{\left|N_{1}(x)\right|,\left|N_{2}(x)\right|\right\} \leq 3$. We consider the following subcases: (A) $\left|N_{1}(x)\right|=3,\left|N_{2}(x)\right|=n-4$; (B) $\left|N_{1}(x)\right|=n-4,\left|N_{2}(x)\right|=3$; (C) $\left|N_{1}(x)\right|=2,\left|N_{2}(x)\right|=n-3$; (D) $\left|N_{1}(x)\right|=n-3,\left|N_{2}(x)\right|=2$; (E) $\left|N_{1}(x)\right|=$ $1,\left|N_{2}(x)\right|=n-2$ and (F) $\left|N_{1}(x)\right|=n-2,\left|N_{2}(x)\right|=1$.
(A) $\left|N_{1}(x)\right|=3$ and $\left|N_{2}(x)\right|=n-4$. Let $N_{1}(x)=\left\{u_{1}, u_{2}, u_{3}\right\}$. If $N_{2}(x)$ contains 3 vertices a, b, c such that $a b \in E(G)$ and $a c \notin E(G)$, then we can define a resolving $(n-4)$-partition of G, namely $(x)(a)(b, c)\left(u_{1}, t_{1}\right)\left(u_{2}, t_{2}\right)$ $\left(u_{3}, t_{3}\right) \pi$, for $t_{1}, t_{2}, t_{3} \in N_{2}(x) \backslash\{a, b, c\}$ and a singleton partition π of the remaining vertices, a contradiction. Therefore, $N_{2}(x)$ induces (A1) $\overline{K_{n-4}}$ or (A2) K_{n-4}.
(A1) $N_{2}(x)$ induces $\overline{K_{n-4}}$. If there exists a vertex of $N_{1}(x)$, namely u_{1}, with $u_{1} a \notin E(G)$ and $u_{1} b \in E(G)$ for some $a, b \in N_{2}(x)$, then we have a resolving ($n-4$)-partition in G, namely $(x)(a, b)\left(u_{1}, t_{1}\right)\left(u_{2}, t_{2}\right)\left(u_{3}, t_{3}\right) \pi$, for $t_{1}, t_{2}, t_{3} \in N_{2}(x)$ and a singleton partition π, a contradiction. Therefore, any vertex of $N_{1}(x)$ are adjacent to all vertices of $N_{2}(x)$ or some of them are not adjacent to any vertex of $N_{2}(x)$. If $u_{1} \in N_{1}(x)$ is adjacent to all vertices of $N_{2}(x)$ and $u_{2} \in N_{1}(x)$ is not adjacent to any vertex of $N_{2}(x)$, then we can also define a resolving ($n-4$)-partition of G, namely $\left(u_{1}, a_{1}\right)\left(u_{2}, a_{2}\right)\left(u_{3}, a_{3}\right)\left(x, a_{4}\right) \pi$, for $a_{1}, a_{2}, a_{3}, a_{4} \in N_{2}(x)$ and a singleton partition π of the remaining vertices, a contradiction. Therefore, we can conclude that any vertex of $N_{1}(x)$ are adjacent to all vertices of $N_{2}(x)$. We obtain that $G \cong K_{3, n-3}$ if none of vertices of $N_{1}(x)$ are connected, or $G \cong\left(K_{1} \cup K_{2}\right)+\overline{K_{n-3}}$ if $N_{1}(x)$ induces $K_{1} \cup K_{2}$, or $G \cong P_{3}+\overline{K_{n-3}}$ if $N_{1}(x)$ induces P_{3}, or $G \cong K_{3}+\overline{K_{n-3}}$ if any two vertices of $N_{1}(x)$ are connected (Fig. 1).
(A2) $N_{2}(x)$ induces K_{n-4}. If there exist four distinct vertices $t_{1}, t_{2}, t_{3}, t_{4} \in N_{2}(x)$ such that $u_{1} t_{1}, u_{1} t_{2} \in E(G)$ but $u_{1} t_{3}, u_{1} t_{4} \notin E(G)$, then we have a resolving ($n-4$)-partition of G, namely $(x)\left(u_{1}\right)\left(t_{1}, t_{3}\right)\left(t_{2}, t_{4}\right)$ $\left(u_{2}, t_{5}\right)\left(u_{3}, t_{6}\right) \pi$, for some $t_{5}, t_{6} \in N_{2}(x) \backslash\left\{t_{1}, t_{2}, t_{3}, t_{4}\right\}$ and a singleton partition π, a contradiction. Therefore, any vertex of $N_{1}(x)$ is either adjacent to at most one vertex of $N_{2}(x)$ or it is adjacent at least to $n-5$ vertices of $N_{2}(x)$. Note that for any $t \in N_{2}(x)$, there exists a vertex $u_{i} \in N_{1}(x)$ such that $u_{i} t \in E(G)$, since otherwise $\operatorname{diam}(G)=3$.

Remark 2. Let $\{a, b, c\} \subset N_{2}(x)$. If we have one of the following five conditions in G :

1. u_{1} is not adjacent to any vertex of $N_{2}(x), u_{2}$ is only adjacent to vertex a in $N_{2}(x)$, and u_{3} is adjacent to $n-5$ vertices of $N_{2}(x) \backslash\{a\}$, or

Table 1
Adjacency of three vertices $u_{1}, u_{2}, u_{3} \in N_{1}(x)$ to the vertices of $N_{2}(x)$.

u_{1}	0	0	0	0	1	1	1	$n-5$	$n-5$	$n-4$
u_{2}	0	1	$n-5$	$n-4$	1	$n-5$	$n-4$	$n-5$	$n-4$	$n-4$
u_{3}	$n-4$									

(a)

(b)

(c)

(d)

Fig. 1. Graph (a) $K_{3, n-3}$, (b) $\left(K_{1} \cup K_{2}\right)+\overline{K_{n-3}}$, (c) $P_{3}+\overline{K_{n-3}}$ and (d) $K_{3}+\overline{K_{n-3}}$.

Fig. 2. Graph (a) $K_{1}+\left(K_{n-4} \cup P_{3}\right)$, (b) $K_{1}+\left(K_{n-4} \cup K_{3}\right)$, (c) H_{73} and (d) H_{74}.
2. u_{1} is not adjacent to any vertex of $N_{2}(x), u_{2}$ is adjacent to $n-5$ vertices of $N_{2}(x) \backslash\{a\}$, and u_{3} is adjacent to $n-5$ vertices of $N_{2}(x) \backslash$ $\{b\}$, or
3. u_{1} is only adjacent to vertex a in $N_{2}(x), u_{2}$ is only adjacent to vertex b in $N_{2}(x)$, and u_{3} is adjacent to $n-5$ vertices of $N_{2}(x)$ other than a or b, or
4. u_{1} and u_{2} are only adjacent to vertex a in $N_{2}(x)$, and u_{3} is adjacent to $n-5$ vertices of $N_{2}(x) \backslash\{a\}$, or
5. u_{1} is only adjacent to vertex a in $N_{2}(x), u_{2}$ is adjacent to $n-5$ vertices of $N_{2}(x) \backslash\{s\}$ where $s \in\{a, b\}$, and u_{3} is adjacent to $n-5$ vertices of $N_{2}(x) \backslash\{c\}$, or
6. u_{1} is adjacent to $n-5$ vertices of $N_{2}(x) \backslash\{a\}, u_{2}$ is adjacent to $n-5$ vertices of $N_{2}(x) \backslash\{s\}$, and u_{3} is adjacent to $n-5$ vertices of $N_{2}(x) \backslash\{t\}$, where $s, t \in\{b, c\}$,
then there exists a resolving $(n-4)$-partition of G, namely $(a)(b)(c)\left(u_{1}, t_{1}\right)$ $\left(u_{2}, t_{2}\right)\left(x, u_{3}, t_{3}\right) \pi$ for $t_{1}, t_{2}, t_{3} \in N_{2}(x) \backslash\{a, b, c\}$ and a singleton partition π, a contradiction.

By the previous facts and Remark 2, the adjacency of three vertices $u_{1}, u_{2}, u_{3} \in N_{1}(x)$ to the vertices of $N_{2}(x)$ are shown in the Table 1.
(A2.1) $u_{1} \in N_{1}(x)$ is not adjacent to any vertex of $N_{2}(x)$. If $u_{2} \in N_{1}(x)$ is also not adjacent to any vertex of $N_{2}(x)$, then u_{3} is adjacent to all vertices of $N_{2}(x)$ and $u_{1} u_{3}, u_{2} u_{3} \in E(G)$, since otherwise diam $(G)=3$. We

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3. Graph (a) H_{51}, (b) H_{60}, (c) H_{56}, (d) H_{47}, (e) H_{63} and (f) H_{48}.

Fig. 4. Graph (a) H_{75}, (b) H_{74}, (c) H_{76}, (d) H_{77}, (e) H_{54}, (f) H_{61}, (g) H_{52}, (h) H_{58}, (i) H_{59}, (j) H_{55}, (k) H_{61}, (l) H_{46} and (m) H_{49}.

Fig. 5. Graph (a) H_{26}, (b) H_{17}, (c) H_{37}, (d) H_{27}, (e) H_{15} and (f) H_{5}.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 6. Graph (a) H_{28}, (b) H_{6}, (c) H_{18}, (d) H_{1}, (e) $K_{n}-E\left(K_{1, n-4} \cup K_{3}\right.$), (f) $K_{n}-E\left(K_{1, n-4} \cup P_{3}\right)$, (g) H_{2} and (h) $K_{n}-E\left(K_{1, n-4}\right)$.

For the remaining cases, let both u_{2} and u_{3} be adjacent to all vertices of $N_{2}(x)$. Then, u_{1} is not adjacent to at least one of u_{2} or u_{3}, since otherwise $\left(u_{1}\right)\left(a, t_{1}\right)\left(u_{2}, t_{2}\right)\left(x, u_{3}, t_{3}\right) \pi$ is a resolving $(n-4)$-partition, for $t_{1}, t_{2}, t_{3} \in N_{2}(x) \backslash\{a\}$, a contradiction. We obtain G as depicted in Fig. 4 (j)-(m).
(A2.3) u_{1} is adjacent to $n-5$ vertices of $N_{2}(x) \backslash\{a\}$. Let u_{2} be also adjacent to $n-5$ vertices of $N_{2}(x) \backslash\{b\}$ and u_{3} be adjacent to all vertices of $N_{2}(x)$. If $a \neq b$ then u_{3} is adjacent to both u_{1} and u_{2}, since otherwise we have a resolving ($n-4$)-partition, namely $\left(u_{1}\right)\left(u_{2}\right)\left(a, t_{1}\right)\left(b, t_{2}\right)\left(x, u_{3}, t_{3}\right) \pi$, for $t_{1}, t_{2}, t_{3} \in N_{2}(x) \backslash\{a, b\}$, a contradiction. We obtain G as depicted in Fig. 5 (a)-(b). If $a=b$, then $u_{1}, u_{2} \in E(G)$ or (both u_{1} and u_{2} are adjacent to u_{3}), since otherwise $\left(u_{1}\right)\left(a, t_{1}\right)\left(u_{2}, t_{2}\right)\left(x, u_{3}, t_{3}\right) \pi$ or $\left.\left(u_{2}\right)\left(a, t_{1}\right)\left(u_{1}, t_{2}\right)\left(x, u_{3}, t_{3}\right) \pi\right)$ is a resolving $(n-4)$-partition, for $t_{1}, t_{2}, t_{3} \in N_{2}(x) \backslash\{a\}$, a contradiction. We deduce G as depicted in Fig. 5 (c)-(f).

Now assume that both u_{2} and u_{3} are adjacent to all vertices of $N_{2}(x)$. Then, u_{1} is adjacent to at least one of u_{2} or u_{3}, since otherwise $\left(u_{1}\right)\left(a, t_{1}\right)\left(u_{2}, t_{2}\right)\left(x, u_{3}, t_{3}\right) \pi$ is a resolving $(n-4)$-partition, for $t_{1}, t_{2}, t_{3} \in$ $N_{2}(x) \backslash\{a\}$, a contradiction. We deduce $G \cong H_{28}$ if $u_{2} u_{3} \notin E(G)$ and u_{1} is only adjacent to one of u_{2} or u_{3}, or $G \cong H_{6}$ if $u_{2} u_{3} \in E(G)$ and u_{1} is only adjacent to one of u_{2} or u_{3}, or $G \cong H_{18}$ if $u_{2} u_{3} \notin E(G)$ and u_{1} is adjacent to both u_{2} and u_{3}, or $G \cong H_{1}$ if $u_{2} u_{3} \in E(G)$ and u_{1} is adjacent to both u_{2} and u_{3}, as depicted in Fig. 6 (a)-(d), respectively.
(A2.4) All vertices of $N_{1}(x)$ are adjacent to all vertices of $N_{2}(x)$. We deduce that $G \cong K_{n}-E\left(K_{1, n-4} \cup K_{3}\right)$ if $N_{1}(x)$ induces $\overline{K_{3}}$, or $G \cong$ $K_{n}-E\left(K_{1, n-4} \cup P_{3}\right)$ if $u_{1} u_{2} \in E(G)$ and $u_{1} u_{3}, u_{2} u_{3} \notin E(G)$, or $G \cong H_{2}$ if $N_{1}(x)$ induces P_{3}, or $G \cong K_{n}-E\left(K_{1, n-4}\right)$ if $N_{1}(x)$ induces K_{3}, as depicted in Fig. 6 (e)-(h).
(B) $\left|N_{1}(x)\right|=n-4$ and $\left|N_{2}(x)\right|=3$. Let $N_{2}(x)=\left\{v_{1}, v_{2}, v_{3}\right\}$. If $N_{1}(x)$ contains three vertices a, b, c such that $a b \in E(G)$ and $a c \notin E(G)$, then $(x)(a)(b, c)\left(v_{1}, t_{1}\right)\left(v_{2}, t_{2}\right)\left(v_{3}, t_{3}\right) \pi$ is a resolving $(n-4)$-partition, for $t_{1}, t_{2}, t_{3} \in N_{1}(x) \backslash\{a, b, c\}$ and a singleton partition π of the remaining vertices, a contradiction. Therefore, $N_{1}(x)$ induces (B1) $\overline{K_{n-4}}$ or (B2) K_{n-4}.
(B1) $N_{1}(x)$ induces $\overline{K_{n-4}}$. Note that for any vertex $v_{i} \in N_{2}(x)$, there exists $t \in N_{1}(x)$ such that $v_{i} t \in E(G)$, and conversely for any $t \in N_{1}(x)$, there exists $v_{i} \in N_{2}(x)$ such that $t v_{i} \in E(G)$, since otherwise $\operatorname{diam}(G)=3$. Without loss of generality, we can assume that $v_{1} a, v_{2} b, v_{3} c \in E(G)$ for some $a, b, c \in N_{2}(x)$. Then, $(a)(b)(c)\left(x, t_{1}\right)\left(v_{1}, t_{2}\right)\left(v_{2}, t_{3}\right)\left(v_{3}, t_{4}\right) \pi$ is a resolving ($n-4$)-partition for $t_{1}, t_{2}, t_{3}, t_{4} \in N_{2}(x) \backslash\{a, b, c\}$ and a singleton partition π, a contradiction. Hence we can conclude that there exists no graphs G with $p d(G)=n-3$ where $N_{1}(x)$ induces $\overline{K_{n-4}}$.
(B2) $N_{1}(x)$ induces K_{n-4}. If there exist four distinct vertices $a, b, c, d \in N_{1}(x)$ such that $v_{1} a, v_{1} b \in E(G)$ but $v_{1} c, v_{1} d \notin E(G)$, then $(x)\left(v_{1}\right)(a, c)(b, d)\left(v_{2}, t_{1}\right)\left(v_{3}, t_{2}\right) \pi$ is a resolving ($\left.n-4\right)$-partition, for $t_{1}, t_{2} \in$ $N_{1}(x) \backslash\{a, b, c, d\}$, a contradiction. Additionally, any vertex of $N_{2}(x)$ is adjacent to at least one vertex of $N_{1}(x)$, since otherwise $\operatorname{diam}(G)=3$.

Fig. 7. Graph (a) H_{77}, (b) H_{75}, (c) H_{74}, (d) $K_{1}+\left(K_{n-4} \cup \overline{K_{3}}\right)$, (e) $K_{1}+\left(K_{n-4} \cup\left(P_{3}-e\right)\right.$), (f) $K_{1}+\left(K_{n-4} \cup P_{3}\right)$ and (g) $K_{1}+\left(K_{n-4} \cup K_{3}\right)$.

(a)

(b)

(c)

(d)

(e)

Fig. 8. Graph (a) $K_{1}+\left(K_{n-3}-e \cup 2 K_{1}\right)$, (b) $K_{1}+\left(K_{n-3}-e \cup K_{2}\right)$, (c) H_{65}, (d) H_{51}, (e) H_{69} and (f) H_{60}.

Therefore, any vertex of $v_{1}, v_{2}, v_{3} \in N_{2}(x)$ is either adjacent to $1, n-5$ or $n-4$ vertices of $N_{1}(x)$. Now consider the following remarks.

