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Estimation of the dose-response curve for efficacy and subsequent selection of
an appropriate dose in phase II trials are important processes in drug develop-
ment. Various methods have been investigated to estimate dose-response curves.
Generally, these methods are used with equal allocation of subjects for sim-
plicity; nevertheless, they may not fully optimize performance metrics because
of nonoptimal allocation. Optimal allocation methods, which include adaptive
allocation methods, have been proposed to overcome the limitations of equal
allocation. However, they rely on asymptotics, and thus sometimes cannot effi-
ciently optimize the performance metric with the sample size in an actual
clinical trial. The purpose of this study is to construct an adaptive allocation
rule that directly optimizes a performance metric, such as power, accuracy of
model selection, accuracy of the estimated target dose, or mean absolute error
over the estimated dose-response curve. We demonstrate that deep reinforce-
ment learning with an appropriately defined state and reward can be used to
construct such an adaptive allocation rule. The simulation study shows that the
proposed method can successfully improve the performance metric to be opti-
mized when compared with the equal allocation, D-optimal, and TD-optimal
methods. In particular, when the mean absolute error was set to the metric
to be optimized, it is possible to construct a rule that is superior for many
metrics.
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1 INTRODUCTION

Estimation of the dose-response curve for efficacy and selection of the dose for use in confirmatory phase III trials are
one of the most difficult decisions in the drug development process. While too low a dose can result in lack of efficacy,
too high a dose can cause unnecessary adverse events.

Various methods have been examined to accurately estimate the dose-response curve and ensure correct dose selec-
tion. Methods for estimating the dose-response curve include analysis of variance (ANOVA), multiple comparison
procedure—modeling (MCP-Mod) method,1 and Bayesian modeling average (BMA)-based method.2,3 These methods are
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typically used with equal allocation of subjects for simplicity. Various optimal allocation methods, which include adaptive
allocation methods, have been studied,4 such as the D-optimal method,5 TD-optimal method,6 aMCP-Mod method,7 and
Miller’s method.8 Studies have evaluated some of these methods.9,10 One common feature in these studies is the evalua-
tion of the operating characteristics in simulation studies using performance metrics, such as statistical power, accuracy
of the estimated target dose, and mean absolute error over the estimated dose-response curve.

The issue with equal allocation is that the metrics may not be fully optimized due to nonoptimal allocation.
Several optimal allocation methods have been proposed in previous studies to overcome this issue, but they rely
on asymptotics, and thus sometimes cannot efficiently optimize the performance metric with the sample size in an
actual clinical trial. For example, the D-optimal method minimizes the asymptotic variance of the estimates of the
dose-response model parameters,5 and the TD-optimal method minimizes the asymptotic variance of the estimated target
dose.6

The purpose of this study is to construct an adaptive allocation rule that can directly optimize the performance metric
to be optimized. To achieve this, we use deep reinforcement learning11,12 based on the mean and standard deviation
of the response for each dose and the number of subjects allocated to each dose. A simulation study was conducted to
compare the operating characteristics of the equal allocation (commonly used in actual clinical trials), D-optimal method,
TD-optimal method, and proposed method.

In Section 2, the performance metrics and the proposed method are described. In Section 3, the simulation settings
and results are presented. In Section 4, we summarize and discuss our findings.

2 OPTIMAL ADAPTIVE ALLOCATION USING REINFORCEMENT
LEARNING

2.1 Settings

In most actual dose-response studies, the doses are limited to predetermined discrete values, and thus, we assume this in
this article. The number of doses is denoted by K, and the indices of the doses are k = 1,… ,K, indexed from the lowest
dose to the highest dose. The amount of dose is denoted by dk, where k = 1 is the placebo group with d1 = 0. The total
number N of subjects to be allocated in a clinical trial is assumed to be predetermined. Each subject is allocated to a dose
k ∈ {1,… ,K} and response Y is measured. We assume that the clinical team has a performance metric to be optimized,
as described in Section 2.2, and determines a method to detect dose-response and to estimate the dose-response curve at
the end of the trial (eg, ANOVA, MCP-Mod, or BMA).

