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ABSTRACT
The mechanism of host cell invasion of severe acute respiratory
syndrome coronavirus-2 SARS-CoV-2 is connected with the inter-
action of spike protein (S) with angiotensin-converting enzyme 2
(ACE2) through receptor-binding domain (RBD). Small molecules
targeting this assembly are being investigated as drug candidates
to contrast SARS-CoV-2. In this context, chloroquine, an antimalar-
ial agent proposed as a repurposed drug to treat coronavirus dis-
ease-19 (COVID-19), was hypothesized to bind RBD among its
other mechanisms. Similarly, artemisinin and its derivatives are
being studied as potential antiviral agents. In this work, we inves-
tigated the interaction of artemisinin, its metabolite dihydroarte-
misinin and chloroquine with RBD by means of computational
tools and in vitro. Docking studies showed that the compounds
interfere with the same region of the protein and molecular
dynamics (MD) simulations demonstrated the stability of the pre-
dicted complexes. Bio-layer interferometry showed that chloro-
quine dose-dependently binds RBD (KD ¼ 35.9mM) more
efficiently than artemisinins.

ARTICLE HISTORY
Received 17 March 2021
Accepted 1 May 2021

KEYWORDS
SARS-CoV-2; artemisinin;
spike protein; molecular
dynamics; bio-layer
interferometry

CONTACT Giovanni Ribaudo giovanni.ribaudo@unibs.it; Paolo Coghi coghips@must.edu.mo
Supplemental data for this article can be accessed online at https://doi.org/10.1080/14786419.2021.1925894.

� 2021 Informa UK Limited, trading as Taylor & Francis Group

NATURAL PRODUCT RESEARCH
https://doi.org/10.1080/14786419.2021.1925894

http://crossmark.crossref.org/dialog/?doi=10.1080/14786419.2021.1925894&domain=pdf&date_stamp=2021-05-10
https://doi.org/10.1080/14786419.2021.1925894
https://doi.org/10.1080/14786419.2021.1925894
http://www.tandfonline.com


1. Introduction

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein (S) medi-
ates cellular invasion by interfering with angiotensin-converting enzyme 2 (ACE2)
through its receptor-binding domain (RBD, residues 331-524 of S1 subunit, Figure 1A)
(Tai et al. 2020; Wrapp et al. 2020). Targeting this assembly with small molecules, pep-
tides and antibodies emerged as a possible intervention strategy to contrast infection
(Al Adem et al. 2020; Xiu et al. 2020; Chen et al. 2021). The antimalarial agent chloro-
quine is thought to be active against SARS-CoV-2 through a combination of mecha-
nisms, such as the inhibition endocytic pathways by elevation of endosomal pH and
the interference with glycosylation of ACE2 (Vincent et al. 2005; Mauthe et al. 2018;
Gendrot et al. 2020). Moreover, computational evidences suggested that chloroquine
could also directly interfere with S or ACE2 proteins (Fantini et al. 2020; Badraoui et al.
2021). The efficacy of chloroquine is a debated issue. Nevertheless, it can block the
binding of SARS-CoV-2 to ACE2 in vitro (Wang et al. 2020). On similar basis, other anti-
malarial agents such as artemisinins demonstrated in vitro inhibition of SARS-CoV-2
(Krishna et al. 2021; Kavak et al. 2021). Extracts from the sweet woodworm Artemisia
annua have been used for centuries in Chinese traditional medicine for treating the
symptoms of febrile diseases, tidal fever and summer heat stroke (Brown 2010). In par-
ticular, a compound isolated from this plant and known as “qinghaosu”, which was
later renamed artemisinin, was tested in patients together with its derivatives between
1970s and 1980s for its activity against malaria (Aweeka and German 2008). From a
chemical point of view, artemisinin is a sesquiterpene lactone containing a peroxide
bridge (Nahar et al. 2020). Derivatives such as artesunate, artemether and arteether
have been used in clinic against malaria for decades (Aweeka and German 2008).
Moreover, artemisinins are being investigated to treat diseases such as cancer, inflam-
matory conditions, immunosuppression and viral or fungal infections (Ho et al. 2014;
Coghi et al. 2018).
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2. Results and discussion

Concerning their antiviral application, artemisinins have been extensively studied as
potential remedies against herpes and hepatitis B and C viruses (Ho et al. 2014). As
anticipated, artemisinins possess several pharmacological properties, and different
mechanisms, such as anti-inflammatory action, reduction of nucleoprotein production
or inhibition of viral RNA and proteins at post-entry step, may be involved in their
antiviral effect, also in the case of SARS-CoV-2 (Cao et al. 2020; Kshirsagar and Rao
2021). The current study focuses on the investigation of the direct effect of artemisinin
and dihydroartemisinin on S protein RBD. Computational techniques, including dock-
ing and molecular dynamics (MD) simulations, were adopted to study the structural
details and the stability of the RBD-ligand complexes (Figure 1B). Moreover, the bind-
ing was tested in vitro by Bio-layer interferometry, a label-free technology for measur-
ing biomolecular interactions.