Remark 3. Let $\{a, b, c\} \subset N_{1}(x), v_{1}$ be only adjacent to vertex a in $N_{1}(x)$ and v_{2} be only adjacent to vertex b in $N_{1}(x)$.

1. If $a=b$ and v_{3} is adjacent to $n-5$ vertices of $N_{1}(x) \backslash\{a\}$, then $\left(v_{3}\right)\left(a, t_{1}\right)\left(t_{2}, v_{2}\right)\left(x, t_{3}, v_{1}\right) \pi$ is a resolving $(n-4)$-partition, for $t_{1}, t_{2}, t_{3} \in N_{1}(x) \backslash\{a\}$ and a singleton partition π, a contradiction.
2. If $a=b$ and v_{3} is adjacent to $n-5$ vertices of $N_{1}(x) \backslash\{c\}$ where $c \neq a$, then $\left(v_{1}\right)\left(v_{3}\right)\left(a, t_{1}\right)\left(c, t_{2}\right)\left(x, t_{3}, v_{2}\right) \pi$ is a resolving $(n-4)$-partition, for $t_{1}, t_{2}, t_{3} \in N_{1}(x) \backslash\{a, c\}$ and a singleton partition π, a contradiction.
3. If $a \neq b$ and v_{3} is adjacent to $n-5$ vertices of $N_{1}(x)$ other than a (or similarly other than b), then $\left(v_{3}\right)\left(a, t_{1}\right)\left(b, v_{2}\right)\left(x, t_{2}, v_{1}\right) \pi$ is a resolving ($n-4$)-partition, for $t_{1}, t_{2} \in N_{1}(x) \backslash\{a, b\}$ and a singleton partition π, a contradiction.
4. If $a \neq b$ and v_{3} is adjacent to $n-5$ vertices of $N_{1}(x) \backslash\{c\}$ where $c \neq a$ and $c \neq b$, then $\left(v_{3}\right)\left(x, a, v_{1}\right)\left(b, v_{2}\right)\left(c, t_{1}\right) \pi$ is a resolving $(n-$ 4)-partition, for $t_{1} \in N_{1}(x) \backslash\{a, b, c\}$ and a singleton partition π, a contradiction.

Remark 4. Let $\{a, b, c\} \subset N_{1}(x), v_{1}$ be only adjacent to vertex a in $N_{1}(x)$ and v_{2} be adjacent to $n-5$ vertices of $N_{1}(x) \backslash\{b\}$.

1. If $a=b$ and v_{3} is adjacent to $n-5$ vertices of $N_{1}(x) \backslash\{c\}$ with $c \neq a$, then $\left(v_{2}\right)\left(v_{3}\right)\left(a, t_{1}\right)\left(c, t_{2}\right)\left(x, t_{3}, v_{1}\right) \pi$ is a resolving $(n-4)$-partition, for $t_{1}, t_{2}, t_{3} \in N_{1}(x) \backslash\{a, c\}$ and a singleton partition π, a contradiction.
2. If $a \neq b$ and v_{3} is adjacent to $n-5$ vertices of $N_{1}(x) \backslash\{a\}$, then $\left(v_{2}\right)\left(v_{3}\right)\left(a, t_{1}\right)\left(b, t_{2}\right)\left(x, t_{3}, v_{1}\right)$ is a resolving $(n-4)$-partition for $t_{1}, t_{2}, t_{3} \in N_{1}(x) \backslash\{a, b\}$ and a singleton partition π, a contradiction.
3. If $\left(a \neq b, v_{3}\right.$ is adjacent to $n-5$ vertices of $N_{1}(x) \backslash\{b\}$ and $v_{1} v_{3} \in$ $E(G)$ (or similarly $\left.v_{1} v_{2} \in E(G)\right)$) or $\left(a \neq b, v_{3}\right.$ is adjacent to all vertices of $N_{1}(x)$ and $\left.v_{1} v_{3} \in E(G)\right)$, then $\left(v_{1}\right)\left(v_{2}\right)\left(a, t_{1}\right)\left(b, t_{2}\right)\left(x, v_{3}, t_{3}\right) \pi$ is a resolving ($n-4$)-partition, for $t_{1}, t_{2}, t_{3} \in N_{1}(x) \backslash\{a, b\}$, a contradiction.
4. If v_{3} is adjacent to $n-5$ vertices of $N_{1}(x) \backslash\{c\}$ with all a, b, c are distinct, then $\left(v_{1}\right)\left(v_{2}\right)\left(v_{3}\right)\left(a, t_{1}\right)\left(b, t_{2}\right)\left(x, c, t_{3}\right)$ is a resolving $(n-4)$ partition, for $t_{1}, t_{2}, t_{3} \in N_{1}(x) \backslash\{a, b, c\}$ and a singleton partition π, a contradiction.
5. If $a \neq b, v_{3}$ is adjacent to all vertices of $N_{1}(x)$ and $v_{1} v_{3} \in E(G)$, then $\left(v_{1}\right)\left(v_{2}\right)\left(a, t_{1}\right)\left(b, t_{2}\right)\left(x, t_{3}, v_{3}\right) \pi$ is a resolving $(n-4)$-partition, for $t_{1}, t_{2}, t_{3} \in N_{1}(x) \backslash\{a, b\}$ and a singleton partition π, a contradiction.

Table 2
Adjacency of three vertices $v_{1}, v_{2}, v_{3} \in N_{2}(x)$ to the vertices of $N_{1}(x)$.

v_{1}	1	1	1	1	1	$n-5$	$n-5$	$n-5$	$n-4$
v_{2}	1	1	$n-5$	$n-5$	$n-4$	$n-5$	$n-5$	$n-4$	$n-4$
v_{3}	1	$n-4$	$n-5$	$n-4$	$n-4$	$n-5$	$n-4$	$n-4$	$n-4$

Fig. 9. Graph (a) H_{57}, (b) H_{68}, (c) H_{58} and (d) H_{59}.

Remark 5. Let $\{a, b, c\} \subset N_{1}(x), v_{1}$ be adjacent to $n-5$ vertices of $N_{1}(x) \backslash$ $\{a\}$ and v_{2} be adjacent to $n-5$ vertices of $N_{1}(x) \backslash\{b\}$.

1. If $a=b$ and v_{3} is adjacent to $n-5$ vertices of $N_{1}(x) \backslash\{c\}$ where $c \neq a$, then $(a)\left(v_{3}\right)\left(c, t_{1}\right)\left(v_{1}, t_{2}\right)\left(x, t_{3}, v_{2}\right) \pi$ is a resolving $(n-4)$-partition, for $t_{1}, t_{2}, t_{3} \in N_{1}(x) \backslash\{a, c\}$ and a singleton partition π, a contradiction.
2. If $a \neq b$ and v_{3} is adjacent to at least $n-5$ vertices of $N_{1}(x) \backslash\{a\}$ (or similarly v_{3} is adjacent to $n-5$ vertices of $N_{1}(x) \backslash\{b\}$), then $(a)\left(v_{2}\right)\left(v_{1}, t_{1}\right)\left(b, t_{2}\right)\left(x, t_{3}, v_{3}\right) \pi$ is a resolving $(n-4)$-partition, for $t_{1}, t_{2}, t_{3} \in N_{1}(x) \backslash\{a, b\}$, a contradiction.
3. If v_{3} is adjacent to $n-5$ vertices of $N_{1}(x) \backslash\{c\}$ with all a, b, c are distinct, then $(a)(c)\left(v_{2}\right)\left(v_{1}, t_{1}\right)\left(b, t_{2}\right)\left(x, t_{3}, v_{3}\right) \pi$ is a resolving $(n-4)$ partition, for $t_{1}, t_{2}, t_{3} \in N_{1}(x) \backslash\{a, b, c\}$, a contradiction.

Remark 6. Let $\{a, b\} \subset N_{1}(x), v_{1}$ be adjacent to $n-5$ vertices of $N_{1}(x) \backslash$ $\{a\}, v_{2}$ be adjacent to $n-5$ vertices of and $N_{1}(x) \backslash\{b\}$, and v_{3} is adjacent to all vertices of $N_{1}(x)$.

1. If $a=b, v_{1} v_{2} \notin E(G)$ and v_{3} is not adjacent to one of v_{1} or v_{2}, then $\left(v_{1}\right)\left(a, t_{1}\right)\left(v_{2}, t_{2}\right)\left(v_{3}, t_{3}\right)\left(x, t_{4}\right) \pi$ or $\left(v_{2}\right)\left(a, t_{1}\right)\left(v_{1}, t_{2}\right)\left(v_{3}, t_{3}\right)\left(x, t_{4}\right) \pi$ is a resolving ($n-4$)-partition, for $t_{1}, t_{2}, t_{3}, t_{4} \in N_{1}(x) \backslash\{a\}$, a contradiction.
2. If $a \neq b$ and v_{3} is neither adjacent to v_{1} nor v_{2}, then $\left(v_{1}\right)\left(v_{2}\right)\left(a, t_{1}\right)$ $\left(b, t_{2}\right)\left(x, t_{3}, v_{3}\right) \pi$ or $(a)\left(v_{2}\right)\left(x, t_{1}, v_{1}\right)\left(b, t_{2}\right)\left(t_{3}, v_{3}\right) \pi$ is a resolving $(n-4)$ partition, for $t_{1}, t_{2}, t_{3} \in N_{1}(x) \backslash\{a, b\}$, a contradiction.

Therefore, without loss of generality, the adjacency of any vertex of $v_{1}, v_{2}, v_{3} \in N_{2}(x)$ to $N_{1}(x)$ is given in Table 2.

Fig. 10. Graph (a) H_{38}, (b) H_{37}, (c) H_{39}, (d) H_{30}, (e) H_{29}, (f) H_{27}, (g) H_{25} and (h) H_{31}.

Fig. 11. Graph (a) H_{13}, (b) H_{14}, (c) H_{7}, (d) H_{15}, (e) H_{8} and (f) H_{5}.

Fig. 12. Graph (a) $K_{n-5}+\left(K_{2} \cup P_{3}\right)$, (b) $K_{n-5}+\left(K_{2} \cup K_{3}\right)$, (c) H_{40}, (d) H_{32}, (e) H_{16}, (f) H_{9}, (g) H_{33} and (h) H_{19}.
(B2.1) $v_{1} \in N_{2}(x)$ is only adjacent to vertex $a \in N_{1}(x)$. Let each v_{2} and v_{3} be only adjacent to vertex $b \in N_{1}(x)$ and $c \in N_{1}(x)$, respectively. If all vertices a, b, c are distinct, then $v_{1} v_{2}, v_{1} v_{3}, v_{2} v_{3} \in E(G)$ since otherwise $\operatorname{diam}(G)=3$. We deduce $G \cong H_{77}$. If only two of a, b, c are equal, namely $a=b$, then $v_{1} v_{3}, v_{2} v_{3} \in E(G)$ since otherwise $\operatorname{diam}(G)=3$. We deduce $G \cong H_{75}$ if $v_{1} v_{2} \notin E(G)$ or $G \cong H_{74}$ if $v_{1} v_{2} \in E(G)$. If all a, b, c are equal, then we deduce G as depicted in Fig. 7 (d)-(g).

Now assume that v_{2} is adjacent to a single vertex $b \in N_{1}(x)$ and v_{3} is adjacent to all vertices of $N_{1}(x)$. If $a=b$, then we deduce G as in Fig. 8 (a)-(f). If $a \neq b$, then $v_{1} v_{2} \in E(G)$ or $v_{1} v_{3}, v_{2} v_{3} \in E(G)$, since otherwise $\operatorname{diam}(G)=3$. We deduce G as depicted in Fig. 9 (a)-(d).

Now suppose that v_{2} is adjacent to $n-5$ vertices of $N_{1}(x)$ and v_{3} is adjacent to at least $n-5$ vertices of $N_{1}(x)$. In this case, $v_{2} v_{3} \in E(G)$ since otherwise $\left(v_{2}\right)\left(a, t_{1}\right)\left(v_{1}, t_{2}\right)\left(v_{3}, t_{3}\right)\left(x, t_{4}\right) \pi$ is a resolving $(n-4)$-partition for $t_{1}, t_{2}, t_{3} \in N_{1}(x) \backslash\{a\}$ and a singleton partition π, a contradiction. If v_{2} is also adjacent to $n-5$ vertices of $N_{1}(x) \backslash\{a\}$ and v_{3} is adjacent to $n-5$ vertices of $N_{1}(x) \backslash\{c\}$, then $a=c$ by considering Remark 4 (1) and v_{1} is adjacent to at least one of v_{2} or v_{3}, since otherwise $\operatorname{diam}(G)=3$. We deduce $G \cong H_{38}$ if v_{1} is only adjacent to one of v_{2} or v_{3}, or $G \cong H_{37}$ if v_{1} is adjacent to both v_{2} and v_{3}. If v_{2} is adjacent to $n-5$ vertices of $N_{1}(x) \backslash\{b\}$ with $a \neq b$, and v_{3} is adjacent to $n-5$ vertices of $N_{1}(x) \backslash\{b\}$, then $v_{1} v_{2}, v_{1} v_{3} \notin E(G)$, by considering Remark 4 (3). We deduce $G \cong$ H_{39}. Otherwise, v_{2} is adjacent to $n-5$ vertices of $N_{1}(x) \backslash\{b\}$ and v_{3} is adjacent to all vertices of $N_{1}(x)$. If $a=b$, then v_{1} is adjacent to at least one of v_{2} or v_{3}, since otherwise $\operatorname{diam}(G)=3$. We deduce G as depicted in Fig. 10 (d)-(f). If $a \neq b$, then $v_{1} v_{3} \notin E(G)$ by considering Remark 4 (5) and hence $G \cong H_{25}$ for $v_{1} v_{2} \notin E(G)$ or $G \cong H_{31}$ for $v_{1} v_{2} \in E(G)$.

For the remaining case, let both v_{2} and v_{3} be adjacent to all vertices of $N_{1}(x)$. We deduce G as depicted in Fig. 11 (a)-(f).
(B2.2) v_{1} is adjacent to $n-5$ vertices of $N_{1}(x) \backslash\{a\}$. If each v_{2} and v_{3} are also adjacent to $n-5$ vertices of $N_{1}(x) \backslash\{b\}$ and $N_{1}(x) \backslash\{c\}$, respectively, then all a, b, c are equal, by considering Remark 5. In this case,
then $N_{2}(x)$ contains P_{3}, since otherwise $\left(v_{1}\right)\left(a, t_{1}\right)\left(v_{2}, t_{2}\right)\left(v_{3}, t_{3}\right)\left(x, t_{4}\right) \pi$, or $\left(v_{2}\right)\left(a, t_{1}\right)\left(v_{1}, t_{2}\right)\left(v_{3}, t_{3}\right)\left(x, t_{4}\right) \pi$, or $\left(v_{3}\right)\left(a, t_{1}\right)\left(v_{1}, t_{2}\right)\left(v_{2}, t_{3}\right)\left(x, t_{4}\right) \pi$ is a resolving ($n-4$)-partition, a contradiction. We obtain $G \cong K_{n-5}+\left(K_{2} \cup P_{3}\right)$ if $N_{2}(x)$ induces P_{3}, or $G \cong K_{n-5}+\left(K_{2} \cup K_{3}\right)$ if $N_{2}(x)$ induces K_{3}. Now assume that v_{2} is adjacent to $n-5$ vertices of $N_{1}(x) \backslash\{b\}$ and v_{3} is adjacent to all vertices of $N_{2}(x)$. If $a=b$, then $v_{1} v_{2} \in E(G)$ or v_{3} is adjacent to both v_{1} and v_{2}, by considering Remark 6(1). We deduce G as depicted in Fig. 12 (c)-(f). Otherwise, $a \neq b$ and so that v_{3} is adjacent to both v_{1} and v_{2} by considering Remark 6(2) and we deduce G as depicted in Fig. 12 (g)-(h).