In the proposed method, a clinical trial is conducted according to the following steps.

1. At the beginning of the trial, Nini subjects are allocated equally to k = 1,… ,K and their responses are obtained.
2. Based on the information obtained so far, each of Nblock subjects is probabilistically allocated to one of the K doses

according to the adaptive allocation rule 𝜋∗. Then, their responses are obtained. This step is repeated for b = 1,… ,B
where B = (N − Nini)∕Nblock.

3. At the end of the trial, the dose-response curve and target dose are estimated, and all performance metrics are
evaluated.

In Step 2, the rule 𝜋∗ selects a dose k so that it can optimize the selected performance metric. The rule 𝜋∗ is deter-
mined before the start of the trial. In Section 2.3, we explain how the rule 𝜋∗ is obtained using deep reinforcement
learning.

2.2 Performance metrics

When selecting the target dose to be used in a phase III trial, safety and efficacy of the drug are taken into consideration.
For the purpose of simulation studies, we simplify the problem and consider only efficacy for dose selection. In simulation
studies, the existence of true dose-response curves is usually assumed to evaluate the methods.9,10 The values of the
true and estimated dose-response curves at dk are denoted by 𝜇(dk) and �̂�(dk), respectively. To evaluate the operating
characteristics of the methods, the following performance metrics are used in general.9,10
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2.2.1 Detecting dose-response

The methods in the previous studies and the proposed method include a decision rule to determine whether the data
provides sufficient evidence of dose-response activity. The probability of identifying the presence of dose-response is esti-
mated as the percentage of simulated trials in which the decision rule concluded for dose-response activity. Under a flat
dose-response scenario, it gives the type I error rate, and under a nonflat dose-response scenario, it provides the power to
make the correct identification of dose-response.

2.2.2 Accuracy of model selection

In several dose-response curve estimation methods, model selection is done from candidate dose-response models such as
linear, Emax, and sigmoid Emax models. For the accuracy of the model selection, we calculate the percentage of simulated
trials in which the dose-response curve selected in model selection is correct,13 and call this metric “MS”. Selecting the
correct model is important for estimating the dose-response curve and target dose with small errors.

2.2.3 Accuracy of a target dose

In this article, the target dose dtarg is defined as the smallest dose that produces an effect difference from placebo greater
than or equal to the clinically relevant target effect 𝛿 (minimum effective dose, MED). Here, dtarg is a continuous value
and is obtained by

dtarg = arg min
d∈[d1,dK ]

{𝜇(d) ≥ 𝜇(d1) + 𝛿}.

It should be noted that dtarg varies with the true dose-response curve. We also consider target effect intervals Ie
targ(𝜂) =

𝛿(1 ± 𝜂) (ie, within ±100𝜂% of the target effect) and their corresponding target dose intervals Id
targ(𝜂).

10 The estimated
target dose d̂targ is also a continuous value and is defined using the estimated dose-response curve �̂�(d) by

d̂targ = arg min
d∈[d1,dK ]

{�̂�(d) ≥ �̂�(d1) + 𝛿}.

We define the accuracy of the estimated target dose by calculating the percentage of simulated trials in which d̂targ is
correctly within the interval Id

targ(0.1), and call this metric “TD”. In this study, we evaluate “TD” without rounding d̂targ
to the nearest integer because we consider that a better “TD” for the continuous dose also leads to a better “TD” for the
discrete dose.

2.2.4 Error in a dose-response curve

Accurate estimation of the dose-response curve is relevant not only for estimating target doses, but also for appropriate
labeling after approval. To evaluate the accuracy of the dose-response curve estimation, we calculate the mean absolute
error (MAE) between the estimated and true dose-response curves. In actual clinical trials, it is important to determine
the effect compared with the placebo group. Therefore, we calculate the MAE after shifting the dose-response curve so
that the effect in the placebo group is zero.10

MAE = 1
K − 1

K∑
k=2

|(�̂�(dk) − �̂�(d1)) − (𝜇(dk) − 𝜇(d1))| .

