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Abstract

Segregation and integration are two fundamental principles of brain structural and functional

organization. Neuroimaging studies have shown that the brain transits between different

functionally segregated and integrated states, and neuromodulatory systems have been

proposed as key to facilitate these transitions. Although whole-brain computational models

have reproduced this neuromodulatory effect, the role of local inhibitory circuits and their

cholinergic modulation has not been studied. In this article, we consider a Jansen & Rit

whole-brain model in a network interconnected using a human connectome, and study the

influence of the cholinergic and noradrenergic neuromodulatory systems on the segrega-

tion/integration balance. In our model, we introduce a local inhibitory feedback as a plausible

biophysical mechanism that enables the integration of whole-brain activity, and that inter-

acts with the other neuromodulatory influences to facilitate the transition between different

functional segregation/integration regimes in the brain.

Author summary

Segregation of brain activity refers to the fact that some brain regions are specialized to

handle particular features of external and internal stimuli. However, to produce a coher-

ent behavioral outcome, the brain must coordinate the activity of these specialized brain

areas, and this is called integration of brain activity. Based on a fixed connectome (the

brain anatomical structure), the neuromodulatory systems are one of the plausible candi-

dates to manage the transitions of brain states in short timescales. Understanding the role

of neuromodulators in brain dynamics and the segregation/integration balance is rele-

vant, in particular, as it is known that in several neuropsychiatric disorders the segrega-

tion/integration balance its impaired. Here, we used a computational model of the whole

brain to study the dual effect of the cholinergic and noradrenergic neuromodulatory sys-

tems in the switching from segregated to integrated brain states. The novelty of our work

is the inclusion of a homeostatic local inhibitory loop. This specific inhibition, modulated
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by the cholinergic system, maintains the excitation/inhibition balance while promoting

integration. Our work links the local effects of cholinergic neuromodulation, with the

more global influences of the structural connectivity and neuromodulatory systems. This

constitutes a step forward in the understanding of the neural mechanisms behind the seg-

regation/integration balance of brain activity.

Introduction

Integration and segregation of brain activity are nowadays two well-established brain organi-

zation principles [1–4]. Functional segregation refers to the existence of specialized brain

regions, allowing the local processing of information. Integration coordinates these local activ-

ities in order to produce a coherent response to complex tasks or environmental contexts [1,

2]. Both segregation and integration are required for the coherent global functioning of the

brain; the balance between them constitutes a key element for cognitive flexibility, as

highlighted by the theory of coordination dynamics [5, 6].

From a structural point of view, the complex functional organization of the brain is possible

thanks to an anatomical connectivity that combines both integrated and segregated network

characteristics, having small-world and modular properties [7]. In spite of this structural con-
nectivity (SC) remaining fixed over short timescales, different patterns of functional connectiv-
ity (FC) can be observed during the execution of particular behavioral tasks [2]. Moreover,

functional Magnetic Resonance Imaging (fMRI) neuroimaging studies show that during a

resting state the FC is not static, but rather evolves over the recording time [8–10], highlighting

the non-linear and non-stationary properties of the FC [11]. In a similar way, the integration

and segregation of brain activity are not static over time [3, 12]. In this context, an interesting

question emerges: How does the brain manage to produce dynamical transitions between differ-
ent functional states from a rigid anatomical structure?.

Neuromodulatory systems tune the firing properties of neurons, providing a mechanism to

change the flow of information within the brain, and allowing the transitions between different

FC patterns. A recent hypothesis proposed by Shine [13] argues that neuromodulation allows

the transition between integrated and segregated states, manipulating the neural gain function

[14]. In that line, the cholinergic and noradrenergic systems have been proposed as candidates

to influence the cognitive processing within the brain [15, 16], in spite of not being the unique

neuromodulatory systems in the central nervous system which can tune the firing properties

of neurons [14, 17].

The cholinergic system is involved in cognitive and attentional selectivity [16], and in the

cerebral cortex the main source of acetylcholine are projections from the basal forebrain [18].

Acetylcholine increments the overall excitability [19, 20], and consequently rises population

activity above noise, a mechanism referred as response gain [14]. The increase in signal-to-

noise ratio, especially in brain areas that are close to each other, promotes segregation when

considering the response gain by itself [13]. On the other hand, the noradrenergic system is

related to the exploratory behavior [15], and the principal source of noradrenergic projections

to the cerebral cortex comes from the locus coeruleus [21]. Noradrenaline increases the repon-

sivity (or selectivity) of neuronal populations to input-driven activity (e.g., sensory stimuli,

inputs for distant brain areas relevant to a task) with respect to spontaneous activity (or the

internal state of the brain) [22–24], filtering out noise [25] in a mechanism called filter gain

[14]. The effect of the noradrenergic system in increasing the signal-to-noise ratio facilitates

the detection of signals embedded in a noisy environment [25], boosting the signal detection
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and promoting integration [13]. Therefore, a complex interaction between the cholinergic and

noradrenergic system seems to manage the balance between integration and segregation.

Using a whole-brain model, Shine et al. [26] showed that neuromodulation and integration

follow an inverted-U relationship. If one considers that neuromodulation also shows an

inverted-U relationship with in-task performance, [15, 27], it is possible to hypothesize that

neuromodulatory systems boost cognitive and attentional performance by increasing the func-

tional integration in the brain, as proposed by Shine et al‥ [13, 26].

There are still unanswered questions about the specific effects of neuromodulation on inte-

gration and segregation. Experimental research points out that the cholinergic system, through

both nicotinic and muscarinic receptors, boosts the signal-to-noise ratio in two principal ways

[14, 28]: first, increasing the excitability of pyramidal neurons [29–31], and second, enhancing

the firing rates of dendritic-targeting GABAergic interneurons –an effect that promotes a

focused intra-columnar inhibition, reducing the local excitatory feedback to pyramidal neu-

rons [31–33]. Consequently, pyramidal neurons become more responsive to stimulus from

other distant regions respect to the stimulus of its own cortical column [28, 29, 34]. The partic-

ular effect of the cholinergic system on excitatory neurons was one of the focus of the whole-

brain simulation work by Shine et al‥ [26]. However, the cholinergic modulation of inhibitory

interneurons and its effect on the segregation/integration balance has not been analyzed at the

whole-brain level. This is the main focus of the present work.

Here, we use an in silico approach to analyze the effect of neuromodulatory systems on

functional integration in the brain, focusing on the cholinergic action in inhibitory interneu-

rons. We combined a real human structural connectivity with the Jansen & Rit neural mass

model of cortical columns [35, 36]. The mesoscopic properties of the model enable us to study

more specifically the effects of neuromodulators in whole-brain dynamics. To make our simu-

lations more comparable to experimental findings [3, 12, 37, 38], and also following Shine

et al. [26], fMRI blood-oxygen-level-dependent (BOLD) signals were generated from the firing

rates of pyramidal neurons. Integration and segregation were then assessed in the functional

connectivity matrices derived from the BOLD-like signals, using a graph theoretical approach.