For the remaining case, let both v_{2} and v_{3} be adjacent to all vertices of $N_{1}(x)$. Then, v_{1} is adjacent to at least one of v_{2} or v_{3}, since otherwise $\left(v_{1}\right)\left(a, t_{1}\right)\left(v_{2}, t_{2}\right)\left(v_{3}, t_{3}\right)\left(x, t_{4}\right) \pi$ is a resolving ($n-4$)-partition for $t_{1}, t_{2}, t_{3}, t_{4} \in N_{1}(x) \backslash\{a\}$, a contradiction. We deduce G as depicted in Fig. 13 (a)-(d).
(B2.3) All vertices of $N_{2}(x)$ are adjacent to all vertices of $N_{1}(x)$. We deduce that $G \cong K_{n}-E\left(K_{4}\right)$ if $N_{2}(x)$ induces $\overline{K_{3}}$, or $G \cong K_{n}-E\left(K_{4}-e\right)$ if $v_{1} v_{2}, v_{1} v_{3} \notin E(G)$ and $v_{2} v_{3} \in E(G)$, or $G \cong K_{n}-E\left(K_{1,3}+e\right)$ if $v_{1} v_{2}, v_{1} v_{3} \in$ $E(G)$ and $v_{2} v_{3} \notin E(G)$ or $G \cong K_{n}-E\left(K_{1,3}\right)$ if $N_{2}(x)$ induces K_{3}, as depicted in Fig. 13 (e)-(h).
(C) $\left|N_{1}(x)\right|=2$ and $\left|N_{2}(x)\right|=n-3$. Let $N_{1}(x)=\left\{u_{1}, u_{2}\right\}$. If $N_{2}(x)$ contains five vertices z, a, b, c, d such that $z a, z b \in E(G)$ and $z c, z d \notin E(G)$, then $(x)(z)(a, c)(b, d)\left(u_{1}, t_{1}\right)\left(u_{2}, t_{2}\right) \pi$ is a resolving ($\left.n-4\right)$-partition, for some $t_{1}, t_{2} \in N_{2}(x) \backslash\{z, a, b, c, d\}$ and a singleton partition π, a contradiction. Therefore, any vertex of $N_{2}(x)$ is either adjacent to at most one vertex of $N_{2}(x)$ or it is adjacent to at least $n-5$ vertices of $N_{2}(x)$. On the other hand, if there exist $a, b, a_{1}, a_{2}, b_{1}, b_{2} \in N_{2}(x)$ such that $a a_{1}, b b_{1} \in$ $E(G)$ and $a a_{2}, b b_{2} \notin E(G)$, then $(x)(a)(b)\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\left(u_{1}, t_{1}\right)\left(u_{2}, t_{2}\right) \pi$ is a resolving $(n-4)$-partition, for some $t_{1}, t_{2} \in N_{2}(x) \backslash\left\{a, b, a_{1}, a_{2}, b_{1}, b_{2}\right\}$ and a singleton partition π, a contradiction. Furthermore, if there exist $a_{1}, a_{2}, b_{1}, b_{2} \in N_{2}(x)$ such that $a_{1} b_{1} \in E(G)$ and $a_{1} b_{2}, a_{2} b_{1}, a_{2} b_{2} \notin E(G)$, then $(x)\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\left(u_{1}, t_{1}\right)\left(u_{2}, t_{2}\right) \pi$ is a resolving $(n-4)$-partition, for

Fig. 13. Graph (a) H_{34}, (b) H_{10}, (c) H_{20}, (d) H_{3}, (e) $K_{n}-E\left(K_{4}\right)$, (f) $K_{n}-E\left(K_{4}-e\right)$, (g) $K_{n}-E\left(K_{1,3}+e\right)$ and (h) $K_{n}-E\left(K_{1,3}\right)$.

Fig. 14. Graph (a) $K_{1, n-1}+e$, (b) H_{50}, (c) H_{64} (d) H_{56}, (e) H_{47}, (f) H_{54}, (g) H_{46}, (h) H_{11}, (i) H_{35}, (j) H_{21} and (k) H_{12}.
some $t_{1}, t_{2} \in N_{2}(x) \backslash\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$ and a singleton partition π, a contradiction. Therefore, by considering Lemma $1, N_{2}(x)$ induces one of the graphs (C1) $\overline{K_{n-3}}$, (C2) K_{n-3}, (C3) $K_{1, n-4}$, (C4) $K_{n-4} \cup K_{1}$, (C5) $K_{n-3}-E\left(K_{1, n-5}\right)$, or (C6) $K_{n-3}-e$.
(C1) $N_{2}(x)$ induces $\overline{K_{n-3}}$. If there exists a vertex of $N_{1}(x)$, namely u_{1}, and $a_{1}, a_{2}, b_{1}, b_{2} \in N_{2}(x)$ such that $u_{1} a_{1}, u_{1} a_{2} \notin E(G)$ and $u_{1} b_{1}, u_{1} b_{2} \in$ $E(G)$, then $(x)\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)\left(u_{1}, t_{1}\right)\left(u_{2}, t_{2}\right) \pi$ is a resolving $(n-4)$-partition, for $t_{1}, t_{2} \in N_{2}(x) \backslash\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$ and a singleton partition π, a contradiction. Therefore any vertex of $N_{1}(x)$ is either adjacent to at most one vertex of $N_{2}(x)$ or it is adjacent to at least $n-4$ vertices of $N_{2}(x)$.

If $u_{1} \in N_{1}(x)$ is not adjacent to any vertex of $N_{2}(x)$, then u_{2} is adjacent to all vertices of $N_{2}(x)$ since otherwise $\operatorname{diam}(G)=3$, and $u_{1} u_{2} \in E(G)$ since otherwise $\operatorname{diam}(G)=3$. We obtain $G \cong K_{1, n-1}+e$. If u_{1} is only adjacent to a single vertex $a \in N_{2}(x)$, then u_{2} is adjacent to all vertices of $N_{2}(x)$ and $u_{1} u_{2} \in E(G)$, since otherwise $\operatorname{diam}(G)=$ 3. However, $\left(x, t_{1}\right)\left(u_{1}, t_{2}\right)\left(u_{2}, a, t_{3}\right) \pi$ is a resolving $(n-4)$-partition, for $t_{1}, t_{2}, t_{3} \in N_{2}(x) \backslash\{a\}$ and a singleton partition π, a contradiction. If each u_{1} and u_{2} are adjacent to $n-4$ vertices of $N_{2}(x) \backslash\{a\}$ and $N_{2}(x) \backslash\{b\}$, respectively, with $a \neq b$, then $u_{1} u_{2} \in E(G)$ since otherwise $\operatorname{diam}(G)=$ 3. However, $(x)\left(u_{1}, t_{1}\right)\left(u_{2}, t_{2}\right)\left(a, t_{3}\right) \pi$ is a resolving $(n-4)$-partition, for $t_{1}, t_{2}, t_{3} \in N_{2}(x) \backslash\{a, b\}$ and a singleton partition π, a contradiction. If u_{1} is only not adjacent to a vertex $a \in N_{2}(x)$ and u_{2} is adjacent to all vertices of $N_{2}(x)$, then $u_{1} u_{2} \in E(G)$ and we obtain $G \cong H_{50}$. Now we consider that both $u_{1}, u_{2} \in N_{1}(x)$ are adjacent to all vertices of $N_{2}(x)$. We deduce $G \cong K_{2, n-2}$ if $u_{1} u_{2} \notin E(G)$ or $G \cong K_{2}+\overline{K_{n-2}}$ if $u_{1} u_{2} \in E(G)$. However for these two graphs, $p d(G)=n-2$ by [2].
(C2) $N_{2}(x)$ induces K_{n-3}. If there exists a vertex of $N_{1}(x)$, namely u_{1}, and $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3} \in N_{2}(x)$ such that $u_{1} a_{i} \in E(G)$ and $u_{1} b_{i} \notin E(G)$ for all $1 \leq i \leq 3$, then $(x)\left(u_{1}\right)\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)\left(a_{3}, b_{3}\right)\left(u_{2}, t\right) \pi$ is a resolving $(n-4)$ partition, for $t \in N_{2}(x) \backslash\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}$ and a singleton partition π, a contradiction. Therefore, any vertex of $N_{1}(x)$ is either adjacent to at most two vertices of $N_{2}(x)$ or it is adjacent to at least $n-5$ vertices of $N_{2}(x)$.

If u_{1} is not adjacent to any vertex of $N_{2}(x)$, then u_{2} is adjacent to all vertices of $N_{2}(x)$ since otherwise $\operatorname{diam}(G)=3$, and $u_{1} u_{2} \in E(G)$ since
otherwise $\operatorname{diam}(G)=3$. We obtain $G \cong G_{8}$, but $p d\left(G_{8}\right)=n-2$ by [2]. Now assume that u_{1} is adjacent to a single vertex $a \in N_{2}(x)$. Then u_{2} is adjacent to at least $n-4$ vertices of $N_{2}(x)$. If u_{2} is adjacent to $n-4$ vertices of $N_{2}(x) \backslash\{a\}$, then we obtain $G \cong H_{64}$ if $u_{1} u_{2} \notin E(G)$ or $G \cong H_{56}$ if $u_{1} u_{2} \in E(G)$, as depicted in Fig. 14 (c)-(d). Otherwise, suppose that u_{2} is adjacent to all vertices of $N_{2}(x)$. We obtain $G \cong G_{7}$ if $u_{1} u_{2} \notin E(G)$ or $G \cong H_{47}$ if $u_{1} u_{2} \in E(G)$. However by [2], $\operatorname{pd}\left(G_{7}\right)=n-2$.

Let u_{1} be only adjacent to two vertices $a, b \in N_{2}(x)$. Then u_{2} is adjacent to at least $n-5$ vertices of $N_{2}(x)$, since otherwise $\operatorname{diam}(G)=$ 3. If u_{2} is only adjacent to $n-5$ vertices of $N_{2}(x) \backslash\{a, b\}$, then $\left(u_{2}\right)\left(x, t_{1}\right)\left(u_{1}, t_{2}\right)\left(a, t_{3}\right)\left(b, t_{4}\right) \pi$ is a resolving $(n-4)$-partition, for t_{1}, t_{2}, $t_{3}, t_{4} \in N_{2}(x) \backslash\{a, b\}$ and a singleton partition π, a contradiction. If u_{2} is adjacent to either $n-4$ vertices of $N_{2}(x) \backslash\{a\}$ or it is adjacent to all vertices of $N_{2}(x)$, then $u_{1} u_{2} \notin E(G)$ since otherwise $\left(u_{1}\right)\left(x, t_{1}\right)\left(u_{2}, t_{2}\right)\left(a, t_{3}\right)\left(b, t_{4}\right) \pi$ is also a resolving $(n-4)$-partition, a contradiction. Hence we obtain $G \cong H_{54}$ if u_{2} is adjacent to $n-5$ vertices of $N_{2}(x) \backslash\{a\}$ or $G \cong H_{46}$ if u_{2} is adjacent to all vertices of $N_{2}(x)$.

Now assume that u_{1} is adjacent to $n-5$ vertices of $N_{2}(x) \backslash\{a, b\}$ for some $a, b \in N_{2}(x)$. If u_{2} is not adjacent to all vertices of $N_{2}(x)$, then there exists $c \in N_{2}(x)$ different from a and b such that $u_{2} c \notin$ $E(G)$. However, $\left(u_{1}\right)\left(u_{2}\right)\left(x, t_{1}\right)\left(a, t_{2}\right)\left(b, t_{3}\right)\left(c, t_{4}\right) \pi$ is a resolving $(n-4)$ partition, for $t_{1}, t_{2}, t_{3}, t_{4} \in N_{2}(x) \backslash\{a, b, c\}$, a contradiction. Therefore, u_{2} is adjacent to all vertices of $N_{2}(x)$. Furthermore, if $u_{1} u_{2} \notin E(G)$, then $\left(u_{1}\right)\left(x, u_{2}, t_{1}\right)\left(a, t_{2}\right)\left(b, t_{3}\right) \pi$ is also a resolving $(n-4)$-partition, for $t_{1}, t_{2}, t_{3} \in N_{2}(x) \backslash\{a, b\}$, a contradiction. Therefore, $u_{1} u_{2} \in E(G)$ and we obtain $G \cong H_{11}$.

Let u_{1} be only not adjacent to a vertex $a \in N_{2}(x)$. If u_{2} is also only not adjacent to a single vertex $b \in N_{2}(x)$ where $a \neq b$, then we obtain $G \cong H_{35}$ if $u_{1} u_{2} \notin E(G)$, or $G \cong H_{21}$ if $u_{1} u_{2} \in E(G)$ as depicted in Fig. 14 (i)-(j). Otherwise, assume that u_{2} is adjacent to all vertices of $N_{2}(x)$. Then $u_{1} u_{2} \notin E(G)$ since otherwise $G \cong G_{6}$ and $p d\left(G_{6}\right)=n-2$ by [2]. We deduce $G \cong H_{12}$. If both u_{1} and u_{2} are adjacent to all vertices of $N_{2}(x)$, then we obtain $G \cong G_{1}$ if $u_{1} u_{2} \notin E(G)$ or $G \cong G_{2}$ if $u_{1} u_{2} \in E(G)$. However, for these two graphs G we have $p d(G)=n-2$ by [2].

Fig. 15. Graph (a) $K_{1}+\left(K_{n-4} \cup\left(P_{3}-e\right)\right)$, (b) $K_{1}+\left(K_{n-4} \cup P_{3}\right)$, (c) H_{75}, (d) H_{65}, (e) H_{69}, (f) H_{43}, (g) H_{72} and (h) H_{44}.
(C3) $N_{2}(x)$ induces $K_{1, n-4}$. Let $V\left(N_{2}(x)\right)=\left\{t, t_{i}: 1 \leq i \leq n-4\right\}$ and $E(G)=\left\{t t_{i}: 1 \leq i \leq n-4\right\}$. However, $\left(x, t_{1}\right)\left(u_{1}, t_{2}\right)\left(u_{2}, t_{3}\right)\left(t, t_{4}\right) \pi$ is a resolving ($n-4$)-partition, a contradiction. Therefore, there is no graph G with $\operatorname{pd}(G)=n-3$ satisfying (C3).
(C4) $N_{2}(x)$ induces $K_{n-4} \cup K_{1}$. Let $V\left(N_{2}(x)\right)=\left\{t, t_{i}: 1 \leq i \leq n-4\right\}$ and $E(G)=\left\{t_{i} t_{j}: 1 \leq i<j \leq n-4\right\}$. If there exist $t_{1}, t_{2}, t_{3}, t_{4} \in N_{2}(x)$ and $u_{1} \in N_{1}(x)$ such that $u_{1} t_{1}, u_{1} t_{2} \in E(G)$ but $u_{1} t_{3}, u_{1} t_{4} \notin E(G)$, then $(x)\left(u_{1}\right)\left(t_{1}, t_{3}\right)\left(t_{2}, t_{4}\right)\left(u_{2}, t_{5}\right)\left(t, t_{6}\right) \pi$ is a resolving $(n-4)$-partition, a contradiction. Therefore any vertex of $N_{1}(x)$ is adjacent to at most one vertex of $N_{2}(x) \backslash\{t\}$ or it is adjacent to at least $n-5$ vertices of $N_{2}(x) \backslash\{t\}$.

If u_{1} is not adjacent to any vertex of $N_{2}(x) \backslash\{t\}$, then u_{2} is adjacent to all vertices of $N_{2}(x) \backslash\{t\}$ and $u_{1} u_{2}, u_{2} t \in E(G)$, since otherwise $\operatorname{diam}(G)=$ 3. We deduce $G \cong K_{1}+\left(K_{n-4} \cup\left(P_{3}-e\right)\right)$ if $t u_{1} \notin E(G)$ or $G \cong K_{1}+\left(K_{n-4} \cup\right.$ P_{3}) if $t u_{1} \in E(G)$. If u_{1} is only adjacent to a single vertex $t_{1} \in N_{2}(x) \backslash\{t\}$ and u_{2} is adjacent to $n-5$ vertices of $N_{2}(x) \backslash\left\{t_{1}, t\right\}$, then $u_{1} t, u_{2} t \in E(G)$ since otherwise $\operatorname{diam}(\mathrm{G})=3$. However, $\left(t_{1}\right)\left(x, t_{2}\right)\left(u_{1}, t_{3}\right)\left(u_{2}, t_{4}\right)\left(t, t_{5}\right) \pi$ is a resolving $(n-4)$-partition, a contradiction. Therefore, if u_{1} is only adjacent to a single vertex $t_{1} \in N_{2}(x) \backslash\{t\}$, then u_{2} is adjacent to all vertices $N_{2}(x) \backslash\{t\}, u_{2} t \in E(G)$ and $\left(u_{1} u_{2} \in E(G)\right.$ or $\left.u_{1} t \in E(G)\right)$. However, if $u_{1} u_{2} \in E(G)$, then $\left(u_{1}\right)\left(t_{1}, t_{2}\right)\left(x, t_{3}\right)\left(u_{2}, t_{4}\right)\left(t, t_{5}\right) \pi$ is a resolving $(n-4)$ partition, a contradiction. Therefore we deduce $G \cong H_{75}$.