2.3 Deep reinforcement learning

In this section, we describe how to use reinforcement learning11 to obtain an allocation rule that optimizes the selected
metric. To conduct reinforcement learning, the distributions for the dose-response curve and observation noise must
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be given to simulate trials. In each simulated trial, a dose-response curve and responses are probabilistically generated
from the distributions. The distributions should reflect the prior beliefs of the clinical team. For example, we can use the
candidate models of MCP-Mod with prespecified probabilities when using it to estimate a dose-response curve. Similarly,
we can use the prior distributions of BMA when using BMA.

In reinforcement learning, a task is formulated as a Markov decision process (MDP), and an important factor is how
to specify the state and reward in the MDP. In the application of an MDP, state s corresponds to a variable that succinctly
describes the information available up to that time point. Now, we consider the situation in which the responses of the
bth block have been obtained in Step 2 in Section 2.1. In the proposed method, we define s by

s =
{

Y 2 − Y 1,Y 3 − Y 1,… ,Y K − Y 1, �̂�1,… , �̂�K ,
n1

N
,… ,

nK

N

}
,

where Y k and �̂�k are the mean and standard deviation of the responses of the subjects allocated to dose k. The number
of subjects allocated to dose k up to that time point is denoted by nk. Therefore,

∑K
k=1nk = N is satisfied at the end of the

clinical trial. s is a vector of the difference from placebo, the standard deviation, and the proportion of the number of
subjects allocated.

We define action k to be selected from {1,… ,K}. Unlike when we apply the obtained allocation rule, action k repre-
sents that all Nblock subjects within the bth block receive the same dose k in the learning. This is to speed up and stabilize
reinforcement learning.

Next, we define the reward. For each metric selected from those in Section 2.2, we transformed the value into approx-
imately within the range [0, 1] at the end of the trial to use the default value of the learning rate hyperparameter in the
software. We write rx as the reward when the performance metric is x. We define rpower, rMS, rTD, and rMAE as follows:

rpower =

{
1, if dose-response is detected under a nonflat model
0, otherwise

rMS =

{
1, the selected model coincides the true model
0, otherwise

rTD =

{
1, d̂targ is within the interval Id

targ(0.1)
0, otherwise

rMAE = 1 − 2 × MAE.

We define Q𝜋(s, k) as the expected cumulative reward from state s by allocating the next block to dose k and after that
following the allocation rule 𝜋 (see Appendix for the formal definition). The aim of reinforcement learning is to learn the
optimal allocation rule 𝜋∗ such that maxk Q𝜋(s, k) is maximized for each s. When the number of possible values of s is
finite and small, it is possible to use the backward induction method;14 however, this method is not feasible in this case.
Instead, we express 𝜋 using a deep neural network (DNN) and obtain 𝜋∗ numerically by reinforcement learning. Several
methods have been proposed to learn 𝜋∗.15,16 Here, we use the proximal policy optimization (PPO) method, a type of deep
reinforcement learning, owing to its ease of implementation and high performance.12

In the PPO method, the probability 𝜋(k|s) of taking action (in our case, dose) k under state s is represented by a
DNN. A DNN with an activation function f and consisting of two intermediate layers with J units can be described
as follows:

z(1)j = f

(
𝛼
(1)
j +

∑
i
𝛽
(1)
ji si

)
, z(2)j = f

(
𝛼
(2)
j +

J∑
j′=1

𝛽
(2)
jj′ z(1)j′

)
,

uk = 𝛼
(3)
k +

J∑
j′=1

𝛽
(3)
kj′ z(2)j′ , 𝜋(k) = softmax(uk) =

exp(uk)∑K
k′=1 exp(uk′ )

,

where si is an element of s, and 𝛼(1), 𝛽(1), 𝛼(2), 𝛽(2), 𝛼(3), 𝛽(3) are the parameters of the DNN.
We estimate 𝜋∗ using reinforcement learning. Specifically, we first initialize the parameters of the DNN appropri-

ately to initialize 𝜋. Then, we simulate a clinical trial according to the current rule 𝜋, and obtain the data of the states
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and rewards. From these data, the parameters of the DNN are updated based on the gradient to increase the reward.
We iteratively simulate trials and update them such that 𝜋 converges to 𝜋∗. See Appendix for the overview of the
PPO method.