The neuromodulation was discerned in three components. First, we included an “excitatory

gain”, which increases the inter-columnar coupling. In our model, this gain mechanism is

mediated by the action of the cholinergic system on pyramidal neurons, having an indirect

effect on their excitability [13, 14, 28]. Second, we added an “inhibitory gain”, also mediated by

the cholinergic system, that controls the inputs from inhibitory to excitatory interneurons and

reduces the local feedback excitation. This additional connection, well described in cortical

columns [39, 40], represents a modification of the original neural mass model proposed by

Jansen & Rit [35, 36]. Finally, we incorporated a “filter gain”, that increments the pyramidal

neurons’ sigmoid function slope [14]. This gain mechanism is mediated by the noradrenergic

system; it acts as a filter, decreasing (increasing) the responsivity to weak (strong) stimuli [23,

25], boosting signal-to-noise ratio. We show that the increase of the signal-to noise ratio,

mediated both by the excitatory and filter gains, and the decrease in the feedback excitation,

related to the inhibitory gain, promote functional integration.

Results

We assessed the effect of the neuromodulatory systems using a whole-brain neural mass

model of brain activity. In the model, each node corresponds to a brain area and is represented

by a neural mass consisting of three populations [35, 36]: pyramidal neurons (that reside in

cortical column layer V), excitatory interneurons (nearby pyramidal cells which reside in the

same layer than the principal pyramidal population), and inhibitory interneurons (Fig 1A).
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Based on Silberberg & Markram [39] and Fino et al. [40], we have added a connection from

inhibitory interneurons from excitatory interneurons (thick line in Fig 1A), allowing us to

study the effect of its modulation by cholinergic influences (see below). The nodes are con-

nected through a weighted and undirected structural connectivity matrix derived from human

data [41], parcellated in 90 cortical and sub-cortical regions with the automated anatomical

labeling (AAL) atlas [42] (Fig 1B). Connections between nodes are made by pyramidal neu-

rons, considering that long-range projections are mainly excitatory [43, 44]. Using the firing

rates of each node as inputs to a generalized hemodynamic model [45], we obtained fMRI

BOLD signals from which we calculated integration and segregation of the resulting FC

matrices.

Following Shine et al. [26], we modeled the influence of the cholinergic and noradrenergic

systems through the manipulation of the response and filter gains, respectively (Fig 1C). The

Fig 1. Whole-brain neural mass model. A) The Jansen & Rit model is constituted by a population of pyramidal neurons with excitatory and inhibitory

feedback mediated by interneurons (INs). Each population is connected by a series of constants Ci. The outputs are transformed from average pulse

density to average postsynaptic membrane potential by an excitatory (inhibitory) impulse response function hE(t) (hI(t)). Then, a sigmoid function S
performs the inverse operation. Pyramidal neurons project to distant cortical columns, and receive both uncorrelated Gaussian-distributed inputs p(t)
and inputs from other cortical columns z(t). Neuromodulation is constituted by three parameters, colored in red: excitatory gain α, which scales z(t),
inhibitory gain β, which increases the inhibitory input to excitatory INs (thick line), and filter gain, r0, which modifies the slope of the sigmoid function

in pyramidal neurons. B) Each node represents a cortical column, whose dynamics is ruled by the Jansen & Rit equations. Nodes are connected through

a structural connectivity matrix, M C) Neuromodulation modifies the coupling between neurons and the properties of the input (average postsynaptic

membrane potential) to output (average pulse density) sigmoid function. The cholinergic system modifies the global coupling and local inhibition. α
amplifies the response of pyramidal neurons to other columns’ input; it also increases pyramidal neurons excitability. β amplifies the effect of inhibitory

INs to excitatory INs, damping pyramidal cells excitability. The noradrenergic system increments the responsivity of pyramidal neurons to relevant

stimuli respect to noise, as a filter, by increasing the slope r0 of their sigmoid function.

https://doi.org/10.1371/journal.pcbi.1008737.g001
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principal difference in our approach is that we split the response gain in excitatory gain (long-

range pyramidal to pyramidal coupling), α, and inhibitory gain (local inhibitory to excitatory

interneurons coupling), β. While the excitatory gain boosts the pyramidal neurons responsiv-

ity to long-range inputs, and indirectly increases the pyramidal cells excitability, the inhibitory

gain reduces the local excitatory feedback from interneurons. Finally, the filter gain r0 modifies

the sigmoid function slope of pyramidal neurons, increasing its responsivity to relevant stimuli

and boosting signal-to-noise ratio. Here, we studied the combined effect of the three gain

mechanisms to understand how neuromodulatory systems shape the global neuronal dynam-

ics in two different timescales: EEG-like and BOLD-like signals. Our hypothesis is that the

inhibitory gain will play a significant role in increasing the likelihood of integration.

Inhibitory gain facilitates neuronal coordination

We first studied the combined influence of the excitatory and inhibitory response gains, by fix-

ing r0 = 0.56 mV−1 (its default value) and then simulating neuronal activity at different combi-

nations of α 2 [0, 1] and β 2 [0, 0.5]. Then, we analyzed the graph properties of the static
(time-averaged) functional connectivity (sFC) matrices, obtained from the pairwise Pearson’s

correlations of BOLD-like signals. Namely, we calculated the global efficiency Ew, a measure of

integration defined as the inverse of the characteristic path length [46], and modularity Qw, a

measure of segregation based on the detection of network communities or modules [46]. High

values of Ew represent an efficient coordination between all pairs of nodes in the network, a

signature of integration. In contrast, a high modularity Qw is associated to segregation [46].

Fig 2A shows that functional integration (Ew) is maximized in an intermediate region of the

(α, β) parameter space; and that integration is accompanied by a decrease in the segregation

(Qw). Also, the system undergoes a sharp transition crossing a critical boundary. The transi-

tions between different regimes are better appreciated in Fig 2B, where we show a 1-D sweep

of α at β = 0.25. Dashed lines at α = 0.3 and α = 0.8 correspond to points in the parameter

Fig 2. Network features in the (α, β) parameter space. A) Global efficiency Ew (integration) and modularity Qw

(segregation) of the graphs derived from the sFCs of the BOLD-like signals. B) Transitions through critical boundaries

in the α axis, for a fixed β = 0.25. Transition points are represented by black dashed lines at α = 0.3 and α = 0.8. C)

Transitions in the β axis, for a fixed α = 0.5, with a critical transition at β = 0.1.

https://doi.org/10.1371/journal.pcbi.1008737.g002
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space where drastic changes in dynamic properties of the network occur. Further, the global

efficiency Ew follows an inverted-U relationship with the excitatory neuromodulation, suggest-

ing (in our whole-brain model) that optimal levels of cholinergic neuromodulation maximize

functional integration (see Discussion). Also, Qw peaks higher at the right critical boundary

(dashed lines). A 1-D sweep of β at α = 0.5 (Fig 2C), shows an increase in integration crossing

the critical transition at β = 0.1. These results are replicated using other measures of integration

and segregation: the mean participation coefficient PCw, an integration metric that quantifies

the between-modules connectivity, and the transitivity Tw, which accounts for segregation

counting triangular motifs [46] (S1 Fig).