Now assume that u_{1} is not adjacent to a single vertex $t_{1} \in N_{2}(x)$ and it is adjacent to other vertices $t_{i} \in N_{2}(x)$ for all $2 \leq i \leq n-4$. If u_{2} is also only not adjacent to other single vertex $t_{2} \in N_{2}(x)$, then $\left(u_{1}\right)\left(u_{2}\right)\left(t_{1}, t_{3}\right)\left(t_{2}, t_{4}\right)\left(x, t_{5}\right)\left(t, t_{6}\right) \pi$ is a resolving ($\left.n-4\right)$-partition, a contradiction. Therefore, u_{2} is adjacent to all vertices of $N_{2}(x) \backslash\{t\}$, $u_{2} t \in E(G)$ and $\left(u_{1} u_{2} \in E(G)\right.$ or $\left.u_{1} t \in E(G)\right)$. If $u_{1} u_{2} \notin E(G)$, then $\left(u_{1}\right)\left(t_{1}, t_{2}\right)\left(x, t_{3}\right)\left(u_{2}, t_{4}\right)\left(t, t_{5}\right)$ is a resolving $(n-4)$-partition, a contradiction. Hence we obtain $G \cong H_{65}$ if $u_{1} u_{2} \in E(G)$ and $u_{1} t \notin E(G)$, or $G \cong H_{69}$ if $u_{1} u_{2}, u_{1} t \in E(G)$. Otherwise, let both u_{1} and u_{2} be adjacent to all vertices of $N_{1}(x) \backslash\{t\}$. Then, $u_{i} t, u_{1} u_{2} \in E(G)$ for some $1 \leq i \leq 2$, or $t u_{1}, t u_{2} \in E(G)$. Hence we deduce $G \cong H_{43}$ if $u_{1} t, u_{1} u_{2} \in E(G)$ and $u_{2} t \notin E(G)$, or $G \cong H_{72}$ if $u_{1} t, u_{2} t \in E(G)$ and $u_{1} u_{2} \notin E(G)$, or $G \cong H_{44}$ if $u_{1} u_{2}, u_{1} t, u_{2} t \in E(G)$ (Fig. 15 (f)-(h)).
(C5) $N_{2}(x)$ induces $K_{n-3}-E\left(K_{1, n-5}\right)$. Let $V\left(N_{2}(x)\right)=\left\{v, w, w_{i}: 1 \leq\right.$ $i \leq n-5\}$ and $E\left(N_{2}(x)\right)=\left\{v w, v w_{i}, w_{i} w_{j}: 1 \leq i, j \leq n-5\right\}$. If there exist $u_{1} \in N_{1}(x)$ and $w_{1}, w_{2}, w_{3}, w_{4} \in N_{2}(x)$ such that $u_{1} w_{1}, u_{1} w_{2} \in E(G)$ but $u_{1} w_{3}, u_{1} w_{4} \notin E(G)$, then $(x)\left(u_{1}\right)(w)\left(w_{1}, w_{3}\right)\left(w_{2}, w_{4}\right)\left(u_{2}, w_{5}\right)\left(v, w_{6}\right) \pi$ is a resolving $(n-4)$-partition, a contradiction. Therefore, any vertex of $N_{1}(x)$ is either adjacent to at most one vertex of $w_{i} \in N_{2}(x)$ or it is adjacent at least $n-6$ vertices of $w_{i} \in N_{2}(x)$, for $1 \leq i \leq n-5$.
(C5.1) u_{1} is not adjacent to any vertex $w_{i} \in N_{2}(x)$ and so that u_{2} is adjacent to all vertices $w_{i} \in N_{2}(x)$ for $1 \leq i \leq n-5$. If u_{2} is not adjacent to any other vertices $v, w \in N_{2}(x)$, then $u_{1} v, u_{1} w, u_{1} u_{2} \in E(G)$ since otherwise $\operatorname{diam}(G)=3$. However, $(v)\left(x, w_{1}\right)\left(u_{1}, w_{2}\right)\left(u_{2}, w_{3}\right)\left(w, w_{4}\right) \pi$ is a resolving $(n-4)$-partition, a contradiction. If u_{2} is also adjacent to a single vertex $w \in N_{2}(x)$, then $(w)\left(v, w_{1}\right)\left(x, w_{2}\right)\left(u_{1}, w_{3}\right)\left(u_{2}, w_{4}\right) \pi$ is a resolving $(n-4)$-partition, a contradiction. Otherwise, u_{2} is also adjacent to a single vertex $v \in N_{2}(x)$ and $u_{2} w \notin E(G)$, so that $u_{1} w \in E(G)$. If $v u_{1}, u_{1} u_{2} \in E(G)$, then $\left(u_{1}\right)\left(w, w_{1}\right)\left(u_{2}, w_{2}\right)\left(v, w_{3}\right)\left(x, w_{4}\right) \pi$ is a resolving ($n-4$)-partition, a contradiction. This implies that u_{1} is adjacent to at most one of the vertex v or u_{2}. If u_{1} is not adjacent to any v or u_{2}, then $\operatorname{diam}(G)=3$, a contradiction. Otherwise, u_{1} is only adjacent to one of the vertex u_{2} or v, so that we deduce $G \cong H_{73}$ for these two conditions.

Fig. 16. Graph (a) H_{73}, (b) H_{73} and (c) H_{76}.
(C5.2) If (u_{1} is only adjacent to a single vertex $w_{1} \in N_{2}(x)$ and u_{2} is adjacent to $n-6$ vertices $w_{i} \in N_{2}(x)$ for all $\left.2 \leq i \leq n-5\right)$ or (u_{1} and u_{2} are not adjacent to distinct vertices w_{1} and w_{2}, respectively, and they are adjacent to other $n-6$ vertices of $\left.w_{i} \in N_{2}(x)\right)$, then $(w)\left(u_{2}\right)\left(w_{1}, w_{2}\right)\left(u_{1}, w_{3}\right)\left(v, w_{4}\right)\left(x, w_{5}\right) \pi$ or $(w)\left(u_{1}\right)\left(u_{2}\right)\left(w_{1}, w_{3}\right)\left(w_{2}, w_{4}\right)$ $\left(v, w_{5}\right)\left(x, w_{6}\right) \pi$ is a resolving $(n-4)$-partition, a contradiction.
(C5.3) u_{1} is adjacent to a single vertex $w_{1} \in N_{2}(x)$ and u_{2} is adjacent to all vertices $w_{i} \in N_{2}(x)$ for all $1 \leq i \leq n-5$. If u_{2} is not adjacent to any other vertices $v, w \in N_{2}(x)$ or it is adjacent to a single vertex $w \in N_{2}(x)$, then $\left(u_{1}\right)\left(u_{2}\right)\left(w_{1}, w_{2}\right)\left(v, w_{3}\right)\left(w, w_{4}\right)\left(x, w_{5}\right) \pi$ or $\left(u_{1}\right)(w)\left(w_{1}, w_{2}\right)\left(v, w_{3}\right)\left(u_{2}, w_{4}\right)\left(x, w_{5}\right) \pi$ is a resolving ($\left.n-4\right)$-partition, respectively, a contradiction. Otherwise u_{2} is adjacent to a vertex $v \in$ $N_{2}(x)$ but it is not adjacent to a vertex $w \in N_{2}(x)$ so that $u_{1} w \in E(G)$. For this case, if $u_{1} u_{2} \in E(G)$ or $u_{1} v \in E(G)$, then we obtain a resolving $(n-4)$-partition, namely $\left(u_{1}\right)(w)\left(w_{1}, w_{2}\right)\left(v, w_{3}\right)\left(u_{2}, w_{4}\right)\left(x, w_{5}\right) \pi$ or $\left(u_{1}\right)\left(w_{1}, w_{2}\right)\left(v, w_{3}\right)\left(w, u_{2}\right)\left(x, w_{4}\right)$, respectively. Hence, $u_{1} u_{2}, u_{1} v \notin E(G)$ and we deduce $G \cong H_{76}$ as depicted in Fig. 16 (c).
(C5.4) u_{1} is only not adjacent to a single vertex $w_{1} \in N_{2}(x)$ and it is adjacent to all remaining vertices $w_{i} \in N_{2}(x)$ for all $i \neq 1$, and u_{2} is adjacent to all vertices $w_{i} \in N_{2}(x)$ for all $1 \leq i \leq n-5$. If u_{2} is adjacent to w or it is not adjacent to u_{1}, then $\left(u_{1}\right)(w)\left(w_{1}, w_{2}\right)\left(v, w_{3}\right)\left(u_{2}, w_{4}\right)\left(x, w_{5}\right) \pi$ is a resolving $(n-4)$-partition, a contradiction. Therefore, $u_{2} w \notin E(G)$ and $u_{1} u_{2}, u_{1} w \in E(G)$. Hence we only need to consider the adjacency of a vertex v to the vertices $u_{1}, u_{2} \in N_{1}(x)$. Note that v is adjacent to at least one of $u_{1}, u_{2} \in N_{1}(x)$, since otherwise $\operatorname{diam}(G)=3$. If v is not adjacent to one of u_{1} or u_{2}, then $\left(u_{1}\right)\left(w_{1}, w_{2}\right)\left(u_{2}, w\right)\left(v, w_{3}\right)\left(x, w_{4}\right) \pi$ or $\left(u_{1}\right)\left(u_{2}\right)\left(w_{1}, w_{2}\right)\left(w, w_{3}\right)\left(v, w_{4}\right)\left(x, w_{5}\right) \pi$ is a resolving $(n-4)$-partition, a contradiction. Therefore, v is adjacent to both $u_{1}, u_{2} \in N_{1}(x)$ and we deduce $G \cong H_{67}$ as depicted in Fig. 17 (a).

Now assume that both u_{1} and u_{2} are adjacent to all vertices $w_{i} \in N_{2}(x)$ for $1 \leq i \leq n-5$. If w is adjacent to both u_{1} and u_{2}, then $(w)\left(u_{1}, w_{1}\right)\left(u_{2}, w_{2}\right)\left(v, w_{3}\right)\left(x, w_{4}\right) \pi$ is a resolving $(n-4)$-partition, a contradiction. Furthermore, if both v and w are not adjacent to a single vertex $u_{1} \in N_{1}(x)$ (or similarly to a single vertex $u_{2} \in$ $\left.N_{1}(x)\right)$ and $u_{1} u_{2} \notin E(G)$, then $\left(u_{1}\right)\left(u_{2}, w_{1}\right)\left(v, w_{2}\right)\left(w, w_{3}\right)\left(x, w_{4}\right) \pi$ (or $\left.\left(u_{2}\right)\left(u_{1}, w_{1}\right)\left(v, w_{2}\right)\left(w, w_{3}\right)\left(x, w_{4}\right) \pi\right)$ is also a resolving $(n-4)$-partition, a contradiction. Therefore without loss of generality, we can assume that w is adjacent to $u_{1} \in N_{1}(x)$ and it is not adjacent to $u_{2} \in N_{1}(x)$. If $v u_{1} \in E(G)$ and $v u_{2} \in E(G)$, then $u_{1} u_{2} \in E(G)$ and we obtain $G \cong H_{66}$ as depicted in Fig. 17 (b). If $v u_{1} \notin E(G)$ and $v u_{2} \in E(G)$, then $u_{1} u_{2} \in E(G)$ since otherwise $\left(u_{1}\right)\left(u_{2}, w_{1}\right)\left(w, w_{2}\right)\left(v, w_{3}\right)\left(x, w_{4}\right) \pi$ is a resolving $(n-4)$ partition, a contradiction. We deduce $G \cong H_{70}$ as depicted in Fig. 17 (c). Otherwise $v u_{1}, v u_{2} \in E(G)$ and we obtain $G \cong H_{70}$ if $u_{1} u_{2} \notin E(G)$ or $G \cong H_{45}$ if $u_{1} u_{2} \in E(G)$.

Fig. 19. Graph (a) H_{31}, (b) H_{22}, (c) H_{14}, (d) H_{38}, (e) H_{29}, (f) H_{30}, (g) H_{8}, (h) H_{23}, and (i) $K_{n}-E\left(K_{1, n-3}+e\right.$).
(C6) $N_{2}(x)$ induces $K_{n-3}-e$. Let $e=a b$ and other vertices of $N_{2}(x)$ by t_{i} for $1 \leq i \leq n-5$. If there exists $u_{1} \in N_{1}(x)$ such that $u_{1} t_{1}, u_{1} t_{2} \in E(G)$ and $u_{1} t_{3}, u_{1} t_{4} \notin E(G)$, then $(x)\left(u_{1}\right)(a)\left(t_{1}, t_{3}\right)\left(t_{2}, t_{4}\right)\left(u_{2}, t_{5}\right)\left(b, t_{6}\right) \pi$ is a resolving ($n-4$)-partition, a contradiction. Therefore, any vertex of $N_{1}(x)$ is either adjacent to at most one vertex of $N_{2}(x) \backslash\{a, b\}$ or it is adjacent to at least $(n-6)$ vertices of $N_{2}(x) \backslash\{a, b\}$. Furthermore, if one vertex of $N_{1}(x)$, namely u_{1}, is not adjacent to at least one vertex $t_{1} \in N_{2}(x) \backslash\{a, b\}$ and one other vertex $u_{2} \in N_{1}(x)$ is not adjacent to a vertex $a \in N_{2}(x)$ (similarly to a vertex $b \in N_{2}(x)$), then $(a)\left(t_{1}\right)\left(u_{1}, t_{2}\right)\left(b, t_{3}\right)\left(u_{2}, t_{4}\right)\left(x, t_{5}\right) \pi$ (or $\left.(b)\left(t_{1}\right)\left(u_{1}, t_{2}\right)\left(a, t_{3}\right)\left(u_{2}, t_{4}\right)\left(x, t_{5}\right) \pi\right)$ is a resolving $(n-4)$-partition, a contradiction.
(C6.1) u_{1} is not adjacent to any vertex of $N_{2}(x) \backslash\{a, b\}$. Then u_{2} is adjacent to all vertices of $N_{2}(x)$. If u_{1} is not adjacent to two remaining vertices $a, b \in N_{2}(x)$, then $u_{1} u_{2} \in E(G)$ and we obtain $G \cong K_{1}+\left(K_{n-3}-\right.$ $\left.e \cup K_{2}\right)$. If u_{1} is either adjacent to a single vertex $a \in N_{2}(x)$ or $b \in N_{2}(x)$, then $u_{1} u_{2} \in E(G)$ and we obtain $G \cong H_{51}$. Otherwise, u_{1} is adjacent to both $a, b \in N_{2}(x)$ and we deduce $G \cong H_{55}$ if $u_{1} u_{2} \notin E(G)$ or $G \cong H_{53}$ if $u_{1} u_{2} \in E(G)$ (Fig. 18 (a)-(d)).
(C6.2) u_{1} is adjacent to a single vertex $t_{1} \in N_{2}(x) \backslash\{a, b\}$. If u_{2} is adjacent to $n-4$ vertices $N_{1}(x)$ other than t_{1}, then $(a)\left(t_{1}\right)\left(u_{1}, t_{2}\right)\left(u_{2}, t_{3}\right)\left(x, t_{4}\right)$ $\left(b, t_{5}\right) \pi$ is a resolving $(n-4)$-partition, a contradiction. Therefore, u_{2} is adjacent to all vertices of $N_{2}(x)$. If u_{1} is not adjacent to other two vertices $a, b \in N_{2}(x)$ or it is only adjacent to $a \in N_{2}(x)$ (or similarly to $b \in N_{2}(x)$), then $u_{1} u_{2} \notin E(G)$, since otherwise we have a resolving $(n-4)$-partition, namely $(a)\left(u_{1}\right)\left(t_{1}, t_{2}\right)\left(u_{2}, t_{3}\right)\left(x, t_{4}\right)\left(b, t_{5}\right) \pi$ (or $\left.(b)\left(u_{1}\right)\left(t_{1}, t_{2}\right)\left(u_{2}, t_{3}\right)\left(x, t_{4}\right)\left(a, t_{5}\right) \pi\right)$. Hence we deduce $G \cong H_{57}$ if $u_{1} a, u_{1} b \notin$ $E(G)$ or $G \cong H_{58}$ if u_{1} is either adjacent to a or b. Otherwise, u_{1} is adjacent to both a and b, but $\left(u_{1}\right)\left(u_{2}\right)\left(t_{1}, t_{2}\right)\left(a, t_{3}\right)\left(b, t_{4}\right)\left(x, t_{5}\right) \pi$ is a resolving ($n-4$)-partition, a contradiction.
(C6.3) u_{1} is only not adjacent to a single vertex $t_{1} \in N_{2}(x) \backslash\{a, b\}$. If u_{2} is adjacent to $n-4$ vertices of $N_{2}(x) \backslash\left\{t_{2}\right\}$, then $\left(u_{1}\right)\left(u_{2}\right)(a)\left(t_{1}, t_{3}\right)\left(t_{2}, t_{4}\right)$ $\left(x, t_{5}\right)\left(b, t_{6}\right) \pi$ is a resolving $(n-4)$-partition, a contradiction. There-
fore, u_{2} is adjacent to all vertices $N_{2}(x)$. In this case, $u_{1} u_{2} \in E(G)$, since otherwise we also have a resolving ($n-4$)-partition, namely $\left(u_{1}\right)(a)\left(t_{1}, t_{2}\right)\left(u_{2}, t_{3}\right)\left(b, t_{4}\right)\left(x, t_{5}\right) \pi$. Furthermore, if u_{1} is not adjacent to both $a, b \in N_{2}(x)$, then $\left(u_{1}\right)\left(u_{2}\right)\left(t_{1}, t_{2}\right)\left(a, t_{3}\right)\left(b, t_{4}\right)\left(x, t_{5}\right) \pi$ is a resolving ($n-4$)-partition, a contradiction. Thus we obtain $G \cong H_{31}$ if u_{1} is only adjacent to one of vertices a or b, or $G \cong H_{22}$ if u_{1} is adjacent to both vertices a and b (Fig. 19 (a)-(b)).
(C6.4) u_{1} and u_{2} are adjacent to $n-5$ vertices of $N_{2}(x) \backslash\{a, b\}$. Therefore we only need to consider adjacency of vertices $N_{1}(x) \cup\{a, b\}$. If both a and b are only adjacent to a single vertex of $N_{1}(x)$, namely u_{1}, then $u_{1} u_{2} \in E(G)$ since otherwise $\left(u_{2}\right)\left(u_{1}, t_{1}\right)\left(a, t_{2}\right)\left(b, t_{3}\right)\left(x, t_{4}\right) \pi$ is a resolving ($n-4$)-partition, a contradiction. Thus we obtain $G \cong H_{14}$. If a and b are adjacent to different vertices of $N_{1}(x)$, namely $a u_{1}, b u_{2} \in E(G)$ and $a u_{2}, b u_{1} \notin E(G)$, then we obtain $G \cong H_{38}$ or $G \cong H_{29}$ for $u_{1} u_{2} \notin E(G)$ or $u_{1} u_{2} \in E(G)$, respectively. Now assume that one vertex of a or b is adjacent to all vertices $N_{1}(x)$ and one other vertex is only adjacent to a single vertex of $N_{1}(x)$, namely $a u_{1}, a u_{2}, b u_{1} \in E(G)$ and $b u_{2} \notin E(G)$. Then we deduce $G \cong H_{30}$ or $G \cong H_{8}$ for $u_{1} u_{2} \notin E(G)$ or $u_{1} u_{2} \in E(G)$, respectively. Otherwise, both a and b are adjacent to all vertices of $N_{1}(x)$, and thus $G \cong H_{23}$ or $G \cong K_{n}-E\left(K_{1, n-3}+e\right)$ for $u_{1} u_{2} \notin E(G)$ or $u_{1} u_{2} \in E(G)$, respectively.
(D) $\left|N_{1}(x)\right|=n-3$ and $\left|N_{2}(x)\right|=2$. Let $N_{2}(x)=\left\{v_{1}, v_{2}\right\}$. By a similar reason to Subcase (C), if $N_{1}(x)$ contains vertices z_{1}, z_{2}, a, b, c, d such that