3 SIMULATION STUDY

We conducted a simulation study in a slightly modified setting used by Bornkamp et al9 and Dragalin et al.10 We compared
the performance of the equal allocation, D-optimal method, TD-optimal method, and proposed method.

3.1 Design of Simulation Study

We assumed a phase II dose-response study using the MCP-Mod method, which has been used frequently in actual trials
in recent years. Note that it is also possible to use reinforcement learning to directly estimate the dose-response curve
without using MCP-Mod. Nonetheless, we unified the procedure to use MCP-Mod for a fair comparison with existing
methods and to purely evaluate the efficiency of the allocation rules.

In this trial, five doses (0, 2, 4, 6, and 8 mg) were set, and the total sample size was set to 150 subjects. The clinically
relevant target effect was 𝛿 = 1.3. In MCP-Mod, candidate dose-response models (curves) with the values of their shape
parameters must be prepared before the start of the trial. The candidates in this trial were Scenarios 1, 4, and 7 in Table 1
with equal probabilities (ie, 1/3 for each), and the maximum effect in the dose range [0, 8] was assumed to be 1.65. The
response was assumed to be the sum of the dose-response curve and the observation noise following a normal distribution
with mean 0 and variance 4.5.9 In MCP-Mod, multiple testing with a significance level is performed on the candidates at
the end of the trial. The models that pass the testing are fitted to the data, and the shape parameters are estimated. Then,
model selection is performed using a predetermined criterion. Here, the significance level was set to 0.025, and model
selection was performed using Akaike information criterion (AIC). Finally, the performance metrics in Section 2.2 were
evaluated using the selected model. Although performance metrics (except power) are not defined under MCP-Mod in

T A B L E 1 Dose-response scenarios

Scenario no. Model Max effect Formula dtarg Id
targ(0.1)

1 linear 1.65 𝜇(d) = (1.65∕8)d 6.30 (5.67, 6.93)

2 linear 1.65×0.8 𝜇(d) = (1.32∕8)d 7.88 (7.09, 8.00)

3 linear 1.65×1.2 𝜇(d) = (1.98∕8)d 5.25 (4.73, 5.78)

4 Emax 1.65 𝜇(d) = 1.81d∕(0.79 + d) 2.00 (1.44, 2.95)

5 Emax 1.65×0.8 𝜇(d) = 1.45d∕(0.79 + d) 6.83 (3.30, 8.00)

6 Emax 1.65×1.2 𝜇(d) = 2.18d∕(0.79 + d) 1.17 (0.92, 1.52)

7 sigEmax 1.65 𝜇(d) = 1.70d5∕(45 + d5) 5.06 (4.68, 5.58)

8 sigEmax 1.65×0.8 𝜇(d) = 1.36d5∕(45 + d5) 7.37 (5.75, 8.00)

9 sigEmax 1.65×1.2 𝜇(d) = 2.04d5∕(45 + d5) 4.47 (4.24, 4.74)

10 quadratic 1.65 𝜇(d) = (1.65∕3)d − (1.65∕36)d2 3.24 (2.76, 3.81)

11 quadratic 1.65×0.8 𝜇(d) = (1.32∕3)d − (1.32∕36)d2 5.26 (3.98, 8.00)

12 quadratic 1.65×1.2 𝜇(d) = (1.98∕3)d − (1.98∕36)d2 2.48 (2.16, 2.84)

13 exponential 1.65 𝜇(d) = 0.00055(exp(d) − 1) 7.76 (7.66, 7.86)

14 exponential 1.65×0.8 𝜇(d) = 0.00044(exp(d) − 1) 7.98 (7.88, 8.00)

15 exponential 1.65×1.2 𝜇(d) = 0.00066(exp(d) − 1) 7.58 (7.47, 7.67)

16 flat 0 𝜇(d) = 0 - -

Note: If the upper of Id
targ(0.1) did not exist or was greater than 8 (maximum dose), the upper was set to 8
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quadratic exponential flat

linear Emax sigEmax
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F I G U R E 1 Dose-response scenarios

case no model passes the testing, we formally performed model selection using all candidate models and calculated the
performance metrics for the evaluation purpose.