The modulation of the inhibitory gain (β) shows an important effect on the integration and

segregation properties of the whole network measured by the global efficiency and modularity,

respectively. This could be due to the reduction of excitatory feedback only, or to a more spe-

cific effect of the newly introduced connection from inhibitory to excitatory interneurons. In

the first case, we expect a similar effect by reducing the C1 parameter (see Fig 1A) because this

also reduces the excitatory feedback loop of the cortical columns. As shown in S2 Fig, this is

only partially the case. The reduction of the C1 connection weight –in the absence of the inhib-

itory to excitatory interneuron connection– enables the network to reach integration but in a

smaller region of the parameter space and to a lower extent than the inhibitory modulation

that we introduced in our model.

To show in more detail how each gain mechanism produces integrated or segregated func-

tional network states, we present in Fig 3 some BOLD-like signals and their respective sFC

matrices. We chose five tuples of (α, β) parameters, marked with the red circles in the Fig 3A.

Functional integration measured by global efficiency is maximal in the middle (α = 0.5, β =

0.25), and segregation measured by modularity is maximized far away from this point (α =

0.25, β = 0.125, and α = 0.75, β = 0.375). In the extreme cases (α = 0, β = 0, and α = 1, β = 0.5)

there is neither integration nor segregation; in the first case the network is disconnected, and

in the second one the system crossed the second bifurcation point and pyramidal neurons are

not oscillating (neurons are over-excited).

Inhibitory gain allows the noradrenaline-mediated integration

To further validate our model, we sought to reproduce the results of the neuromodulatory par-

adigm proposed by Shine et al‥ [13, 26]. We characterized the relationship between neuromo-

dulation and integration in the (α, r0) parameter space, with α 2 [0, 1] and r0 2 [0, 1] while

leaving β fixed at 0 or 0.4 (without and with inhibitory gain, respectively). The results for β = 0

(Fig 4A) show no integration in the entire parameter space. On the other hand, the observa-

tions of Shine et al. [26] are fully reproduced with β = 0.4 (Fig 4B). Similar results hold for the

mean PCw and Tw, as shown in S3 Fig.

As observed previously in Fig 2, critical boundaries delimit asynchronous and synchronous

states in the (α, r0) parameter space. A 1-D sweep of α at r0 = 1 mV−1 shows a sharp transition

(Fig 4C) (Fig 4B shows that this is also true for lower values of r0). Global efficiency Ew

increases alongside the decrease of modularity Qw, and further increments of α produce net-

work desynchronization. On the other hand, a 1-D sweep of r0 at α = 0.6 (Fig 4D) produces

similar observations, but just one boundary is visible. As in the (α, β) parameter space, the

excitatory gain α follows an inverted-U relationship with integration. This relationship was

not observed between the filter gain r0 and integration.

In the whole-brain model, the cholinergic system exerts its effect by changing both α and β
parameters. Under this assumption, a logical consequence of the cholinergic neuromodulation

is the possibility of α and β increasing/decreasing simultaneously. For that reason, we repeated
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the analysis previously performed in the (α, r0) parameter space, but this time we changed β
alongside α following the relationship β = 0.5α. The results are shown in S4 Fig. They are simi-

lar to those in Fig 4, but this time the relationship between r0 and Ew is no longer a sigmoid-

like function, and instead it follows an inverted-U relationship.

Changes in the EEG timescale match with the increase of integration

Previous experimental and theoretical works [13, 14, 28] suggest that neuromodulatory sys-

tems increase the signal-to-noise ratio, allowing neuronal populations to be sensitive to local

or distant populations to a greater extent than noise. To test that, we measured the signal-to

noise-ratio (SNR) using the power spectral density (PSD) function of each EEG-like signal (see

Methods) and report the average value over all nodes. Additionally, we computed the average

Kuramoto order parameter �R [47], as a measure of global synchronization in the fast timescale

of EEG. Values of �R closer to 1 indicate a perfect in-phase synchronization, and values closer

to 0 indicate complete asynchrony.

Fig 3. fMRI-like sFCs at different values of α and β. A) The red circles represent pairs of (α, β) values in which different integration/segregation

profiles can be observed. B-F) BOLD-like signals, and their respective sFC matrices, for the (α, β) values shown in A. The sFC networks evolve from

neither integration nor segregation (B, the nodes are disconnected), to a more integrated sFC (C). In D the integration is maximal, and a further

increase of both parameters produces a more segregated sFC matrix (E). Finally, in F there is neither integration nor segregation (the pyramidal

neurons are over-excited). We shown only 120 s of BOLD-like signals, while sFC matrices were built with the full-length time series (600 s).

https://doi.org/10.1371/journal.pcbi.1008737.g003
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Both SNR and �R match the region of integration, measured as the global efficiency Ew in

the slowest BOLD timescale (Fig 5), supporting the idea that neuromodulatory systems pro-

mote integration by increasing SNR. In consequence, our results link in two different time-

scales the effect of neuromodulation in the coordination of brain activity. These results are not

possible without the action of the inhibitory gain (β = 0, Fig 5A).

Fig 4. Network features in the (α, r0) parameter space. A-B) Global efficiency Ew (integration) and modularity Qw (segregation) of the graphs derived

from the sFCs of the BOLD-like signals, for A) β = 0 (no action of the inhibitory gain) and B) β = 0.4. C) Transitions through the critical boundary in

the α axis, with a fixed r0 = 1 mV−1 and β = 0.4. Critical transition points represented by black dashed lines at α = 0.3 and α = 0.8. D) Transitions in the

r0 axis, for a fixed α = 0.6 and β = 0.4, with a critical transition at r0 = 0.33 mV−1.

https://doi.org/10.1371/journal.pcbi.1008737.g004

Fig 5. EEG features in the (α, r0) parameter space. A-B) Average phase synchrony �R and signal-to-noise ratio (SNR) measured from the EEG-like

signals. A) No action of inhibitory gain (β = 0). B) The increase of �R and the SNR matches with functional integration for β = 0.4. C) Transitions

through the critical boundary in the α axis, with a fixed r0 = 1 mV−1. Critical transitions represented by black dashed lines at α = 0.3 and α = 0.8. D)

Transitions in the r0 axis, for a fixed α = 0.6, with a critical transition at r0 = 0.33 mV−1.

https://doi.org/10.1371/journal.pcbi.1008737.g005
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Dynamical richness peaks near the critical boundary

As suggested by experimental [3] and computational studies [26], a shift to more segregated or

integrated functional states decreases the topological variability of the network. Also, near the

critical transitions for segregation to integration, network variability and communicability

peak [26]. We tested this hypothesis performing a Functional Connectivity Dynamics (FCD)

analysis [9, 10] on the BOLD-like signals, using the sliding windows approach depicted in Fig

6A–6C [48]. The resulting time vs time FCD matrix captures the concurrence of FC patterns,

visualized as square blocks. We computed the variance of the FCD, var(FCD), as a multistabil-

ity index [48], where values greater than 0 indicate the switching between different FC pat-

terns. Additionally, we calculated the FCD speed dtyp as described by Battaglia et al. [49],

which captures how fast the FC patterns fluctuate over time. Values closer to 1 indicate a

continuous change of diverse FC patterns, and closer to 0 the concurrence of stable and similar

states over time.