> (i) $z_{1} a, z_{1} b \in E(G)$ and $z_{1} c, z_{1} d \notin E(G)$, or
> (ii) $z_{1} a, z_{2} b \in E(G)$ and $z_{1} c, z_{2} d \notin E(G)$, or
> (iii) $a b \in E(G)$ and $a d, b c, c d \notin E(G)$,
then $(x)\left(z_{1}\right)\left(z_{2}\right)(a, c)(b, d)\left(v_{1}, t_{1}\right)\left(v_{2}, t_{2}\right) \pi$ is a resolving $(n-4)$ partition, for $t_{1}, t_{2} \in N_{1}(x) \backslash\left\{z_{1}, z_{2}, a, b, c, d\right\}$, a contradiction. Therefore, by considering Lemma $1, N_{1}(x)$ induces one of the graphs (D1) $\overline{K_{n-3}}$, (D2) K_{n-3}, (D3) $K_{1, n-4}$, (D4) $K_{n-4} \cup K_{1}$, (D5) $K_{n-3}-E\left(K_{1, n-5}\right)$, or (D6) $K_{n-3}-e$.

Fig. 20. Graph (a) $K_{3, n-3}$, (b) $\left(K_{1} \cup K_{2}\right)+\overline{K_{n-3}}$, (c) H_{43}, (d) H_{47}, (e) H_{46}, (f) H_{12}, (g) H_{7} and (h) H_{11}.

Fig. 21. Graph (a) H_{44}, (b) H_{48}, (c) H_{45}, (d) H_{49}, (e) H_{8}, (f) H_{6}, (g) H_{4} and (h) H_{1}.
(D1) $N_{1}(x)$ induces $\overline{K_{n-3}}$. Note that for any vertex $v_{i} \in N_{2}(x), 1 \leq i \leq$ 2, there exists at least one vertex $t \in N_{1}(x)$ such that $v_{i} t \in E(G)$, and conversely for any $t \in N_{1}(x)$ there exist $v_{i} \in N_{2}(x)$ such that $t v_{i} \in E(G)$, since otherwise $\operatorname{diam}(G)=3$. If there exists a vertex of $N_{2}(x)$, namely v_{1}, and $a, b, c, d \in N_{1}(x)$ such that $v_{1} a, v_{1} b \in E(G)$ and $v_{1} c, v_{1} d \notin E(G)$, then $(x)\left(v_{1}, t_{1}\right)(a, c)(b, d)\left(v_{2}, t_{2}\right) \pi$ is a resolving ($\left.n-4\right)$-partition, for $t_{1}, t_{2} \in$ $N_{1}(x) \backslash\{a, b, c, d\}$, a contradiction. Therefore, any vertex of $N_{2}(x)$ is adjacent to $1, n-4$ or $n-3$ vertices of $N_{1}(x)$. Now consider the following 4 conditions.

1. If v_{1} is adjacent to a single vertex $t_{1} \in N_{1}(x)$ and v_{2} is adjacent to $n-4$ vertices of $N_{1}(x) \backslash\left\{t_{1}\right\}$, or
2. if v_{1} is adjacent to a single vertex $t_{1} \in N_{1}(x)$ and v_{2} is adjacent to all vertices of $N_{1}(x)$, or
3. if each v_{1} and v_{2} are only not adjacent to a single vertex $t_{1} \in N_{1}(x)$ and $t_{2} \in N_{1}(x)$, respectively, or
4. if v_{1} is only not adjacent to a single vertex $t_{1} \in N_{1}(x)$ and v_{2} is adjacent to all vertices of $N_{1}(x)$,
then $(x, y)\left(v_{1}, t\right)\left(t_{1}, t_{3}\right)\left(v_{2}, t_{2}\right) \pi$ is a resolving ($n-4$)-partition, for $y, t, t_{3} \in$ $N_{1}(x) \backslash\left\{t_{1}, t_{2}\right\}$, a contradiction. Thus, we can conclude that any vertex of $N_{2}(x)$ is adjacent to all vertices $N_{1}(x)$. We deduce $G \cong K_{3, n-3}$ if $v_{1} v_{2} \notin$ $E(G)$ or $G \cong\left(K_{1} \cup K_{2}\right)+\overline{K_{n-3}}$ if $v_{1} v_{2} \in E(G)$, as depicted in Fig. 20 (a)(b).
(D2) $N_{1}(x)$ induces K_{n-3}. If there exists a vertex $v_{1} \in N_{2}(x)$ and $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3} \in N_{1}(x)$ such that $v_{1} a_{i} \in E(G)$ and $v_{1} b_{i} \notin E(G)$ for all $1 \leq i \leq 3$, then $(x)\left(v_{1}\right)\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right)\left(a_{3}, b_{3}\right)\left(v_{2}, t\right) \pi$ is a resolving $(n-4)$ partition, for $t \in N_{2}(x) \backslash\left\{a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}\right\}$ and a singleton partition π, a contradiction. Therefore, any vertex of $N_{2}(x)$ is either adjacent to at most two vertices of $N_{2}(x)$ or it is adjacent to at least $n-5$ vertices of $N_{1}(x)$.
(D2.1) v_{1} is only adjacent to a single vertex $t \in N_{1}(x)$. If v_{2} is also only adjacent to a vertex $t \in N_{1}(x)$, then $G \cong G_{9}$ or $G \cong G_{8}$ for $v_{1} v_{2} \notin E(G)$ or for $v_{1} v_{2} \in E(G)$, respectively. But, $p d\left(G_{9}\right)=p d\left(G_{8}\right)=n-2$ by [2]. If v_{2} is only adjacent to a single vertex $s \in N_{1}(x)$ where $s \neq t$, then $v_{1} v_{2} \in E(G)$, since otherwise $\operatorname{diam}(G)=3$. However, we obtain $G \cong G_{7}$ and $p d\left(G_{7}\right)=n-2$ by [2]. If v_{2} is adjacent to two vertices $s, t \in N_{1}(x)$, then $G \cong H_{43}$ or $G \cong H_{47}$ for $v_{1} v_{2} \notin E(G)$ or for $v_{1} v_{2} \in E(G)$, respectively. If v_{2} is adjacent to two vertices $s, r \in N_{1}(x)$ distinct from t, then $v_{1} v_{2} \in E(G)$ and thus $G \cong H_{46}$. If v_{2} is adjacent to $(n-5)$ vertices of $N_{1}(x) \backslash\{s, t\}$ (or $N_{1}(x) \backslash\{r, s\}$ where $r, s \neq t$), then
$\left(v_{2}\right)\left(t, t_{1}\right)\left(s, t_{2}\right)\left(v_{2}, t_{3}\right)\left(x, t_{4}\right) \pi$ (or $\left.\left(v_{1}\right)\left(v_{2}\right)\left(t, t_{1}\right)\left(r, t_{2}\right)\left(s, t_{3}\right)\left(x, t_{4}\right) \pi\right)$ is a resolving ($n-4$)-partition, for $t_{1}, t_{2}, t_{3}, t_{4} \in N_{1}(x) \backslash\{t, r, s$,$\} , a contradiction. If$ v_{2} is adjacent to $(n-4)$ vertices of $N_{1}(x) \backslash\{t\}$, then $v_{1} v_{2} \in E(G)$ since otherwise $\operatorname{diam}(G)=3$ and thus $G \cong H_{12}$. If v_{2} is adjacent to $(n-4)$ vertices of $N_{1}(x) \backslash\{s\}$ for $s \neq t$, then $G \cong H_{7}$ or $G \cong H_{11}$ for $v_{1} v_{2} \notin E(G)$ or for $v_{1} v_{2} \in E(G)$, respectively. Otherwise, v_{2} is adjacent to all vertices of $N_{1}(x)$ and we obtain $G \cong K_{1}+\left(K_{1} \cup K_{n-2}-e\right)$ or $G \cong G_{6}$ for $v_{1} v_{2} \notin E(G)$ or for $v_{1} v_{2} \in E(G)$, respectively. But $p d\left(K_{1}+\left(K_{1} \cup K_{n-2}-e\right)\right)=p d\left(G_{6}\right)=$ $n-2$ by [2], a contradiction.
(D2.2) v_{1} is only adjacent to two vertices $s, t \in N_{1}(x)$. If v_{2} is also only adjacent to two vertices $s, t \in N_{1}(x)$, then $G \cong H_{44}$ or $G \cong H_{48}$ for $v_{1} v_{2} \notin E(G)$ or for $v_{1} v_{2} \in E(G)$, respectively. If v_{2} is only adjacent to two vertices $r, s \in N_{1}(x)$ where $r \neq t$, then $G \cong$ H_{45} or $G \cong H_{49}$ for $v_{1} v_{2} \notin E(G)$ or for $v_{1} v_{2} \in E(G)$, respectively. If v_{2} is only adjacent to two vertices $p, q \in N_{1}(x)$ distinct from two vertices $s, t \in N_{1}(x)$, then we have a resolving $(n-4)$ partition, namely $\left(v_{1}\right)\left(v_{2}\right)\left(s, s_{1}\right)\left(t, t_{1}\right)\left(p, p_{1}\right)\left(q, q_{1}\right) \pi$ for $s_{1}, t_{1}, p_{1}, q_{1} \in N_{1}(x) \backslash$ $\{s, t, p, q\}$, a contradiction. If v_{2} is adjacent to $n-5$ vertices of $N_{1}(x) \backslash\{p, q\}$ where $p \neq s$ and q may equal to t (or $N_{1}(x) \backslash\{s, t\}$), then $\left(v_{1}\right)\left(v_{2}\right)\left(s, s_{1}\right)\left(t, t_{1}\right)\left(p, p_{1}\right)\left(x, q_{1}\right)$ (or $\left.\left(v_{2}\right)\left(s, s_{1}\right)\left(t, t_{1}\right)\left(v_{1}, t_{2}\right)\left(x, t_{3}\right) \pi\right)$ is a resolving ($n-4$)-partition, for $p_{1}, q_{1}, s_{1}, t_{1} \in N_{1}(x) \backslash\{s, t, p, q\}$ (or $s_{1}, t_{1}, t_{2}, t_{3} \in$ $\left.N_{1}(x) \backslash\{s, t\}\right)$, a contradiction. If v_{2} is adjacent to $n-4$ vertices of $N_{1}(x) \backslash\{p\}$ where $p \neq s, t$, then we have a resolving $(n-4)$ partition, namely $\left(v_{1}\right)\left(v_{2}\right)\left(s, s_{1}\right)\left(t, t_{1}\right)\left(p, p_{1}\right)\left(x, x_{1}\right) \pi$ for $s_{1}, t_{1}, p_{1}, x_{1} \in N_{1}(x) \backslash\{s, t, p\}$, a contradiction. If v_{2} is adjacent to $n-4$ vertices of $N_{1}(x) \backslash\{s\}$, then we obtain $G \cong H_{8}$ or $G \cong H_{6}$ for $v_{1} v_{2} \notin E(G)$ or $v_{1} v_{2} \in E(G)$, respectively. Otherwise, v_{2} is adjacent to all vertices of $N_{1}(x)$ and we deduce $G \cong H_{4}$ or $G \cong H_{1}$ for $v_{1} v_{2} \notin E(G)$ or $v_{1} v_{2} \in E(G)$, respectively (Fig. 21).
(D2.3) v_{1} is adjacent to $(n-5)$ vertices of $N_{1}(x) \backslash\left\{t_{1}, t_{2}\right\}$. Suppose that v_{2} is not adjacent to at least one vertex $t_{3} \in N_{1}(x)$ different from t_{1} and t_{2}. However, $\left(v_{1}\right)\left(v_{2}\right)\left(t_{1}, t_{4}\right)\left(t_{2}, t_{5}\right)\left(t_{3}, t_{6}\right)\left(x, t_{7}\right) \pi$ is a resolving $(n-4)$ partition, for $t_{4}, t_{5}, t_{6} \in N_{1}(x) \backslash\left\{t_{1}, t_{2}, t_{3}\right\}$, a contradiction. Therefore, if v_{2} is not adjacent to some vertices of $N_{1}(x)$, then they are elements of $\left\{t_{1}, t_{2}\right\}$. Now, for the following conditions: (v_{2} is also adjacent to $n-5$ vertices of $N_{1}(x) \backslash\left\{t_{1}, t_{2}\right\}$), or (v_{2} is adjacent to $n-4$ vertices $N_{1}(x) \backslash$ $\left\{t_{1}\right\}$), or (v_{2} is adjacent to all vertices of $N_{1}(x)$), then $v_{1} v_{2} \in E(G)$ since otherwise $\left(v_{1}\right)\left(t_{1}, t_{3}\right)\left(t_{2}, t_{4}\right)\left(v_{2}, t_{5}\right)\left(x, t_{6}\right) \pi$ is a resolving ($n-4$)-partition, for $t_{3}, t_{4}, t_{5}, t_{6} \in N_{1}(x) \backslash\left\{t_{1}, t_{2}\right\}$ a contradiction. Hence we deduce $G \cong$ $K_{n}-E\left(K_{2,3}\right)$, or $G \cong H_{9}$, or $G \cong H_{3}$ for the previous three conditions, respectively (Fig. 22 (a)-(c)).

Fig. 22. Graph (a) $K_{n}-E\left(K_{2,3}\right)$, (b) H_{9}, (c) H_{3}, (d) $K_{n}-E\left(K_{4}-e\right)$, (e) H_{82}, (f) $K_{n}-E\left(P_{5}\right)$ and (g) $K_{n}-E\left(K_{1,3}+e\right)$.