For each of the 16 scenarios in Table 1, 10 000 simulated trials were used to estimate the mean of the performance
metrics. Scenarios 2, 3, 5, 6, 8, and 9 represent the scenarios where the effect was smaller or larger than the candidates,
and Scenarios 10 to 15 represent the scenarios where the model was not included in the candidates. These scenarios were
set up to verify the robustness of the allocation rule obtained by the proposed method. Scenario 16 was used to evaluate
the type I error rate. These scenarios are illustrated in Figure 1.

3.2 Allocation Rule

We used the following eight allocation rules: Equal, D-optimal 1, D-optimal 2, TD-optimal 1, TD-optimal 2, RL-power,
RL-MS, RL-TD, and RL-MAE. We used the sans-serif font for rule names to distinguish the objective used in RL, which
represents reinforcement learning, from the evaluated performance metrics. The details of the eight allocation rules are
described below.

3.2.1 Equal

At the beginning of the trial, 150 subjects were equally allocated to five doses (n1 = n2 = n3 = n4 = n5 = 30). This rule is
easy to understand and is most frequently used in actual clinical trials.

3.2.2 D-optimal 1

At the beginning of the trial, the allocation ratios were calculated based on the D-optimal method5 to minimize

−
∑

m

pm

km
log (det Mm) , (1)

where m is the index of each candidate model, pm is the prior probability of model m (here, 1/3 for each m), km
is the number of parameters of model m, and Mm is the Fisher information matrix under model m. The calculated
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allocation ratios for each group were 0.30, 0.20, 0.12, 0.09, and 0.29, respectively. The calculated ratios were rounded
to integer values using the method by Pukelsheim and Rieder,17 and n1 = 44, n2 = 30, n3 = 18, n4 = 14, n5 = 44 were
allocated.

3.2.3 D-optimal 2

The subjects were adaptively allocated based on the D-optimal method.5 More specifically, at the beginning of the
trial, 50 subjects were equally allocated to the five doses. Then, after obtaining their responses, we determined the
allocation ratios that minimized Equation (1), given the number of allocated subjects and the number of subjects in
the next block (ie, by using the options “nold” and “n” in DoseFinding::optDesign function of R). Here, 10 subjects
were allocated in the next block. The model probabilities pm (m = 1, 2, 3) were set to 1/3 before the trial, and were
updated according to Section 5 in Miller et al8 for each block. The shape parameters were not updated and were fixed
to those of the candidates (ie, Scenarios 1, 4, and 7). The calculated ratios were rounded to integer values using the
method by Pukelsheim and Rieder.17 Then, the responses of the 10 allocated subjects were obtained, and the alloca-
tion ratios were calculated again to allocate the next 10 subjects. This was repeated until the total number of subjects
reached 150.

3.2.4 TD-optimal 1

At the beginning of the trial, the allocation ratios were calculated based on the TD-optimal method6 to minimize

∑
m

pm log (vm) , (2)

where m is the index of each candidate model, pm is the probability of model m (here, 1/3 for each m), and vm is propor-
tional to the asymptotic variance of the estimated target dose under model m. The calculated allocation ratios were 0.31,
0.26, 0.12, 0.18, and 0.14, respectively. According to these ratios, n1 = 46, n2 = 39, n3 = 17, n4 = 27, and n5 = 21 were
allocated.

3.2.5 TD-optimal 2

The subjects were adaptively allocated based on the TD-optimal method. The procedure was the same as that used in
D-optimal 2, except that the objective function was Equation (2) instead of Equation (1).