Fig 6. Analysis of functional connectivity dynamics. A) Sample fMRI BOLD time series showing the fixed length and

overlapping time windows at the begginging. In color, the time windows corresponding to the FCs shown in B. B) FC

matrices obtained in the colored time windows. C) Functional Connectivity Dynamics (FCD) matrix, where all the

FCs obtained were vectorized and then compared against each other using a vector-based distance (Clarkson distance).

D) FCD matrices through the critical boundary, in both α and r0 direction. Below each FCD, a histogram of its upper

triangular values is shown. The variance of these values constitutes a measure of multistability.

https://doi.org/10.1371/journal.pcbi.1008737.g006
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In Fig 6D we show a set of FCD matrices obtained at different values of α and r0, together

with histograms of their off-diagonal values. Red FCD matrices (with high values) correspond

to incoherent states, as the FC continuously evolves in time. On the other hand, a blue FCD

matrix (with low values) indicates a fixed FC throughout the simulation. Multistability is

higher for green/yellow patchy matrices, because this indicates FC patterns that change and

also repeat over time. As can be inferred observing the FCD distributions, the variance of the

values in the histograms –var(FCD)– can be used as a measure of multistability [48].

Fig 7 shows how multistability (var(FCD)) and FCD speed change in the whole (α, r0) space,

for β = 0.4. At low levels of both α and r0, the neuronal activity is constituted mainly by noisy

asynchronous signals, conditions associated to low (near 0) values of var(FCD), and with a

high dtyp (all FC patterns differ from each other, as expected for noise-driven signals) (Fig 7A).

In the other extreme, for r0 > 0.5 mV−1 and α 2 [0.5, 0.6], values that correspond to the inte-

grated states, var(FCD) is also small and dtyp falls close to 0. In consequence, integrated states

are more stable and less susceptible to network reconfiguration over time. In contrast, var

(FCD) peaks near the critical boundary, through the α and r0 axes (Fig 7B and 7C). Moreover,

crossing the boundaries is associated with a continuous decrease of dtyp: the emerging integra-

tion mediated by gain mechanisms is associated with more stable FC patterns over time.

Discussion

In this work, we used a whole-brain neural mass model to investigate how local (meso-scale)

neuromodulatory effects can impact the global functional network properties. Importantly, we

studied the effect that the cholinergic system has in both, excitatory and inhibitory neurons,

Fig 7. Dynamical features of the system in the (α, r0) parameter space for β = 0.4. A) Multistability var(FCD) and typical FCD speed dtyp
measured from the Functional Connectivity Dynamics analysis (BOLD-like signals). B) Transitions through the critical boundary in the α
axis, with a fixed r0 = 1 mV−1. Critical transitions represented by black dashed lines at α = 0.3 and α = 0.8. C) Transitions in the r0 axis, for a

fixed α = 0.6, with a critical transition at r0 = 0.33 mV−1.

https://doi.org/10.1371/journal.pcbi.1008737.g007
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along with the noradrenergic modulatory influence. Our model shows an increase in func-

tional integration at intermediate values of the parameters that resemble the cholinergic and

noradrenergic systems, following an inverted-U relation with the neuromodulation. In addi-

tion, the modulation of an intra-columnar inhibitory gain can promote functional integration

and facilitates the effect of the other neuromodulatory systems. Finally, we show that our

results hold for both the EEG and fMRI timescales, and that integration is accompanied by an

increment in the signal-to-noise ratio, as well as a reduction of dynamical variability captured

by the FCD analysis.

Our main motivation was to study the large-scale effects of the cholinergic neuromodula-

tion of local inhibitory circuits. Although the cholinergic system increases the response of

pyramidal neurons to external afferences through nicotinic and muscarinic receptors [34], the

same system can promote intra-columnar inhibition, an effect mediated by nicotinic receptors

expressed by inhibitory interneurons [28, 31, 50]. A possible consequence is the increase of the

influence of external inputs, in comparison with the local intra-columnar inputs, shifting the

flow of information from local to global processing. Based on these experimental findings [28,

31, 34, 50], we hypothesized that the cholinergic neuromodulation of the inhibitory interneu-

rons facilitates functional integration. Our model shows that the action of the cholinergic sys-

tem, on both the excitation of pyramidal neurons and the intra-columnar inhibitory feedback,

can shift the system towards a functionally integrated regime. In this way, we propose a plausi-

ble biophysical mechanism of inhibitory-to-excitatory interneuron connection that facilitates

functional integration of brain activity (see Fig 4).

The new intra-columnar connection that we introduced in the Jansen & Rit model –repre-

sented by the inhibitory gain β–, produces a higher dampening of the excitatory input to pyra-

midal neurons when their excitability is high. Conversely, when the pyramidal excitability

decreases, the effect of the inhibitory loop between interneurons is low, and the excitatory loop

can rise the excitability of pyramidal cells. In this way, the inhibitory gain provides a simple

dynamical mechanism to homeostatically preserve the excitation/inhibition (E/I) balance at

the node level. In contrast, a simple reduction of the excitatory feedback (e.g., decreasing C1,

S2 Fig), fails to compensate the E/I balance when pyramidal excitability is low, and thus has a

limited ability to promote functional integration. This highlights the role of specific intra-

columnar inhibitory feedback connections in shaping the network behavior, and justifies our

modification of the model with a homeostatic mechanism. Similar types of inhibition-medi-

ated control of the E/I balance have been implemented in a dynamic mean-field model [51] as

well as in the Wilson-Cowan model [52]. Remarkably, the E/I balance has been considered a

determinant element in the interplay between integration and segregation [53]

Our results also have an interpretation from the dynamical systems perspective. It has

been proposed that, at rest, brain activity operates near a bifurcation point, where segregated

(uncoordinated) and integrated (coordinated) regimes alternate in time. Then, a shift to

more segregated or integrated states takes places with a change in behavioral context [5, 9,

10]. At the node level, the Jansen & Rit model has two Hopf supercritical bifurcations [54].