Fig. 23. Graph (a) $K_{1}+\left(K_{1, n-4} \cup 2 K_{1}\right)$, (b) $K_{1}+\left(K_{1, n-4} \cup K_{2}\right)$, (c) H_{78}, (d) H_{79}, (e) $K_{1}+\left(K_{2, n-4} \cup K_{1}\right)$, (f) H_{80} and (g) H_{81}.
(D2.4) v_{1} is adjacent to ($n-4$) vertices of $N_{1}(x) \backslash\left\{t_{1}\right\}$. If v_{2} is also adjacent to $(n-4)$ of $N_{1}(x) \backslash\left\{t_{1}\right\}$, then $v_{1} v_{2} \notin E(G)$, since otherwise $G \cong K_{n}-E\left(C_{4}\right)$ and $p d\left(K_{n}-E\left(C_{4}\right)\right)=n-2$ by [2]. Thus we deduce $G \cong K_{n}-E\left(K_{4}-e\right)$. If v_{2} is adjacent to $n-4$ vertices of $N_{1}(x) \backslash\left\{t_{2}\right\}$ for $t_{1} \neq t_{2}$, then we obtain $G \cong H_{82}$ or $G \cong K_{n}-E\left(P_{5}\right)$ for $v_{1} v_{2} \notin E(G)$ or $v_{1} v_{2} \in E(G)$, respectively. If v_{2} is adjacent to all vertices of $N_{1}(x)$, then $v_{1} v_{2} \notin E(G)$, since otherwise $G \cong K_{n}-E\left(P_{4}\right)$ and $p d\left(K_{n}-E\left(P_{4}\right)\right)=$ $n-2$ by [2]. We deduce $G \cong K_{n}-E\left(K_{1,3}+e\right)$. Now for the remaining condition, assume that both v_{1} and v_{2} are adjacent to all vertices of $N_{1}(x)$. However, we obtain that $G \cong K_{n}-E\left(K_{3}\right)$ if $v_{1} v_{2} \notin E(G)$ or $G \cong$ $K_{n}-E\left(P_{3}\right)$ if $v_{1} v_{2} \in E(G)$ and $p d\left(K_{n}-E\left(K_{3}\right)\right)=p d\left(K_{n}-E\left(P_{3}\right)\right)=n-2$ by [2], a contradiction.
(D3) $N_{1}(x)$ induces $K_{1, n-4}$. Let $V\left(N_{1}(x)\right)=\left\{t, t_{i}: 1 \leq i \leq n-4\right\}$ and $E\left(N_{1}(x)\right)=\left\{t t_{i}: 1 \leq i \leq n-4\right\}$. Note that if a vertex of $N_{2}(x)$ is not adjacent to a vertex $t \in N_{1}(x)$, then it is adjacent to all vertices $t_{i} \in$ $N_{1}(x)$ for $1 \leq i \leq n-4$, since otherwise $\operatorname{diam}(G)=3$. Furthermore, if each v_{1} and v_{2} are adjacent to at least one vertex $t_{i} \in N_{1}(x)$ and $t_{j} \in$ $N_{1}(x)$, respectively, for $1 \leq i \leq j \leq n-4$, then $\left(t_{i}\right)\left(t_{j}\right)\left(t, t_{1}\right)\left(v_{1}, t_{2}\right)\left(x, t_{4}\right) \pi$ is a resolving ($n-4$)-partition, for $i, j \neq 1,2,3,4$, a contradiction. Therefore, there exists at most one vertex of $N_{2}(x)$ which is adjacent the vertices $t_{i} \in N_{1}(x)$ for some $1 \leq i \leq n-4$. Furthermore, if there exists a vertex of $N_{2}(x)$, namely v_{1}, and $t_{1}, t_{2}, t_{3}, t_{4} \in N_{2}(x)$ such that $v_{1} t_{1}, v_{2} t_{2} \in E(G)$ and $v_{1} t_{3}, v_{1} t_{4} \notin E(G)$, then $\left(v_{1}\right)\left(t_{1}, t_{3}\right)\left(t_{2}, t_{4}\right)\left(t, t_{5}\right)\left(x, t_{6}\right) \pi$ is a resolving $(n-$ 4)-partition, a contradiction. This implies that any vertex of $N_{2}(x)$ is adjacent to at most one vertex of $t_{i} \in N_{1}(x)$ or it is adjacent to at least $n-5$ vertices of $t_{i} \in N_{1}(x)$.

Let both v_{1} and v_{2} are adjacent to a vertex $t \in N_{1}(x)$. If v_{1} and v_{2} are not adjacent to any other vertex $t_{i} \in N_{1}(x)$, we deduce $G \cong K_{1}+\left(K_{1, n-4} \cup\right.$ $\left.2 K_{1}\right)$ or $G \cong K_{1}+\left(K_{1, n-4} \cup K_{2}\right)$ for $v_{1} v_{2} \notin E(G)$ or $v_{1} v_{2} \in E(G)$, respectively. If one vertex of $N_{1}(x)$, namely v_{1}, is also adjacent to a single vertex $t_{1} \in N_{1}(x)$ or it is only not adjacent to a single vertex $t_{1} \in N_{1}(x)$, then $v_{1} v_{2} \notin E(G)$ or $v_{1} v_{2} \in E(G)$, respectively. Since otherwise we have a resolving $(n-4)$-partition, namely $\left(v_{1}\right)\left(t_{1}, t_{2}\right)\left(t, t_{3}\right)\left(v_{2}, t_{4}\right)\left(x, t_{5}\right) \pi$. Hence for this case, v_{2} is not adjacent to any other vertex $N_{1}(x)$ and we obtain $G \cong H_{78}$ or $G \cong H_{79}$. If a vertex of $N_{1}(x)$, namely v_{1}, is adjacent to all vertices $t_{i} \in N_{1}(x)$ for $1 \leq i \leq n-4$, then v_{2} is not adjacent to any vertex $t_{i} \in N_{1}(x)$ and we obtain $G \cong K_{1}+\left(K_{2, n-4} \cup K_{1}\right)$ for $v_{1} v_{2} \notin E(G)$ or $G \cong H_{80}$ for $v_{1} v_{2} \in E(G)$. Otherwise, assume that v_{1} is adjacent to a vertex $t \in N_{1}(x)$ and v_{2} is not adjacent to $t \in N_{1}(x)$, so that v_{2} is adjacent to all vertices $t_{i} \in N_{1}(x)$ for $1 \leq i \leq n-4$. This implies that v_{1} is not ad-
jacent to any other vertex $t_{i} \in N_{1}(x)$ and $v_{1} v_{2} \in E(G)$, since otherwise $\operatorname{diam}(G)=3$. We deduce $G \cong H_{81}$ (Fig. 23).
(D4) $N_{1}(x)$ induces $K_{n-4} \cup K_{1}$. Let $V\left(N_{1}(x)\right)=\left\{t, t_{i}: 1 \leq i \leq n-4\right\}$ and $E\left(N_{1}(x)\right)=\left\{t_{i} t_{j}: 1 \leq i<j \leq n-4\right\}$. If there exists a vertex of $N_{2}(x)$, namely v_{1}, such that $v_{1} t_{1}, v_{1} t_{2} \in E(G)$ and $v_{1}, t_{3}, v_{1} t_{4} \notin E(G)$, then $(x)\left(v_{1}\right)\left(t_{1}, t_{3}\right)\left(t_{2}, t_{4}\right)\left(t, t_{5}\right)\left(v_{2}, t_{6}\right) \pi$ is a resolving ($\left.n-4\right)$-partition, a contradiction. Therefore, any vertex of $N_{2}(x)$ is adjacent to $1, n-5$ or $n-4$ vertices of $N_{1}(x) \backslash\{t\}$.

Let v_{1} be only adjacent to a single vertex $t_{1} \in N_{1}(x) \backslash\{t\}$. If v_{2} is also only adjacent to a single $t_{1} \in N_{1}(x)$, then $t v_{1}, t v_{2} \in E(G)$ or $t v_{i}, v_{1} v_{2} \in$ $E(G)$ for some $i=1,2$, since otherwise $\operatorname{diam}(G)=3$. We deduce $G \cong H_{75}$ if $t v_{1}, t v_{2} \in E(G)$ and $v_{1} v_{2} \notin E(G)$, or $G \cong H_{73}$ if t is only adjacent to one vertex of v_{1} or v_{2} and $v_{1} v_{2} \in E(G)$, or $G \cong H_{74}$ if $t v_{1}, t v_{2}, v_{1} v_{2} \in$ $E(G)$. Similarly, if v_{2} is only adjacent to a single vertex $t_{2} \in N_{1}(x) \backslash\{t\}$, then $t v_{1}, t v_{2} \in E(G)$ or $t v_{i}, v_{1} v_{2} \in E(G)$ for some $i=1$, 2 . We deduce $G \cong$ H_{76} if $\left(t v_{1}, t v_{2} \in E(G)\right.$ and $\left.v_{1} v_{2} \notin E(G)\right)$ or (t is only adjacent to one vertex of v_{1} or v_{2} and $v_{1} v_{2} \in E(G)$), or $G \cong H_{77}$ if $t v_{1}, t v_{2}, v_{1} v_{2} \in E(G)$. If v_{2} is adjacent to $(n-5)$ vertices of $N_{1}(x) \backslash\left\{t, t_{1}\right\}$ or $N_{1}(x) \backslash\left\{t, t_{2}\right\}$, then $\left(v_{2}\right)\left(t_{1}, t_{2}\right)\left(v_{2}, t_{3}\right)\left(t, t_{4}\right)\left(x, t_{5}\right) \pi$ or $\left(v_{1}\right)\left(v_{2}\right)\left(t_{1}, t_{3}\right)\left(t_{2}, t_{4}\right)\left(t, t_{5}\right)\left(x, t_{6}\right) \pi$ is a resolving ($n-4$)-partition, respectively, a contradiction. Otherwise, v_{2} is adjacent to $(n-4)$ vertices $N_{1}(x) \backslash\{t\}$. In this case t is adjacent to all vertices of N_{2}, or it is adjacent to a single vertex of N_{2} and $v_{1} v_{2} \in E(G)$, since otherwise $\operatorname{diam}(G)=3$. We deduce $G \cong H_{55}$ if $t v_{1}, t v_{2} \in E(G)$ and $v_{1} v_{2} \notin E(G)$, or $G \cong H_{54}$ if $t v_{1}, v_{1} v_{2} \in E(G)$ and $t v_{2} \notin E(G)$, or $G \cong H_{70}$ if $t v_{2}, v_{1} v_{2} \in E(G)$ and $t v_{1} \notin E(G)$, or $G \cong H_{61}$ if $t v_{1}, t v_{2}, v_{1} v_{2} \in E(G)$ (Fig. 24).

Now assume that v_{1} is adjacent to $(n-5)$ vertices of $N_{1}(x) \backslash$ $\left\{t, t_{1}\right\}$. If v_{2} is adjacent to $(n-5)$ vertices of $N_{1}(x) \backslash\left\{t, t_{2}\right\}$, then $\left(v_{1}\right)\left(v_{2}\right)\left(t_{1}, t_{3}\right)\left(t_{2}, t_{4}\right)\left(t, t_{5}\right)\left(x, t_{6}\right) \pi$ is a resolving ($n-4$)-partition, a contradiction. If v_{2} is adjacent to $(n-5)$ vertices of $N_{1}(x) \backslash\left\{t, t_{1}\right\}$ or it is adjacent to all $(n-4)$ vertices of $N_{1}(x) \backslash\{t\}$, then $v_{1} v_{2} \in$ $E(G)$, since otherwise we have a resolving ($n-4$)-partition, namely $\left(v_{1}\right)\left(t_{1}, t_{2}\right)\left(t, t_{3}\right)\left(v_{2}, t_{4}\right)\left(x, t_{5}\right) \pi$, a contradiction. Hence, (for v_{2} is adjacent to ($n-5$) vertices of $N_{1}(x) \backslash\left\{t, t_{1}\right\}$, we deduce $G \cong H_{38}$ if t is only adjacent to one of v_{1} or v_{2}, or $G \cong H_{37}$ if $t v_{1}, t v_{2} \in E(G)$) and (for v_{2} is adjacent to $(n-4)$ vertices of $N_{1}(x) \backslash\{t\}$, we deduce $G \cong H_{35}$ if $t v_{1} \in E(G)$ and $t v_{2} \notin E(G)$, or $G \cong H_{30}$ if $t v_{2} \in E(G)$ and $t v_{1} \notin E(G)$, or $G \cong H_{28}$ if $t v_{1}, t v_{2} \in E(G)$). Otherwise, assume that both v_{1} and v_{2} are adjacent to $(n-4)$ vertices of $N_{1}(x) \backslash\{t\}$. Then $t v_{1}, t v_{2} \in E(G)$ or (t is adjacent to one of $v_{1}, v_{2} \in N_{2}(x)$ and $v_{1} v_{2} \in E(G)$), since otherwise $\operatorname{diam}(G)=3$. We deduce $G \cong K_{n}-E\left(K_{1, n-4} \cup K_{3}\right)$ if $t v_{1}, t v_{2} \in E(G)$

Fig. 24. Graph (a) H_{75}, (b) H_{73}, (c) H_{74}, (d) H_{76}, (e) H_{77}, (f) H_{55}, (g) H_{54}, (h) H_{70} and (i) H_{61}.

Fig. 25. Graph (a) H_{38}, (b) H_{37}, (c) H_{35}, (d) H_{30}, (e) H_{28}, (f) $K_{n}-E\left(K_{1, n-4} \cup K_{3}\right),(g) H_{12}$ and (h) $K_{n}-E\left(K_{1, n-4} \cup P_{3}\right)$.

Fig. 26. Graph (a) H_{65}, (b) H_{66}, (c) H_{51}, (d) H_{52}, (e) H_{58}, (f) H_{71} and (g) H_{62}.
and $v_{1} v_{2} \notin E(G)$, or $G \cong H_{12}$ if $t v_{1}, v_{1} v_{2} \in E(G)$ and $t v_{2} \notin E(G)$, or $G \cong K_{n}-E\left(K_{1, n-4} \cup P_{3}\right)$ if $t v_{1}, t v_{2}, v_{1} v_{2} \in E(G)$ (Fig. 25).
(D5) $N_{1}(x)$ induces $K_{n-3}-E\left(K_{1, n-5}\right)$. Let $V\left(N_{1}(x)\right)=\left\{v, w, w_{i}: 1 \leq\right.$ $i \leq n-5\}$ and $E\left(N_{1}(x)\right)=\left\{v w, v w_{i}, w_{i} w_{j}: 1 \leq i, j \leq n-5\right\}$. If there exist a vertex of $N_{2}(x)$, namely v_{1}, and $w_{1}, w_{2}, w_{3}, w_{4} \in N_{1}(x)$ such that $v_{1} w_{1}, v_{1} w_{2} \in E(G)$ but $v_{1} w_{3}, v_{1} w_{4} \notin E(G)$, then $(x)\left(v_{1}\right)(w)\left(w_{1}, w_{3}\right)$ $\left(w_{2}, w_{4}\right)\left(v_{2}, w_{5}\right)\left(v, w_{6}\right) \pi$ is a resolving $(n-4)$-partition, a contradiction. Therefore, any vertex of $N_{2}(x)$ is either adjacent to at most one vertex of $w_{i} \in N_{1}(x)$ or it is adjacent to at least $n-6$ vertices of $w_{i} \in N_{1}(x)$, for $1 \leq i \leq n-5$.
(D5.1) v_{1} is not adjacent to any vertex $w_{i} \in N_{1}(x), 1 \leq i \leq n-5$, so that v_{1} is adjacent to a vertex $v \in N_{1}(x)$, since otherwise $\operatorname{diam}(G)=3$. If v_{2} is not adjacent to at least one vertex $w_{1} \in N_{1}(x)$, then we have a resolving $(n-4)$-partition, namely $(w)\left(w_{1}\right)\left(v_{1}, w_{2}\right)\left(v_{2}, w_{3}\right)\left(v, w_{4}\right)\left(x, w_{5}\right) \pi$, a contradiction. Therefore, v_{2} is adjacent to all vertices $w_{i} \in N_{1}(x)$ for all $1 \leq i \leq n-5$. Furthermore, we have that $v_{2} w \notin E(G)$ and $v_{2} v \in E(G)$, since otherwise $(w)\left(v_{1}, w_{1}\right)\left(v_{2}, w_{2}\right)\left(v, w_{3}\right)\left(x, w_{4}\right) \pi$ or $\left(v_{2}\right)\left(v_{1}, w_{1}\right)\left(w, w_{2}\right)$ $\left(v, w_{3}\right)\left(x, w_{4}\right) \pi$ is a resolving $(n-4)$-partition, a contradiction. We deduce $G \cong H_{65}$ if $w v_{1}, v_{1} v_{2} \notin E(G)$, or $G \cong H_{66}$ if $w v_{1} \notin E(G)$ and $v_{1} v_{2} \in E(G)$, or $G \cong H_{51}$ if $w v_{1} \in E(G)$ and $v_{1} v_{2} \notin E(G)$, or $G \cong H_{52}$ if $w v_{1}, v_{1} v_{2} \in E(G)$, as depicted in Fig. 26 (a)-(d), respectively.
(D5.2) v_{1} is only adjacent to a single vertex $w_{1} \in N_{1}(x)$ and $v_{1} w_{i} \notin E(G)$ for all other remaining $i \neq 1$. If (v_{2} is also only adjacent to a single vertex $w_{1} \in N_{1}(x)$ and $v_{2} w_{j} \notin E(G)$ for all $\left.j \neq 1\right)$ or (v_{2} is only adjacent to a single vertex $w_{2} \in N_{1}(x)$ and $v_{2} w_{j} \notin E(G)$ for all $j \neq 2$), then we have a resolving ($n-4$)-partition, namely $(w)\left(v_{1}, w_{1}\right)\left(v_{2}, w_{2}\right)\left(v, w_{3}\right)\left(x, w_{4}\right) \pi$, a contradiction. If v_{2} is only not adjacent to a single vertex $w_{1} \in N_{1}(x)$ and $v_{2} w_{j} \in E(G)$ for all $j \neq$ 1 (or v_{2} is only not adjacent to a single vertex $w_{2} \in N_{1}(x)$ and
$v_{2} w_{j} \in E(G)$ for all $j \neq 2$), then $(w)\left(w_{1}\right)\left(v_{1}, w_{2}\right)\left(v_{2}, w_{3}\right)\left(v, w_{4}\right)\left(x, w_{5}\right) \pi$ (or $\left.(w)\left(w_{2}\right)\left(v_{1}, w_{1}\right)\left(v_{2}, w_{3}\right)\left(v, w_{4}\right)\left(x, w_{5}\right) \pi\right)$ is a resolving ($\left.n-4\right)$-partition, a contradiction. Therefore, v_{2} is adjacent to all vertices $w_{i} \in N_{1}(x)$ for all $1 \leq i \leq n-5$. In this case, $v_{2} w, v_{1} v_{2} \notin E(G)$ and $v_{2} v \in E(G)$, since otherwise $(w)\left(v_{1}, w_{1}\right)\left(v_{2}, w_{2}\right)\left(v, w_{3}\right)\left(x, w_{4}\right) \pi$, or $\left(v_{2}\right)\left(v_{1}, w_{1}\right)\left(w, w_{2}\right)\left(v, w_{3}\right)$ $\left(x, w_{4}\right) \pi$, or $\left(v_{1}\right)(w)\left(w_{1}, w_{2}\right)\left(v_{2}, w_{3}\right)\left(v, w_{4}\right)\left(x, w_{5}\right) \pi$ is a resolving $(n-4)$ partition, a contradiction. This implies that v_{1} is adjacent to at least one of the vertex w or v, since otherwise $\operatorname{diam}(G)=3$. We deduce $G \cong H_{58}$ if $v_{1} w \in E(G)$ and $v_{1} v \notin E(G)$, or $G \cong H_{71}$ if $v_{1} v \in E(G)$ and $v_{1} w \notin E(G)$, or $G \cong H_{62}$ if $v_{1} v, v_{1} w \in E(G)$.
(D5.3) v_{1} is only not adjacent to a single vertex $w_{1} \in N_{1}(x)$ and $v_{1} w_{i} \in E(G)$ for all other $i \neq 1$. If (v_{2} is only not adjacent to a single vertex $w_{1} \in N_{1}(x)$ and $v_{2} w_{j} \in E(G)$ for all $j \neq 1$) or (v_{2} is only not adjacent to a single vertex $w_{2} \in N_{1}(x)$ and $v_{2} w_{j} \in E(G)$ for all $j \neq 2$), then we have a resolving ($n-4$)-partition, namely $(w)\left(w_{1}\right)\left(v_{1}, w_{2}\right)\left(v_{2}, w_{3}\right)\left(v, w_{4}\right)\left(x, w_{5}\right) \pi \quad$ or $\quad(w)\left(w_{1}\right)\left(w_{2}\right)\left(v_{1}, w_{3}\right)\left(v_{2}, w_{4}\right)$ $\left(v, w_{5}\right)\left(x, w_{6}\right) \pi$, respectively, a contradiction. Therefore, v_{2} is adjacent to all vertices $w_{i} \in N_{1}(x)$ for all $1 \leq i \leq n-5$. In this case, $v_{2} w \notin E(G)$ and $v_{1} v, v_{2} v, v_{1} v_{2} \in E(G)$, since otherwise $(w)\left(w_{1}\right)\left(v_{1}, w_{2}\right)\left(v_{2}, w_{3}\right)\left(v, w_{4}\right)$ $\left(x, w_{5}\right) \pi$, or $\left(v_{1}\right)\left(w_{1}, w_{2}\right)\left(w, v_{2}\right)\left(v, w_{3}\right)\left(x, w_{4}\right) \pi$, or $\left(v_{1}\right)\left(v_{2}\right)\left(w_{1}, w_{2}\right)\left(v, w_{3}\right)$ $\left(w, w_{4}\right)\left(x, w_{5}\right) \pi$, or $(w)\left(v_{1}\right)\left(w_{1}, w_{2}\right)\left(v_{2}, w_{3}\right)\left(v, w_{4}\right)\left(x, w_{5}\right) \pi$ is a resolving ($n-4$)-partition, a contradiction. We deduce $G \cong H_{31}$ if $v_{1} w \notin E(G)$ or $G \cong H_{26}$ if $v_{1} w \in E(G)$, as depicted in Fig. 27 (a)-(b), respectively. For the remaining case, assume that both v_{1} and v_{2} are adjacent to all vertices $w_{i} \in N_{1}(x)$ for all $1 \leq i \leq n-5$. Then, other vertex $w \in N_{1}(x)$ is adjacent to at most one vertex of $v_{1}, v_{2} \in N_{2}(x)$, since otherwise $(w)\left(v_{1}, w_{1}\right)\left(v_{2}, w_{2}\right)\left(v, w_{3}\right)\left(x, w_{4}\right) \pi$ is a resolving $(n-4)$-partition, a contradiction. If w is not adjacent to any vertex $v_{1}, v_{2} \in N_{2}(x)$, then v is adjacent to both v_{1} and v_{2}, since otherwise $\operatorname{diam}(G)=3$. In this