3.2.6 RL-power, RL-MS, RL-TD, and RL-MAE

Because the procedures for constructing these rules are similar, RL-MAE is explained as an example.
We simulated clinical trials in reinforcement learning using the settings in Sections 2 and 3.1, and learned the allo-

cation rule. In each simulated trial, the dose-response curve was determined uniformly at random from the scenarios
considered in MCP-Mod (ie, Scenarios 1, 4, and 7), and the observation noise was generated from a normal distribution
with mean 0 and variance 4.5. We used Nini = 50 and Nblock = 10. In addition, we used ReLU (f (x) = max(0, x)) as the
activation function and a DNN consisting of two intermediate layers with 256 units. The settings of the DNN were the
default values of the software.18 After each simulated trial, the MAE was evaluated. After each 1000 simulated trials,
allocation rule 𝜋 was updated using the accumulated data of the states and MAEs. With 1 000 000 simulated trials in
reinforcement learning, the allocation rule 𝜋∗(k|s) was obtained. See Appendix for details on the hyperparameters of the
PPO method.

At the beginning of the trial, 50 subjects were allocated equally to the five doses. Thereafter, each time the responses
were obtained, each of the 10 subjects was probabilistically allocated to one of the five doses according to the discrete
distribution 𝜋∗(k|s). This was repeated until the total number of subjects reached 150.
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RL-power, RL-MS, and RL-TD, were the same as RL-MAE, except that the metrics to be optimized were power, MS,
and TD in Section 2.2.

In general, it is known that using p-values without considering adaptive allocation may inflate the type I error
rate, and a simulation-based method to control the type I error rate has been discussed previously.19,20 Here, we first
calculated the p-values for the flat scenario, and then adjusted the significance level threshold based on the distribution of
the p-values. Then, using the adjusted significance level, we simulated the other scenarios and evaluated the performance
metrics.

For deep reinforcement learning, we used the RLlib library in Python18 and for the MCP-Mod, D-optimal, and
TD-optimal methods, we used the DoseFinding package in R.21 The code with hyperparameters is available in Supple-
mentary Material, which can be modified according to the requirement.

3.3 Results

In this section, the means of the performance metrics obtained from 10 000 simulations for each allocation rule are
presented.

The results for the type I error rate are shown in Figure 2. Figure 2A shows the type I error rate of each rule when
the significance level was 0.025. Note that this significance level was based on MCP-Mod, and the type I error rate was
not theoretically guaranteed for adaptive allocation rules. Figure 2B shows the type I error rates of the proposed methods
using various significance levels. From these results, we adjusted the significance level to 0.0235 for RL-power, 0.024 for
RL-MS, 0.021 for RL-TD, and 0.0165 for RL-MAE to control the type I error rate. We continued to use a significance level
of 0.025 for the other rules, assuming that fluctuations around the 2.5% level were consistent with the Monte Carlo error
and the type I error rates were under control. Using these adjusted significance levels, we evaluated the performance
metrics for the other scenarios.

The results of the performance metrics (ie, power, MS, TD, and MAE) were similar for the four models (linear, Emax,
sigEmax, and quadratic), whereas the results were different for the exponential model. Here, the average results over the
all models are shown. For the results of each model, see Figures 1 to 4 in Supplementary Material.

The results for power are shown in Figure 3. RL-power certainly improved power. In contrast, RL-MS and RL-MAE
worsened the power. The lower average power of RL-MAE may be due to the much lower power when the expo-
nential model was true (see Supplementary Material). Notably, RL-power had high power even when the true max-
imum effect was smaller and larger than the candidates, even though RL-power was trained assuming a maximum
effect of 1.65.

The results for MS, TD, and MAE (Figures 4-6) were calculated from simulations where multiple testing was signifi-
cant. We confirmed that the results were almost the same, even if we included the simulations in which the testing was
not significant. The results for the MS are shown in Figure 4. RL-MS certainly improved the MS. In contrast, RL-power
worsened the MS. RL-MS was also effective in scenarios different from the candidates. The results for the TD are shown

RL−MAE

RL−TD

RL−MS

TD−optimal 2

RL−power

TD−optimal 1

D−optimal 2

D−optimal 1

Equal

0.00 0.01 0.02 0.03

(A)

Type I error rate

0.015

0.020

0.025

0.030

0.035

0.016 0.018 0.020 0.022 0.024

T
y

p
e 

I 
er

ro
r 
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te

Significance level

Allocation rule

RL−MS
RL−power

RL−TD
RL−MAE

(B)