When α and r0 are low, the node dynamics is defined by a stable focus (a fixed point with

non-monotonic convergence), and thus pyramidal outputs consist of low amplitude noisy

signals. Increasing both parameters causes the bifurcation into an unstable focus within a

limit cycle, with high amplitude oscillations. Increasing α further produces a new bifurcation

(into a stable focus) and the limit cycle disappears. The inhibitory gain β constitutes a mech-

anism to keep the model working between the two bifurcations points, allowing the transi-

tions between different functional states (more segregated or integrated). This again

highlights the role of β as an inhibitory control loop which preserves the E/I balance and sus-

tains a richer brain dynamics.
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Several clues suggest that the model we propose is in the right track. First, our model repro-

duces previous results of Shine et al., also using a whole-brain model [26]: they reported and

inverted-U relationship between cholinergic neuromodulation and integration, an increase in

phase synchronization, and that integration is accompanied by a reduction in the time-

resolved topological variability (captured, in our analysis, by the variance of the FCD). Second,

functional integration matches with an increase of SNR, a common effect attributed to neuro-

modulatory systems [13, 14, 28, 55]. Third, integration is accompanied in our model by a

reduction in oscillatory frequency –which falls within the Theta range of EEG spectrum– (S8

Fig); an effect that is also perceived in several cognitive tasks [56, 57], and reproduced by other

computational studies [58, 59].

From an experimental point of view, an increase in the local and global efficiency (integra-

tion) in fMRI has been reported after the administration of nicotine both in resting state con-

ditions [37] and during an attentional task [38]. Interestingly, the performance was positively

correlated with the global efficiency, and negatively correlated with the average clustering coef-

ficient. Some nicotinic agonists have pro-cognitive effects as well, in health and disease [60].

Considering the relationship between functional integration and cognition [2, 3, 13], our

model suggests that the possible pro-cognitive effects associated with the cholinergic system

are due to a selective increase in the excitability of excitatory and inhibitory neural populations

within brain areas. Thus, our computational approach –in the same spirit as Wylie et al. [37]

and Gießing et al. [38]– links the meso-scale consequences of inhibitory interneurons neuro-

modulation with the functional network topology features at the whole-brain level.

On the other hand, the inverted-U relationship between neuromodulation and integration

that we are reporting in our whole-brain model, has not been experimentally observed. How-

ever, an inverted-U function between cholinergic and noradrenergic neuromodulation and

in-task performance [15, 27]; as well as between in-task performance and functional integra-

tion [12] has been reported. Taking these together we propose, in accordance to Shine et al‥
[13, 26], that neuromodulation improves cognitive performance by boosting integration. The

results from computational modeling should nevertheless be verified by measuring both inte-

gration and cognitive performance as functions of neuromodulatory activity, e.g., as functions

of the dose of a cholinergic/noradrenergic drug.

There is a lot of room for further progress starting from this work. Future research may

consider the addition of neuromodulatory maps [41, 61] in order to take into account the het-

erogeneous expression of the receptors, or explore models that can reproduce the effect of

other neuromodulatory systems [17]. Furthermore, it is known that cholinergic and noradren-

ergic projections have a specific spatial organization [62, 63]. Our model considers neuromo-

dulation to be static, that is, the parameters α, β and r0 do not change over time, as in tonic

neuromodulation. An improvement to our model may be the addition of the release and reup-

take dynamics of neuromodulators, as in Kringelbach et al. [64] or the characterization of the

dynamics under acute neuromodulatory ‘pulses’. Other interneurons subtypes and their mod-

ulation could be included –such as fast-spiking inhibitory interneurons– to account for the

faster EEG features of brain activity [65]. Finally, the graph theoretical analysis used here only

considers pairwise interactions, neglecting high-order effects that may contain important

information about high dimensional functional brain interactions. Information-theoretical

[66, 67] and algebraic topological approaches [68–70] may provide complementary insights of

high-order interdependencies in the brain.

Our findings shed light on a better understanding of neurophysiological mechanisms

involved in the functional integration and segregation of the human brain activity and consti-

tutes a step forward from the neuromodulatory framework proposed by Shine [13], including

the role of a second cholinergic target and also highlighting the role of a homeostatic inhibitory

PLOS COMPUTATIONAL BIOLOGY Cholinergic modulation of inhibitory circuits and the segregation/integration balance

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008737 February 18, 2021 12 / 25

https://doi.org/10.1371/journal.pcbi.1008737


feedback. This line of research may have plentiful of scientific and clinical implications, as a

vast body of evidence suggest that functional integration and segregation may be altered in

neuropsychiatric disorders [53, 71, 72], e.g, in Alzheimer disease and Attention-Deficit/Hyper-

activity Disorder (ADHD) [73, 74]. These results point out the usefulness of graph theoretical

analysis to exhibit functional markers for characterizing and understanding neuropsychiatric

disorders. Understanding the neuromodulatory mechanisms that underlie the imbalances of

integration and segregation will lead to a more profound understanding of how the brain

works in health and disease and to future progress in pharmacological treatments.

Methods

Whole-brain neural mass model

To simulate neuronal activity we used a modified version of the Jansen & Rit neural mass

model [35, 36]. In this model, a cortical column consists of a population of pyramidal

neurons (that reside in cortical column layer V) with projections to other two populations:

excitatory interneurons (nearby pyramidal cells which reside in the same layer than the prin-

cipal pyramidal population) and inhibitory interneurons; both project back to the pyramidal

population. The dynamical evolution of the three populations within the cortical column is

modeled by two blocks each. The first transforms the average pulse density in average post-

synaptic membrane potential (which can be either excitatory or inhibitory) (Fig 1A). This

block, denominated post synaptic potential (PSP) block, is represented by an impulse

response function

hEðtÞ ¼

(Aate� at; t � 0

0; t < 0
ð1Þ

for the excitatory outputs, and

hIðtÞ ¼

(Bbte� bt; t � 0

0; t < 0;
ð2Þ

for the inhibitory ones. The constants A and B define the maximum amplitude of the PSPs

for the excitatory (EPSPs) and inhibitory (IPSPs) cases respectively, while a and b represent

the inverse time constants for the excitatory and inhibitory postsynaptic action potentials,

respectively. The second block transforms the postsynaptic membrane potential in average

pulse density, and is given by a sigmoid function of the form

Sðn; rÞ ¼
zmax

1þ erðy� nÞ
; ð3Þ

with zmax as the maximum firing rate of the neuronal population, r the slope of the sigmoid

function, and θ the half maximal response of the population.

Additionally, the pyramidal neurons receive an external stimulus p(t), whose values were

taken from a Gaussian distribution with mean μ = 2 impulses/s and standard deviation σ = 2.