Fig. 27. Graph (a) H_{31}, (b) H_{26}, (c) H_{14}, (d) H_{11}, (e) H_{37}, (f) H_{28}, (g) H_{15}, (h) H_{27} and (i) H_{6}.

Fig. 28. Graph (a) H_{64}, (b) H_{56}, (c) H_{72}, (d) H_{63}, (e) H_{55}, (f) H_{54}, (g) H_{70}, (h) H_{61}, (i) H_{35}, (j) H_{30}, (k) H_{28}, (l) H_{21}, (m) H_{23} and (n) H_{18}.
case we deduce $G \cong H_{14}$ if $v_{1} v_{2} \notin E(G)$ or $G \cong H_{11}$ if $v_{1} v_{2} \in E(G)$, as depicted in Fig. 27 (c)-(d), respectively. Now assume that w is only adjacent to one vertex of $N_{2}(x)$, namely $v_{1} w \in E(G)$ and $v_{2} w \notin E(G)$. Then, $v_{1} v_{2} \in E(G)$ or $v v_{2} \in E(G)$, since otherwise $\operatorname{diam}(G)=3$ and v_{1} is adjacent to at least one of the vertex v or v_{2}, since otherwise $\left(v_{1}\right)\left(v_{2}, w_{1}\right)\left(v, w_{2}\right)\left(w, w_{3}\right)\left(x, w_{4}\right) \pi$ is a resolving $(n-4)$-partition, a contradiction. We deduce $G \cong H_{37}$ if $v_{1} v_{2} \in E(G)$ and $v_{1} v, v_{2} v \notin E(G)$, or $G \cong H_{28}$ if $v_{1} v_{2}, v v_{2} \in E(G)$ and $v v_{1} \notin E(G)$, or $G \cong H_{15}$ if $v v_{1}, v v_{2} \in E(G)$ and $v_{1} v_{2} \notin E(G)$, or $G \cong H_{27}$ if $v_{1} v_{2}, v v_{1} \in E(G)$ and $v v_{2} \notin E(G)$, or $G \cong H_{6}$ if $v_{1} v_{2}, v v_{1}, v v_{2} \in E(G)$, as depicted in Fig. 27 (e)-(i), respectively.
(D6) $N_{1}(x)$ induces $K_{n-3}-e$. Let $e=a b$ and other vertices of $N_{1}(x)$ by t_{i} where $1 \leq i \leq n-5$. If there exists a vertex of $N_{2}(x)$, namely v_{1}, such that $v_{1} t_{1}, v_{1} t_{2} \in E(G)$ and $v_{1} t_{3}, v_{1} t_{4} \notin E(G)$, then $(x)\left(v_{1}\right)(a)\left(t_{1}, t_{3}\right)\left(t_{2}, t_{4}\right)\left(b, t_{5}\right)\left(v_{2}, t_{6}\right) \pi$ is a resolving $(n-4)$-partition, a contradiction. Therefore any vertex of $N_{2}(x)$ is adjacent to at most one vertex of $N_{1}(x) \backslash\{a, b\}$ or it is adjacent to at least $n-6$ vertices of $N_{1}(x) \backslash\{a, b\}$.
(D6.1) v_{1} is not adjacent to any vertex of $N_{1}(x) \backslash\{a, b\}$. If v_{2} is also not adjacent to any vertex of $N_{1}(x) \backslash\{a, b\}$, then $\left(v_{1}\right.$ and v_{2} are adjacent to different vertex of a and b, and $v_{1} v_{2} \in E(G)$), or (one of the vertex of $N_{1}(x)$ is adjacent to both $a, b \in N_{1}(x)$, one other vertex of $N_{1}(x)$ is at least adjacent to one vertex $a, b \in N_{1}(x)$ and $\left.v_{1} v_{2} \in E(G)\right)$, or (all vertices of $N_{1}(x)$ are adjacent to both $a, b \in N_{1}(x)$), since otherwise $\operatorname{diam}(G)=3$. We deduce G as depicted in Fig. 28 (a)-(d). If v_{2} is adjacent to a single vertex $t_{1} \in N_{1}(x) \backslash\{a, b\}$ and $v_{2} t_{i} \notin E(G)$ for all remaining $i \neq 1$, then at least one end vertex of e is not adjacent to v_{2} since otherwise $\left(v_{2}\right)\left(t_{1}, t_{2}\right)\left(a, t_{3}\right)\left(b, t_{4}\right)\left(x, v_{1}\right) \pi$ is a resolving $(n-4)$-partition, a contradiction. Hence we obtain G as depicted in Fig. 28 (e)-(h). Now suppose that v_{2} is only not adjacent to a single vertex $t_{1} \in N_{1}(x)$ and $v_{2} t_{i} \in E(G)$ for all $i \neq 1$. However, we obtain that $\left(v_{1}\right)\left(v_{2}\right)\left(t_{1}, t_{2}\right)\left(a, t_{3}\right)\left(b, t_{4}\right)\left(x, t_{5}\right) \pi$ or $\left(v_{2}\right)\left(t_{1}, t_{2}\right)\left(a, t_{3}\right)\left(b, t_{4}\right)\left(x, v_{1}\right) \pi$ is a resolving $(n-4)$-partition, a contradiction. Otherwise, assume that v_{2} is adjacent to all vertices $t_{i} \in N_{1}(x)$ for all $1 \leq i \leq n-5$. Then v_{2} is adjacent to at least one end vertex of e
or $v_{1} v_{2} \notin E(G)$, since otherwise $\left(v_{2}\right)\left(a, t_{1}\right)\left(b, v_{1}, t_{2}\right)\left(x, t_{3}\right) \pi$ is a resolving ($n-4$)-partition, a contradiction. We deduce G as depicted in Fig. 28 (i)-(n).
(D6.2) v_{1} is adjacent to a single vertex $t_{1} \in N_{1}(x)$ and $v_{1} t_{i} \notin E(G)$ for all $i \neq 1$. If v_{2} is also adjacent to a single vertex $t_{1} \in N_{1}(x)$ and $v_{2} t_{i} \notin E(G)$ for all $i \neq 1$, then v_{1} (or similarly v_{2}) is not adjacent to at least one end vertex of e, since otherwise $\left(v_{1}\right)\left(x, t_{1}\right)\left(v_{2}, t_{2}\right)\left(a, t_{3}\right)\left(b, t_{4}\right) \pi$ (or $\left.\left(v_{2}\right)\left(x, t_{1}\right)\left(v_{1}, t_{2}\right)\left(a, t_{3}\right)\left(b, t_{4}\right) \pi\right)$ is a resolving $(n-4)$-partition, a contradiction. We deduce $G \cong K_{1}+\left(K_{n-3}-e \cup 2 K_{1}\right)$ if both v_{1} and v_{2} are not adjacent to any end vertex of e and $v_{1} v_{2} \notin E(G)$, or $G \cong K_{1}+\left(K_{n-3}-e \cup K_{2}\right)$ if both v_{1} and v_{2} are not adjacent to any end vertex of e and $v_{1} v_{2} \in E(G)$, or $G \cong H_{65}$ if one of v_{1} or v_{2} is only adjacent to one end vertex of e and $v_{1} v_{2} \notin E(G)$, or $G \cong H_{51}$ if one of v_{1} or v_{2} is only adjacent to one end vertex of e and $v_{1} v_{2} \in E(G)$, or $G \cong H_{69}$ if one of end vertex e is adjacent to both v_{1} and v_{2}, and $v_{1} v_{2} \notin E(G)$, or $G \cong H_{60}$ if one of end vertex e is adjacent to both v_{1} and v_{2}, and $v_{1} v_{2} \in E(G)$, or $G \cong H_{66}$ if each v_{1} and v_{2} are adjacent to different end vertex of e and $v_{1} v_{2} \notin E(G)$, or $G \cong H_{52}$ if each v_{1} and v_{2} are adjacent to different end vertex e and $v_{1} v_{2} \in E(G)$. If v_{2} is only adjacent to a single vertex $t_{2} \in N_{1}(x)$ and $v_{2} t_{i} \notin E(G)$ for all $i \neq 2$, then both v_{1} and v_{2} are adjacent at most to a single vertex a or b, since otherwise $\left(v_{1}\right)\left(v_{2}\right)\left(t_{1}, t_{3}\right)\left(t_{2}, t_{4}\right)\left(a, t_{5}\right)\left(b, t_{6}\right) \pi$ is a resolving $(n-4)$-partition, a contradiction. Furthermore, if both v_{1} and v_{2} are not adjacent to a vertex a (or similarly to a vertex b), then $v_{1} v_{2} \in E(G)$ since otherwise $\operatorname{diam}(G)=3$. We deduce $G \cong H_{57}$ if both v_{1} and v_{2} are not adjacent to any end vertex of e and $v_{1} v_{2} \in E(G)$, or $G \cong H_{58}$ if only one of v_{1} or v_{2} is adjacent to an end vertex of e and $v_{1} v_{2} \in E(G)$, or $G \cong H_{68}$ if both v_{1} and v_{2} are adjacent to a single end vertex of e and $v_{1} v_{2} \notin E(G)$, or $G \cong H_{59}$ if both v_{1} and v_{2} are adjacent to one end vertex of e and $v_{1} v_{2} \in E(G)$ (Fig. 29).

Now suppose that (v_{2} is only not adjacent to a vertex $t_{1} \in N_{1}(x)$ and $v_{2} t_{i} \in E(G)$ for all other $i \neq 1$) or (v_{2} is only not adjacent to a vertex $t_{2} \in N_{1}(x)$ and $v_{2} t_{i} \in E(G)$ for all other $i \neq 2$). However, (a) $\left(v_{2}\right)\left(t_{1}, t_{2}\right)\left(v_{1}, t_{3}\right)\left(b, t_{4}\right)\left(x, t_{5}\right) \pi$ is a resolving $(n-4)$-partition, a contradiction. Otherwise, assume that v_{2} is adjacent to all vertices $t_{i} \in N_{1}(x)$

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 30. Graph (a) H_{25}, (b) H_{31}, (c) H_{31}, (d) H_{24}, (e) H_{22}, (f) H_{22}, (g) H_{26} and (h) H_{17}.
for all $1 \leq i \leq n-5$. In this case, v_{1} is adjacent to at most one end vertex of e and v_{2} is adjacent to at least one end vertex of e, and also (if an end vertex of e is adjacent to both v_{1} and v_{2}, then other end vertex of e is also adjacent to $\left.v_{2}\right)$, since otherwise $\left(v_{1}\right)\left(v_{2}\right)\left(t_{1}, t_{2}\right)\left(a, t_{3}\right)\left(b, t_{4}\right)\left(x, t_{5}\right) \pi$ is a resolving ($n-4$)-partition, a contradiction. We deduce $G \cong H_{25}$ if v_{1} is not adjacent to any end vertex of e, v_{2} is only adjacent to one end vertex e and $v_{1} v_{2} \notin E(G)$, or $G \cong H_{31}$ if (v_{1} is not adjacent to any end vertex of e, v_{2} is only adjacent to one end vertex e and $\left.v_{1} v_{2} \in E(G)\right)$ or (v_{1} and v_{2} are adjacent to different end vertex of e and $v_{1} v_{2} \notin E(G)$), or $G \cong H_{24}$ if v_{1} is not adjacent to any end vertex of e, v_{2} is adjacent to end vertices of e and $v_{1} v_{2} \notin E(G)$, or $G \cong H_{22}$ if (v_{1} is not adjacent to any end vertex of e, v_{2} is adjacent to end vertices of e and $v_{1} v_{2} \in E(G)$) or (v_{1} is adjacent to one end vertex of e, v_{2} is adjacent to end vertices of e, and $v_{1} v_{2} \notin E(G)$), or $G \cong H_{26}$ if each v_{1} and v_{2} are adjacent to distinct end vertex of e and $v_{1} v_{2} \in E(G)$, or $G \cong H_{17}$ if v_{1} is adjacent to one end vertex of e, v_{2} is adjacent to end vertices of e, and $v_{1} v_{2} \in E(G)$ (Fig. 30).
(D6.3) v_{1} is only not adjacent to a single vertex $t_{1} \in N_{1}(x)$ and $v_{1} t_{i} \in E(G)$ for all remaining $i \neq 1$. If v_{2} is also only not adjacent to a single vertex $t_{1} \in N_{1}(x)$ and $v_{2} t_{i} \in E(G)$ for all remaining $i \neq$ 1 , then $v_{1} v_{2} \in E(G)$ and end vertices of e are adjacent to both v_{1} and v_{2}, since otherwise we have a resolving $(n-4)$-partition, namely $\left(v_{1}\right)(a)\left(t_{1}, t_{2}\right)\left(v_{2}, t_{3}\right)\left(b, t_{4}\right)\left(x, t_{5}\right) \pi$ or $\left(v_{1}\right)\left(v_{2}\right)\left(t_{1}, t_{2}\right)\left(a, t_{3}\right)\left(b, t_{4}\right)\left(x, t_{5}\right)$, a contradiction. Hence we deduce $G \cong K_{n}-E\left(C_{4} \cup K_{2}\right)$. If v_{2} is also only not adjacent to a single vertex $t_{2} \in N_{1}(x)$ and $v_{2} t_{i} \in E(G)$ for all remaining $i \neq 2$, then $\left(v_{1}\right)\left(v_{2}\right)(a)\left(t_{1}, t_{3}\right)\left(t_{2}, t_{4}\right)\left(b, t_{5}\right)\left(x, t_{6}\right) \pi$ is a resolving ($n-4$)-partition, a contradiction. Otherwise, assume that v_{2} is adjacent to all vertices $t_{i} \in N_{1}(x) \backslash\{a, b\}$ for all $1 \leq i \leq n-5$. In this case, $v_{1} v_{2} \in E(G), v_{1}$ is adjacent to at least one of a or b, and v_{2} is adjacent to both a and b, since otherwise $\left(v_{1}\right)(a)\left(t_{1}, t_{2}\right)\left(v_{2}, t_{3}\right)\left(b, t_{4}\right)\left(x, t_{5}\right) \pi$ or $\left(v_{1}\right)\left(t_{1}, t_{2}\right)\left(a, t_{3}\right)\left(b, t_{4}\right)\left(x, t_{5}\right) \pi$ is a resolving $(n-4)$-partition, a contradiction. We deduce $G \cong H_{19}$ if v_{1} is only adjacent to one end vertex of e, or $G \cong K_{n}-E\left(K_{2} \cup P_{4}\right)$ if v_{2} is adjacent to end vertices of e.