F I G U R E 2 The results for the type I error rate before adjustment
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F I G U R E 3 The results for power. The vertical dotted line represents the value of the equal allocation
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F I G U R E 4 Probability of selecting the true model
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F I G U R E 5 Probability that the estimated target dose is within the interval Id
targ(0.1)

in Figure 5. Better results were obtained when the maximum effect was smaller than that of the candidates. This may
be because of the wider range of Id

targ(0.1). RL-TD and RL-MAE improved the TD. Note that these rules were better than
TD-optimal 1 and 2. In contrast, RL-power worsened the TD. The results for the MAE are shown in Figure 6. RL-MAE
improved the MAE. In contrast, RL-MS worsened the MAE. RL-MAE was also effective in scenarios that were different
from the candidates.

In summary, these results showed that the proposed method improves not only the performance metric used for
optimization, but also many other metrics. In particular, RL-MAE was superior in most metrics for correctly estimating
the dose-response relationship for phase III trials.

The average number of subjects allocated to each dose is shown in Figure 7. This figure shows that the pro-
posed methods tended to allocate more subjects to 0 mg than Equal. In addition, RL-MS and RL-MAE tended to
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F I G U R E 6 The results for MAE. Smaller MAE implies better accuracys
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F I G U R E 7 The results for the average number of subjects allocated

allocate more subjects to 2 mg. Since the allocation that optimizes power for the contrast test (assuming the same
variance across the dose groups) should be the allocation that places half of the subjects on placebo and the other
half on the dose providing the maximum effect, it is natural that RL-power tended to allocate more subjects to 0 and
8 mg. Since 0, 2, and 8 mg are likely to be important in distinguishing the flat and Emax models from the rest, it
is natural that more subjects will be allocated to these doses. For the results of each model, see Figures 5 to 7 in
Supplementary Material.

Note that the good performance of RL-MAE was not only due to the nonuniform allocation, but also from the adap-
tivity of the allocation. In fact, we confirmed that the performance does not improve if we use a fixed design with the
number of subjects equal to the average of those of RL-MAE in Figure 7. See Supplementary Material for details.

4 DISCUSSION

We showed that deep reinforcement learning with an appropriately defined state and reward can be used to con-
struct adaptive allocation rules that can directly optimize the performance metrics to be optimized. In general,
reinforcement learning becomes difficult when the reward (ie, the performance metric evaluated at the end of
each trial) is delayed, and the observation is noisy. Phase II trials have these difficulties, and it is not obvious
whether reinforcement learning works successfully to address the same. Nonetheless, we have shown that it can
work well if we appropriately design and choose the Markov decision process as well as the learning algorithm and
hyperparameters.

A limitation of this method is that it is difficult to visualize and understand the obtained allocation rule intuitively
because the state is multidimensional. An allocation example of RL-MAE in a single simulated trial is shown in Figure
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8 in Supplementary Material. Interactive software such as a Shiny application may help team members to understand
the rule. In a clinical trial protocol, it is necessary to specify the assumptions (state, action, and reward) and the selected
performance metric, and it would be helpful to show allocation examples.

In the definition of state, we used the differences from the placebo (eg, Y 2 − Y 1) to avoid making assumptions about
the placebo response. When we have a specific prior distribution reflecting the background knowledge on the placebo
response, it is also natural to define the state by

s =
{

Y 1,Y 2,… ,Y K , �̂�1,… , �̂�K ,
n1

N
,… ,

nK

N

}
.

We also simulated the proposed methods with slightly modified states, rewards, and model probabilities, which retrieved
in general similar results. Nonetheless, it may be possible to slightly improve the performance by further tuning these
settings.

Although the simulation study was conducted assuming Gaussian noise with the MCP-Mod method, the proposed
method can also be applied to other settings (eg, binary response) and other methods (eg, ANOVA and BMA). For example,
if the variance of the observation noise is unknown, we will assume the prior distribution of the variance to generate it in
reinforcement learning. Because the settings are quite standard in practice, we can expect that the proposed method can
cover a wide range of actual clinical trials.