Most of previous contributions investigated the docking of small molecules to RBD
focusing on the interface with ACE2 (Rathod et al. 2020), but the presence of other
sites also emerged (Alexpandi et al. 2020; Basu et al. 2020). Accordingly, binding

Figure 1. Spike protein trimer, with one of the RBDs rotated up and highlighted (PDB ID: 6VSB, A);
chemical structures of the studied compounds (B); predicted interaction patterns with RBD of
chloroquine (red, �5.6 kcal/mol), artemisinin (green, �7.0 kcal/mol) and dihydroartemisinin (blue,
�6.5kcal/mol, C).
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surface analysis showed the presence of 3 putative ligand interaction sites on RBD
(Figure S1 in the Supplementary Material). As previously observed in studies carried
out on a structure obtained by homology modeling, docking highlighted artemisinin
as the most promising ligand of the set (Figure 1C, see Supplementary Material for
docking protocol) (Prashantha et al. 2021). The predicted binding models show that
the compounds interact with the same region of RBD (Figure S2 in the
Supplementary Material).

MD studies were enrolled to further investigate the stability of complexes (Doerr
et al. 2016, Gianoncelli et al. 2020). In particular, 25 ns MD simulations on RBD-artemi-
sinin, RBD-dihydroartemisinin and RBD-chloroquine docked models were carried out
and root mean square deviation (RMSD) trajectory were compared. In all cases, the
complexed protein backbones reached stabilization within less than 5 ns of simulation
time: RMSD values (average ± standard deviation) of 2.51 ± 0.24 Å, 2.15 ± 0.18 Å and
2.33 ± 0.14 Å were measured for backbones of RBD-artemisinin, RBD-dihydroartemisinin
and RBD-chloroquine complexes, respectively. Greater difference was observed on the
behavior of the ligands. In the RBD-chloroquine complex, the ligand reached stabiliza-
tion after 7 ns and showed limited fluctuation throughout the remaining simulation
time, in which the compound was retained within the binding site (average RMSD ¼
8.62 ± 2.97 Å). Similarly, dihydroartemisinin reached stabilization after 3 ns (average
RMSD ¼ 5.23 ± 0.76 Å). On the other hand, greater vibrations were observed for arte-
misinin, in particular in the 0-20 ns simulation timeframe, and the compound reached
stabilization only in the final 5 ns of simulation (Figure S3 in the
Supplementary Material).

The binding of chloroquine, artemisinin and dihydroartemisinin was then experi-
mentally investigated using Bio-layer interferometry. This analysis relies on the immo-
bilization of RBD to the biosensor surface with subsequent exposure to different
ligand concentration, allowing the real-time measurement of association and dissoci-
ation phases (see Supplementary Material for experimental details). Chloroquine dose-
dependently binds RBD (KD ¼ 35.9 mM, R2 ¼ 0.9827) more tightly than artemisinin (KD
¼ 51.4mM, R2 ¼ 0.6264), while dihydroartemisinin showed weaker binding and worse
correlation (KD ¼ 66.5 mM, R2 ¼ 0.5210). Kinetic parameters, such as association rate
(kon) and dissociation rate (kdis) for these complexes are reported in the Supplementary
Material (Figures S4–S6). Since ACE2 is the macromolecular interactor of RBD and small
molecules interfering with such receptor could contrast viral infection (Bourgonje et al.
2020), binding of studied compounds was also measured towards ACE2. Although, no
notable interaction was detected for chloroquine, artemisinin and dihydroartemisinin
under these experimental conditions (Figures S7 and S8 in the
Supplementary Material).

3. Conclusions

While docking studies suggested that artemisinin would have been the most promis-
ing binder for RBD, Bio-layer interferometry highlighted chloroquine as the best ligand
of the set. Consistently, MD simulations confirmed that chloroquine forms a stable
complex with RBD, as lower fluctuation values were measured for this assembly. The
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results of this study support the hypothesis that “artemisinin” may act through a com-
bination of mechanisms when exploiting their antiviral function, and suggest that
RBD, rather than ACE2, could be one of the macromolecular targets for contrasting
cellular invasion by SARS-CoV-2.
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