Different values of σ were explored; qualitatively the results are similar for different σ values,

but the magnitude of integration decreases with σ. This exploration is shown in the S5 Fig. In

the same manner, the mean of the Gaussian distribution μ has an effect in decreasing the syn-

chronization and integration, as shown in the S5 Fig.

To study the effect of the neuromodulatory systems at the macro-scale level, we included

long-range pyramidal-to-pyramidal neurons and short-range inhibitory-to-excitatory
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interneurons couplings, to mimic the effects of neuromodulation through the excitatory and

inhibitory gain parameters, respectively. This short-range coupling between interneurons, well

described at the meso-scale level [39, 40], constitutes a modification of the original equations.

A bifurcation analysis of the model at different values of β reveals that this parameter shifts the

oscillatory regime of the system towards larger values of the external input p(t) (S7 Fig). Never-

theless, the main oscillatory rhythm of the model is well maintained within the α band fre-

quency (around 10 Hz).

In the model presented in the Fig 1A, each node i 2 [1. . .N] represents a single brain area.

The nodes are connected by a normalized structural connectivity matrix eM (Fig 1B). This

matrix is derived from a human connectome [41] parcellated in n = 90 cortical and subcorti-

cal regions with the automated anatomical labelling (AAL) atlas [42]; the matrix is undi-

rected and takes values between 0 and 1. Because long-range connections are mainly

excitatory [43, 44], only links between the pyramidal neurons of a node i with pyramidal

neurons of a node j are considered. We applied a local normalization procedure to the struc-

tural connectivity matrix M. The normalization consisted in dividing all the columns

belonging to a node i by the in-strength of the node. The entries of the resulting normalized

matrix eM are defined as

eMij ¼
Mij

Pn
j¼1;j6¼i Mij

ð4Þ

The local normalization procedure constitutes a form of homeostatic plasticity, which

equalizes the excitatory inputs that the nodes receive, while preserving the structural topol-

ogy. It has been reported that this mechanism improves the fit of a whole-brain mesoscopic

model to empirical fMRI data, and leads to a better estimation of the functional connectivity

[75].

The overall set of equations, for a node i, includes the within and between nodes activity

_x0;iðtÞ ¼ y0;iðtÞ

_y0;iðtÞ ¼ Aa ½SðC2x1;iðtÞ � C4x2;iðtÞ þ CaziðtÞ; r0Þ� � 2ay0;iðtÞ � a2x0;iðtÞ

_x1;iðtÞ ¼ y1;iðtÞ

_y1;iðtÞ ¼ Aa ½pðtÞ þ SðC1x0;iðtÞ � Cbx2;i; r1Þ� � 2ay1;iðtÞ � a2x1;iðtÞ

_x2;iðtÞ ¼ y2;iðtÞ

_y2;iðtÞ ¼ Bb ½SðC3x0;iðtÞ; r2Þ� � 2by2;iðtÞ � b2x2;iðtÞ

_x3;iðtÞ ¼ y3;iðtÞ

_y3;iðtÞ ¼ A�a ½SðC2x1;iðtÞ � C4x2;iðtÞ þ CaziðtÞ; r0Þ� � 2�ay3;iðtÞ � �a2
i x3;iðtÞ

ð5Þ

where x0, x1, x2 correspond to the outputs of the PSP blocks of the pyramidal neurons, and

excitatory and inhibitory interneurons, respectively, and x3 the long-range outputs of pyrami-

dal neurons. The constants C1, C2, C3 and C4 scale the connectivity between the neural popula-

tions (see Fig 1A). The first pair of equations, x0 and y0, are related to the outputs of pyramidal

cells to both interneurons; the second pair, x1 and y1, represent all the local excitatory inputs

that the pyramidal neurons receive; x2 and y2 constitute the inhibitory contribution to pyrami-

dal cells; and finally, x3 and y3 correspond to the long-range excitatory outputs of pyramidal

neurons. We used the original parameter values of Jansen & Rit [35, 36]: zmax = 5 s−1, θ = 6
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mV, r0 = r1 = r2 = 0.56 mV−1, a = 100 s−1, b = 50 s−1, A = 3.25 mV, B = 22 mV, C1 = C, C2 =

0.8C, C3 = 0.25C, C4 = 0.25C, and C = 135. The parameters A, B, a and b were selected as in the

original Jansen & Rit model [35, 36] to produce IPSPs longer in amplitude and latency in com-

parison with the EPSPs. The inverse of the characteristic time constant for the long-range

EPSPs was defined as �a ¼ 0:5a. This choice was based on the fact that long-range excitatory

inputs of pyramidal neurons target their apical dendrites, and consequently this decreases the

time course of the EPSPs at the soma due to dendritic nonlinearities and a gradient of input

impedances [76].

The overall input from other cortical columns j 6¼ i to the column i is given by

ziðtÞ ¼
Xn

j¼1;j6¼i

eMijx3;jðtÞ ð6Þ

The average PSP of pyramidal neurons in column i characterizes the EEG-like signal in the

source space; it is computed as [35, 36]

niðtÞ ¼ C2x1;iðtÞ � C4x2;iðtÞ þ CaziðtÞ ð7Þ

The firing rates of pyramidal neurons zi(t) = S(νi(t), r0) were used to simulate the fMRI BOLD

recordings. The parameters α, β and r0 account for the influence of the neuromodulatory sys-

tems (Fig 1C), as described in next subsection.

Neuromodulation

The effects of the cholinergic system were modeled by the parameters α and β. The parameter

α increases the long-rage pyramidal to pyramidal neuron coupling through the eM matrix.

Although α does not control directly the excitability, increasing α amplifies the input to pyra-

midal neurons [13, 14]. The parameter β scales the short-range inhibitory-to-excitatory inter-

neurons coupling, decreasing the recurrent excitation to pyramidal neurons [28]. We refer to

α as the excitatory gain, and β as the inhibitory gain. In comparison with the current frame-

work proposed by Shine [13], the novelty of our neuromodulatory approach is the inclusion of

the inhibitory gain to the model. The effect of the noradrenergic system, designated as filter

gain, was simulated controlling the parameter r0, which represents the sigmoid function slope

of the pyramidal population, and increases the signal-to-noise ratio of pyramidal cells [14, 25].

Simulation

Following Birn et al. [77], we ran simulations to generate the equivalent of 11 min real-time

recordings, discarding the first 60 s. The system of differential equations (Eq (5)) was solved

with the Euler–Maruyama method, using an integration step of 1 ms. We used six random

seeds which controlled the initial conditions and the stochasticity of the simulations. We simu-

lated neuronal activity sweeping the parameters α 2 [0, 1], β 2 [0, 0.5] and r0 2 [0, 1]. All the

simulations were implemented in Python and the codes are freely available at https://github.

com/vandal-uv/Neuromod2020.