Now let both v_{1} and v_{2} be adjacent to all vertices $t_{i} \in N_{1}(x)$ for all $1 \leq i \leq n-5$. Then $v_{1} v_{2} \in E(G)$ or any vertex of $N_{2}(x)$ is adjacent to at least one end vertex of e, since otherwise $\left(v_{1}\right)\left(v_{2}, t_{1}\right)\left(a, t_{2}\right)\left(b, t_{3}\right)\left(x, t_{4}\right) \pi$ or $\left(v_{2}\right)\left(v_{1}, t_{1}\right)\left(a, t_{2}\right)\left(b, t_{3}\right)\left(x, t_{4}\right) \pi$ is a resolving $(n-4)$-partition, a contradiction. If $v_{1} v_{2} \notin E(G)$, then we deduce G as depicted in Fig. 31 (d)-(g). Otherwise, we deduce G as depicted in Fig. 31 (h)-(n).
(E) $\left|N_{1}(x)\right|=1$ and $\left|N_{2}(x)\right|=n-2$. Let $N_{1}(x)=\{u\}$ and so that u is adjacent to all vertices of $N_{2}(x)$, since otherwise $\operatorname{diam}(G) \geq 3$. If $N_{2}(x)$ induces K_{n-2} or $\overline{K_{n-2}}$, then $G \cong K_{1}+\left(K_{1} \cup K_{n-2}\right)$ or $G \cong K_{1, n-1}$, respectively. However for these two different graphs $G, \operatorname{pd}(G)=n-1$ by [1], a contradiction. Otherwise, there exists a vertex $z \in N_{2}(x)$ such that $2 \leq\left|N_{1}(z)\right| \leq n-3$. By a similar reason with the previous case with z as a peripheral vertex, then $\min \left\{\left|N_{1}(z)\right|,\left|N_{2}(z)\right|\right\} \leq 3$, since otherwise there exists a resolving $(n-4)$-partition. Therefore, we obtain that $\left|N_{1}(z)\right|,\left|N_{2}(z)\right| \in\{2,3, n-3, n-4\}$ and we are again in one of the Case (A), (B), (C) or (D).
(F) $\left|N_{1}(x)\right|=n-2$ and $\left|N_{2}(x)\right|=1$. Let $N_{2}(x)=\{v\}$. Then, x is adjacent to all vertices of $N_{1}(x)$ and v is adjacent to at least one vertex of $N_{1}(x)$. If $1 \leq\left|N_{1}(v)\right| \leq n-3$, then $\left|N_{1}(v)\right| \in\{1,2,3, n-3, n-4\}$ and we are again in one of the Cases (A), (B), (C), (D) or (E) with v as a peripheral vertex. Now we assume that $\left|N_{1}(v)\right|=n-2$ or in other words v is adjacent to all vertices of $N_{1}(x)$. Consider the vertices in $N_{1}(x)$. If any two different vertices in $N_{1}(x)$ are adjacent, then $G \cong K_{n}-e$ but $p d\left(K_{n}-e\right)=n-1$ [1]. If there exists a vertex $z \in N_{1}(x)$ such that z is not adjacent to at least two vertices $N_{1}(x)$, then $\left|N_{1}(z)\right| \leq n-3$ and we back in one of Cases (A), (B), (C) or (D) with z as a peripheral vertex. Otherwise we assume that $N_{1}(x)$ form a matching M. If $M=1$, then $G \cong K_{n}-E\left(2 K_{2}\right)$ but $p d\left(K_{n}-E\left(2 K_{2}\right)\right)=n-2$ by [2]. If $M=2$, then $G \cong K_{n}-E\left(3 K_{2}\right)$. If $M \geq 3$, then there exist $a, a_{1}, a_{2}, b, b_{1}, b_{2}, c, c_{1}, c_{2} \in$ $N_{1}(x)$ such that $a a_{1}, b b_{1}, c c_{1} \in E(G)$ but $a a_{2}, b b_{2}, c c_{2} \notin E(G)$. However, $(x)(a)(b)(c)\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)\left(c_{1}, c_{2}\right)(v, t) \pi$ is a resolving $(n-4)$-partition, for a vertex $t \in N_{1}(x) \backslash\left\{a, a_{1}, a_{2}, b, b_{1}, b_{2}, c, c_{1}, c_{2}\right\}$, a contradiction.

Fig. 31. Graph (a) $K_{n}-E\left(K_{2} \cup C_{4}\right)$, (b) H_{19}, (c) $K_{n}-E\left(K_{2} \cup P_{4}\right)$, (d) H_{36}, (e) H_{32}, (f) H_{20}, (g) $K_{n}-E\left(K_{2} \cup K_{3}\right.$), (h) H_{41}, (i) H_{32}, (j) H_{20}, (k) $K_{n}-E\left(C_{5}\right)$, (l) H_{42}, (m) $K_{n}-E\left(P_{5}\right)$ and (n) $K_{n}-E\left(K_{2} \cup P_{3}\right)$.

Declarations

Author contribution statement

Edy Tri Baskoro: Conceived and designed the experiments; Analyzed and interpreted the data; Wrote the paper.

Debi Oktia Haryeni: Conceived and designed the experiments; Performed the experiments; Wrote the paper.

Funding statement

This research has been funded by the Indonesian Ministry of Research and Technology, and Indonesian Ministry of Education and Culture under World Class University (WCU) Program managed by Institut Teknologi Bandung and the Research grant of "Penelitian Dasar Unggulan Perguruan Tinggi (PDUPT)".

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

Appendix A

Graphs of order n obtained from $K_{n-1}-e$ by adding one new vertex adjacent to:

H_{1} : three vertices, exactly two vertices with maximum degree;
H_{2} : three vertices, two of them are the end points of e;
$H_{3}: n-4$ vertices, exactly one vertex is the end point of e;
H_{4} : two vertices with maximum degree;
Graphs of order n obtained from $K_{n-1}-E\left(P_{3}\right)$ by adding one new vertex adjacent to:
H_{5} : three vertices, two are the end points of P_{3} and one with maximum degree;
H_{6} : three vertices with different degrees;
H_{7} : one vertex with maximum degree;
H_{8} : two vertices, one with maximum degree and one is the end point of P_{3};
$H_{9}: n-4$ vertices, one with minimum degree and $n-5$ vertices with maximum degree;
$H_{10}: n-4$ vertices, one is the end point of P_{3} and $n-5$ vertices with maximum degree;
H_{11} : two vertices, one with minimum degree and one with maximum degree;
H_{12} : two vertices of P_{3} with different degrees;
Graphs of order n obtained from $K_{n-1}-E\left(K_{3}\right)$ by adding one new vertex adjacent to:
H_{13} : one vertex with maximum degree;
H_{14} : two vertices with different degrees;
H_{15} : three vertices, exactly two with minimum degree;
H_{16} : $n-4$ vertices, exactly one with minimum degree;
Graphs of order n obtained from $K_{n-1}-E\left(2 K_{2}\right)$ by adding one new vertex adjacent to:
$H_{17}:$ three vertices, two are the end points of different edges of $E\left(2 K_{2}\right)$ and one with maximum degree;
H_{18} : three end points of $E\left(2 K_{2}\right)$;
$H_{19}: n-4$ vertices, two are the end points of different edges of $E\left(2 K_{2}\right)$ and $n-6$ vertices with maximum degree;
$H_{20}: n-4$ vertices, exactly one with minimum degree;
H_{21} : two end points of different edges of $E\left(2 K_{2}\right)$;
H_{22} : two vertices with different degrees;
H_{23} : two non-adjacent vertices;
H_{24} : one vertex with maximum degree;
Graphs of order n obtained from $K_{n-1}-E\left(P_{4}\right)$ by adding one new vertex adjacent to:
H_{25} : one vertex with maximum degree;
H_{26} : three vertices, one with maximum degree and two are internal vertices of P_{4};
H_{27} : three vertices of P_{4}, two are the end points of P_{4};
H_{28} : three vertices of P_{4}, two are the internal vertices of P_{4};
H_{29} : two end points of P_{4};
H_{30} : two vertices of P_{4} with different degrees;
H_{31} : two vertices, one with minimum degree and one with maximum degree;
$H_{32}: n-4$ vertices, one with minimum degree and $n-5$ with maximum degree;
$H_{33}: n-4$ vertices, two are the end points of P_{4} and $n-6$ with maximum degree;
$H_{34}: n-4$ vertices, one is the end point of P_{4} and $n-5$ with maximum degree;
H_{35} : two internal vertices of P_{4};
$H_{36}: n-4$ vertices, one is the end point of P_{4} and $n-5$ with maximum degree;

Graphs of order n obtained from $K_{n-1}-E\left(C_{4}\right)$ by adding one new vertex adjacent to:
H_{37} : three vertices with minimum degree;
H_{38} : two vertices with minimum degrees;
H_{39} : one vertex with maximum degree;
$H_{40}: n-4$ vertices, one with minimum degree and $n-5$ with maximum degree;

Graphs of order n obtained from $K_{n-1}-E\left(K_{1,3}+e\right)$ by adding one new vertex adjacent to:
$H_{41}: n-4$ vertices, one with minimum degree and $n-5$ with maximum degree;

Graphs of order n obtained from $K_{n-1}-E\left(K_{1,3}\right)$ by adding one new vertex adjacent to:
$H_{42}: n-3$ vertices, $n-5$ with maximum degree, and two with different degrees;

Graphs of order n obtained from K_{n-2} by connecting two new vertices x and y with:
H_{43} : exactly two vertices a and b in K_{n-2} such that $(a, x),(a, y),(b, x)$ are new edges;
H_{44} : exactly two vertices a and b in K_{n-2} such that $(a, x),(a, y),(b, x)$, (b, y) are new edges;
H_{45} : exactly three vertices a, b and c in K_{n-2} such that $(a, x),(a, y),(b, x)$, (c, y) are new edges;
H_{46} : exactly three vertices a, b and c in K_{n-2} such that $(a, x),(b, x),(c, y)$, (x, y) are new edges;
$H_{47}: H_{43}$ by adding new edge (x, y);
$H_{48}: H_{44}$ by adding new edge (x, y);
$H_{49}: H_{45}$ by adding new edge (x, y);
Graphs of order n obtained from $\overline{K_{n-2}}$:
$H_{50}: \frac{\left(K_{2}+\overline{K_{n-2}}\right.}{\overline{K_{n-2}} ;}-e$, where e is an edge connecting a vertex of K_{2} and
Graphs of order n obtained from $K_{n-2}-e$ by connecting a path $P_{2}:=$ (x, y) with:
H_{51} : three new edges $(a, x),(c, x),(c, y)$, where a is one of the end-points of e and c is a vertex of K_{n-2} with maximum degree;
H_{52} : four new edges $(a, x),(b, y),(c, x),(c, y)$, where a and b are the endpoints of e and c is a vertex of K_{n-2} with maximum degree;
H_{53} : four new edges $(a, x),(b, x),(c, x),(c, y)$, where a and b are the endpoints of e and c is a vertex of K_{n-2} with maximum degree;
H_{54} : three new edges $(a, x),(b, y),(c, y)$, where a and b are the end-points of e and c is a vertex of K_{n-2} with maximum degree;
H_{55} : three new edges $(a, x),(b, x),(c, y)$, where a and b are the end-points of e and c is a vertex of K_{n-2} with maximum degree;
H_{56} : three new edges $(a, x),(b, x),(b, y)$, where a and b are the end-points of e;
H_{57} : two new edges $(c, x),(d, x)$, where c and d are vertices with maximum degree;
H_{58} : three new edges $(a, x),(c, x),(d, y)$, where a is one of the end-points of e and c and d are vertices of K_{n-2} with maximum degree;
H_{59} : four new edges $(a, x),(a, y),(c, x),(d, y)$, where a is one of the endpoints of e and c and d are vertices of K_{n-2} with maximum degree;
H_{60} : four new edges $(a, x),(a, y),(c, x),(c, y)$, where a is one of the endpoints of e and c is a vertex of K_{n-2} with maximum degree;
H_{61} : four new edges $(a, x),(b, x),(a, y),(c, y)$, where a and b are the endpoints of e and c is a vertex of K_{n-2} with maximum degree;
H_{62} : four new edges $(a, x),(c, x),(c, y),(d, y)$, where a is one of the endpoints of e and c and d are vertices of K_{n-2} with maximum degree;
H_{63} : four new edges $(a, x),(a, y),(b, x),(b, y)$, where a and b are the endpoints of e;
H_{64} : two new edges $(a, x),(b, y)$, where a and b are the end-points of e;
$H_{65}: H_{51}$ by removal of (x, y);
$H_{66}: H_{52}$ by removal of (x, y);
$H_{67}: H_{58}$ by removal of (x, y);
$H_{68}: H_{59}$ by removal of (x, y);
$H_{69}: H_{60}$ by removal of (x, y);
$H_{70}: H_{61}$ by removal of (x, y);
$H_{71}: H_{62}$ by removal of (x, y);
$H_{72}: H_{63}$ by removal of (x, y);
Graphs of order n obtained from K_{n-3} by connecting a path $P_{3}=$ (x, y, z) with:
H_{73} : three new edges $(a, x),(a, y),(b, z)$, where a and b are any two distinct vertices of K_{n-3};
$H_{74}: H_{73}$ by adding a new edge (x, z);
H_{75} : three new edges $(a, x),(a, z),(b, y)$, where a and b are any two distinct vertices of K_{n-3};
H_{76} : three new edges $(a, x),(b, y),(c, z)$, where a, b and c are any three distinct vertices of K_{n-3};
$H_{77}: H_{76}$ by adding a new edge (x, z);
Graphs of order n obtained from $K_{1, n-2}$ by adding a new vertex adjacent to:
$H_{78}: n-3$ vertices of $K_{1, n-2}+e$, including one vertex with maximum degree and exactly one of the end points of e;

Graphs of order n obtained from $K_{1, n-4}$:
H_{79} : the graph $\left(\overline{K_{2}}+K_{1, n-4}\right)-e$ where e is an edge connecting a vertex $\overline{K_{2}}$ and a pendant vertex of $K_{1, n-4}$, added by one new vertex adjacent to two vertices of $\left(\overline{K_{2}}+K_{1, n-4}\right)-e$, namely the center of $K_{1, n-4}$ and one of end points e of $\overline{K_{2}}$;
$H_{80}: \overline{K_{2}}+K_{1, n-4}$ added by one new vertex adjacent to the center of $K_{1, n-4}$ and one vertex of $\overline{K_{2}}$;
$H_{81}:\left(\overline{K_{2}}+K_{1, n-4}\right)-e$ where e is an edge connecting a vertex $\overline{K_{2}}$ and a center of $K_{1, n-4}$, and added by one new vertex adjacent to two end points of e;

Graphs of order n obtained from K_{n} :

$H_{82}: K_{n}-E\left(P_{5}+e\right)$, where e is an edge connecting two vertices P_{5} of degree 2 ;

References

[1] G. Chartrand, E. Salehi, P. Zhang, The partition dimension of a graph, Aequ. Math. 59 (2000) 45-54.
[2] I. Tomescu, Discrepancies between metric dimension and partition dimension of a connected graph, Discrete Math. 308 (2008) 5026-5031.
[3] F. Harary, R.A. Melter, On the metric dimension of graph, Ars Comb. 2 (1976) 191-195.
[4] G. Chartrand, L. Eroh, M.A. Johnson, O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000) 99-113.
[5] G. Chartrand, E. Salehi, P. Zhang, On the partition dimension of a graph, Congr. Numer. 130 (1998) 157-168.

[^0]: * Corresponding author.

 E-mail address: debioktia@gmail.com (D.O. Haryeni).
 https://doi.org/10.1016/j.heliyon.2020.e03694
 Received 5 December 2019; Received in revised form 4 February 2020; Accepted 25 March 2020