Simulated fMRI BOLD signals

We used the firing rates zi(t) to simulate BOLD-like signals from a generalized hemodynamic

model [45]. An increment in the firing rate zi(t) triggers a vasodilatory response si, producing

blood inflow fi, changes in the blood volume vi and deoxyhemoglobin content qi. The
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corresponding system of differential equations is

_siðtÞ ¼ ziðtÞ �
siðtÞ
ts
�
fiðtÞ � 1

tf

_fiðtÞ ¼ siðtÞ

_viðtÞ ¼
fiðtÞ � viðtÞ

1=k

tv

_qiðtÞ ¼

fiðtÞð1 � ð1 � E0Þ
1=fiðtÞÞ

E0

�
qiðtÞviðtÞ

1=k

viðtÞ
tq

;

ð8Þ

where τs, τf, τv and τq represent the time constants for the signal decay, blood inflow, blood vol-

ume and deoxyhemoglobin content, respectively. The stiffness constant (resistance of the veins

to blood flow) is given by κ, and the resting-state oxygen extraction rate by E0. Finally, the

BOLD-like signal of node i, denoted Bi(t), is a non-linear function of qi(t) and vi(t)

BiðtÞ ¼ V0 k1ð1 � qiðtÞÞ þ k2 1 �
qiðtÞ
viðtÞ

� �

þ k3ð1 � viðtÞÞ
� �

ð9Þ

where V0 represent the fraction of venous blood (deoxygenated) in resting-state, and k1, k2, k3

are kinetic constants. We used the same parameters as in Stephan et al. [45]: τs = 0.65, τf =

0.41, τv = 0.98, τq = 0.98, κ = 0.32, E0 = 0.4, k1 = 2.77, k2 = 0.2, k3 = 0.5.

The system of differential equations (Eq (8)) was solved with the Euler method, using an

integration step of 1 ms. The signals were band-pass filtered between 0.01 and 0.1 Hz with a

3rd order Bessel filter. These BOLD-like signals were used to build the functional connectivity

(FC) matrices from which the subsequent analysis of functional network properties is per-

formed using tools from graph theory.

Although the nodes consist of three neural masses, there is some evidence that the hemody-

namic response is related mainly to excitatory activity [78]. In fact, some reports suggest that

inhibitory activity does not trigger a measurable BOLD response, because the inhibitory con-

nections are relatively few and their energy expenditure is lower [79]. Nevertheless, we repro-

duced the Fig 2 using a combined BOLD response, and we found no noticeable differences

(see S6 Fig).

Global phase synchronization

As a measure of global synchronization in the EEG timescale, we calculated the Kuramoto

order parameter R(t) [47] of the EEG-like signals ν(t) derived from the Jansen & Rit model.

First, the raw signals were filtered with a 3rd order Bessel band-pass filter using their frequency

of maximum power (usually between 4 and 10 Hz) ±3 Hz. Then, the instantaneous phase ϕ(t)
was obtained with the Hilbert transform.

The global phase synchrony is computed as:

�R ¼ hjhej�iðtÞiN jit ð10Þ

where ϕi(t) is the phase of the oscillator i over time, j ¼
ffiffiffiffiffiffiffi
� 1
p

the imaginary unit, |•| denotes

the module, hiN denotes the average over all nodes, and hit the average over time. A value of �R
equal to 1 indicates perfect in-phase synchronization of all the set N of oscillators, while a

value equal to 0 indicates total asynchrony.
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Signal-to-noise ratio

We measured the average signal-to-noise ratio (SNR) over all raw signals and nodes, using the

power spectral density function denoted PSD(ω). This function was calculated using the

Welch’s method [80], with 20 s time windows overlapped by 50%. We excluded the 2nd to 5th

harmonics [81]. For a node i, the signal power, Psignal, was measured as the area under the

curve of PSD(ω) within ωi ± 1Hz. Noise power, Pnoise, corresponds to the area under the curve

of PSD(ω) outside the ±1Hz window. Then, the SNR was calculated as

SNR ¼ 10 log
10

Psignal

Pnoise
; ð11Þ

The SNR was computed for each node i and we reported the average over all nodes.

Functional connectivity and graph thresholding

The static Functional Connectivity (sFC) matrices were built from pairwise Pearson’s corre-

lations of the entire BOLD-like time series. Instead of employing an absolute or propor-

tional thresholding, we thresholded the sFC matrices using Fourier transform (FT)

surrogate data [82] to avoid the problem of introducing spurious correlations [83]. The FT

algorithm uses a phase randomization process to destroy pairwise correlations, preserving

the spectral properties of the signals (the surrogates have the same power spectrum as the

original data). We generated 500 surrogates time series of the original set of BOLD-like sig-

nals, and then built the surrogates sFC matrices. For each one of the (n2 − n)/2 possible con-

nectivity pairs (with n = 90) we fitted a normal distribution of the surrogate values. Using

these distributions we tested the hypothesis that a pairwise correlation is higher than chance

(that is, the value is at the right of the surrogate distribution). To reject the null hypothesis,

we selected a p-value equal to 0.05, and corrected for multiple comparisons with the FDR

Benjamini-Hochberg procedure [84] to decrease the probability of make type I errors (false

positives). The entries of the sFC matrix associated with a p-value greater than 0.05 were set

to 0. The result is a thresholded, undirected, and weighted (with only positive values) sFC

matrix.

Integration and segregation

Integration and segregation were evaluated over the thresholded sFC matrices. We employed

the weighted versions of transitivity [85] and global efficiency [86] to measure segregation and

integration, respectively. A detailed description of the metrics used can be found in Rubinov &

Sporns [46]. The transitivity (similar to the average clustering coefficient) counts the fraction

of triangular motifs surrounding the nodes (the equivalent of counting how many neighbors

are also neighbors of each other), with the difference that it is normalized collectively. It is

defined as

Tw ¼

P
i2N2twiP

i2Nkwi ðkwi � 1Þ
; ð12Þ

being N the set of all nodes of the network with n number of nodes, twi the geometric average

of the triangles around the node i, and kwi the node weighted degree. The supra-index w is used

to refer to the weighted versions of the topological network measures. On the other hand, the

global efficiency is a measure of integration based on paths over the graph: it is defined as the
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inverse of the average shortest path length. This metric is computed as

Ew ¼
1

n

X

i2N

P
j2N;j6¼iðd

w
ij Þ
� 1

n � 1
; ð13Þ

where dwij is the shortest path between the nodes i and j.
We also calculated other two measures of integration and segregation: the participation

coefficient PCw and modularity Qw, respectively, both based on the detection of the network’s

communities [46]. The detection of so-called communities or network modules in the thre-

sholded sFC matrix, was based on the Louvain’s algorithm [87, 88]. The algorithm assigns a

module to each node in a way that maximizes the modularity (14). We used the weighted ver-

sion of the modularity [89] defined as

Qw ¼
1

lw
X

i;j2N

wij �
kwi k

w
j

lw

� �

dmi ;mj ð14Þ

where wij is the weight of the link between i and j, lw is the total number of weighted links of

the network, mi (mj) the module of the node i (j). The Kronecker delta dmi;mj
is equal to 1 when

mi = mj (that is, when two nodes belongs to the same module), and 0 otherwise. Because the

Louvain’s algorithm is stochastic, we employed the consensus clustering algorithm [90]. We

ran the Louvain’s algorithm 200 times with the resolution parameter set to 1.0 (this parameter

controls the size of the detected modules; larger values of this parameter allows the detection

of smaller modules). Then, we built an agreement matrix G, in which an entry Gij indicates the

proportion of partitions in which the pairs of nodes (i, j) share the same module (so, the entries

of G are bounded between 0 and 1). Then, we applied an absolute threshold of 0.5 to the matrix

G, and ran again the Louvain’s algorithm 200 times using G as input, producing a new consen-

sus matrix G0. This last step was repeated until convergence to an unique partition.

Finally, we computed the weighted version of the participation coefficient [91]. This metric

quantifies, for each individual node, the strength of between-module connections respect to

the within-module connections, and is defined as

hPCwiN ¼
1

n

X

i2N

PCw
i ¼

1

n

X

i2N

1 �
X

m2M

kwi ðmÞ
kwi

� �2
 !

ð15Þ

where PCw
i is the weighted participation coefficient for the node i, and hPCwiN is the average

overall nodes. The functional network analysis was done in Python using the Brain Connectiv-

ity Toolbox [46].

Functional connectivity dynamics

The FCD matrix captures the evolution of FC patterns and, consequently, the dynamical rich-

ness of the network [9, 10]. We used the sliding window approach [9, 48] depicted in Fig 6.

Window length was set to 100 s with a displacement of 2 s between consecutive windows (Fig

6A). The length was chosen on the basis of the lower limit of the band-pass filter (0.01 Hz), in

order to minimize spurious correlations [92]. For each window, an FC matrix was calculated

from the pairwise Pearson’s correlations of BOLD-like signals (neglecting negative values),

thus we obtained 251 weighted and undirected FC matrices from the 600 s simulated BOLD-

like signals (Fig 6B).

The upper triangle of each FC matrix is unfolded to make a vector, and the FCD is built by

calculating the Clarkson angular distance lðx; yÞ ¼ 1ffiffi
2
p k x

jjxk �
y
kyjj k [93] between each pair of
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FCs (Fig 6C)

FCDij ¼ lðFCðtiÞ; FCðtjÞÞ ð16Þ

The variance of the values in the upper triangle of the FCD, with an offset of τ = 100 s from the

diagonal (e.g., the variance of the histograms of Fig 6D), is taken as a measure of dynamical

richness [48].

The speed of the FCD was measured as described by Battaglia et al. [49]. We computed the

histogram of FCD values through a straight line from FCD(τ, 0) to FCD(tmax, tmax − τ), with

tmax = 600 s as the total time-length of the signals and τ = 100 s. The median of the histogram

distribution corresponded to the typical FCD speed dtyp. Values closer to 1 indicate a constant

switching of states, and values closer to 0 correspond to stable FC patterns.

Supporting information

S1 Fig. Alternative measures of network segregation and integration in the (α, β) parame-

ter space. A) Mean participation coefficient PCw (integration) and transitivity Tw (segrega-

tion). B-C) Transitions in the α and β axes. Dashed lines represent critical transitions.

(PDF)

S2 Fig. Network features in the (α, C1) parameter space. A) Global efficiency Ew (integra-

tion) and modularity Qw (segregation) of the graphs derived from the sFCs of the BOLD-like

signals. B) Transitions in the α axis, for a fixed C1 = 0. C) Transitions in the C1 axis, for a fixed

α = 0.5. Dashed lines represent critical transitions.

(PDF)

S3 Fig. Alternative measures of network segregation and integration in the (α, r0) parame-

ter space for β = 0.4. A-B) Mean participation coefficient PCw (integration) and transitivity

Tw (segregation) with A) β = 0 and B) β = 0.4. C-D) Transitions in the α and r0 axes. Dashed

lines represent critical transitions.

(PDF)

S4 Fig. Simultaneous effect of α, β and r0 in network features. A) Global efficiency Ew (inte-

gration) and modularity Qw (segregation) of the graphs derived from the sFCs of the BOLD-

like signals. B) Transitions in the α axis, for a fixed r0 = 0.5 mV−1. C) Transitions in the r0 axis,

for a fixed α = 0.5. Dashed lines represent critical transitions. Both coupling parameters change

in parallel following the relationship β = 0.5α.

(PDF)

S5 Fig. Effect of the input standard deviation, σ, and mean, μ, in synchronization and inte-

gration. A-B) Average phase synchrony �R measured over the EEG-like signals, and global effi-

ciency Ew computed over the sFC matrices build using the BOLD-like signals. σ and μ reduces

the increment of �R and Ew mediated by α and β. Both coupling parameters change in parallel

following the relationship β = 0.5α. C-D) Phase synchrony �R and global efficiency Ew as a func-

tion of α and β, for different σ (left hand) and μ (right hand) values.

(PDF)

S6 Fig. Network integration computed from mixed BOLD-like signals. A) Global effi-

ciency Ew computed in the entire (α, β) parameter space. BOLD-like signals were computed

using only the firing rates of pyramidal neurons. B) Ew calculated starting from a summation

of the BOLD-like signals simulated using the firing rates of the three neural masses: pyrami-

dal neurons, excitatory and inhibitory interneurons. C) Difference in the global efficiency

ΔEw between the two matrices in the (α, β) parameter space. Green values correspond to
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near-zero difference between the matrices. There is not a noticeable difference between

them.

(PDF)

S7 Fig. Bifurcation analysis of the modified Jansen & Rit model and comparison to the

original model. Bifurcations of a single-node model with respect to the mean external input

parameter p, at three values of β. Note that β = 0 corresponds to the original Jansen & Rit

model. The value depicted in the y-axis is the variable x0. Red and black lines denote stable and

unstable fixed points, respectively. Green solid lines and blue dashed lines represent stable and

unstable periodic attractors, respectively (denoting the maximum and minimum values of the

oscillation). At the right, sample time courses (3 seconds) of the EEG-like signal (C2 x1(t) − C4

x2(t)) at three values of p, and their corresponding power spectra below.

(PDF)

S8 Fig. Effect of neuromodulation on the mean oscillatory frequency ω. The frequency falls

in the Theta range (4-8 Hz) of the EEG spectrum in both the A (α, β) and B (α, r0) parameter

spaces. In the first case we fixed r0 = 0.56 mV−1, and in the second one β = 0.4. The frequency

drop off matches with phase synchronization (see Fig 5).

(PDF)
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