Results showed that the proposed methods was required to adjust the significance level to control the type I error
rate. Therefore, developing a statistical test that is theoretically guaranteed under adaptive allocation is an important
research topic. The optimization of power (RL-power) did not necessarily lead to improvements in other performance
metrics. On the other hand, RL-MAE showed good results not only for MAE, but also for other metrics. This seems to
intuitively correspond to the fact that if the dose-response curve itself is estimated with a small error, then the other
purposes are achievable. For this reason, it seems natural to use RL-MAE if the focus is not on any particular metric.
Note that it is theoretically the best to allocate all subjects to 0 and 8 mg to maximize the power under the scenarios
used in the learning. RL-power indeed allocated many subjects to 0 and 8 mg, but there still exists a gap from this ideal
allocation, which may be due to incomplete learning. Therefore, further tuning of the parameters and neural network
may improve the performance. The results described in Supplementary Material showed that RL-MS and RL-MAE per-
formed poorly when the exponential model was true. This indicates that if the candidate models considerably differ from
the true model, the allocation rules obtained from the learning may not perform well. It may be important to specify
the distribution that will generate many possible models in reinforcement learning. In fact, by including the exponen-
tial model in the learning, we obtained good performance without sacrificing the performance for the other models
(see Supplementary Material).

When the proposed method is used, the number of subjects allocated could be unbalanced. When the imbalance must
be taken into consideration for safety or ethical reasons, the number of subjects allocated equally at the beginning of the
trial can be increased or a penalty can be incorporated in the reward if the number of subjects at a dose does not reach the
threshold. Although we allocated subjects probabilistically according to the discrete distribution 𝜋∗(k|s) when applying
the obtained rule, we can also use the rounding method, such as the one reported by Pukelsheim and Rieder.17 The results
were generally similar.

Although we used one performance metric for optimization, any metric can be used, including a combination of
multiple metrics, because the method does not depend on the specific properties of the performance metric. Since many
factors other than dose-response are involved in actual phase III trials, it is also important to develop an appropriate
performance metric for the success of phase III trials. Furthermore, we believe that it is possible to extend this approach
for the stopping rules for success or futility by adding a stopping option as one of the actions and defining an appropriate
reward for the option. It remains to be verified in which situations this will apply.

ACKNOWLEDGEMENTS
This work was supported by JSPS KAKENHI Grant Number 21K11747 and 20K11717. The authors thank the editor and
anonymous reviewers for their constructive comments, which helped us to improve the manuscript.

DATA AVAILABILITY STATEMENT
Source code of the proposed method is available on https://github.com/MatsuuraKentaro/Optimal_Adaptive_
Allocation_in_a_Dose-Response_Study

https://github.com/MatsuuraKentaro/Optimal_Adaptive_Allocation_in_a_Dose-Response_Study
https://github.com/MatsuuraKentaro/Optimal_Adaptive_Allocation_in_a_Dose-Response_Study


1168 MATSUURA et al.

ORCID
Kentaro Matsuura https://orcid.org/0000-0001-5262-055X

REFERENCES
1. Bretz F, Pinheiro J, Branson M. Combining multiple comparisons and modeling techniques in dose-response studies. Biometrics.

2005;61(3):738-748.
2. Ohlssen D, Racine A. A flexible Bayesian approach for modeling monotonic dose-response relationships in drug development trials.

J Biopharm Stat. 2015;25(1):137-156.
3. Gould AL. BMA-mod: a Bayesian model averaging strategy for determining dose-response relationships in the presence of model

uncertainty. Biom J. 2019;61(5):1141-1159.
4. Aouni J, Bacro JN, Toulemonde G, Colin P, Darchy L, Sebastien B. Design optimization for dose-finding trials: a review. J Biopharm Stat.

2020;30(4):662-673.
5. Dragalin V, Hsuan F, Padmanabhan SK. Adaptive designs for dose-finding studies based on sigmoid Emax model. J Biopharm Stat.

2007;17(6):1051-1070.
6. Dette H, Bretz F, Pepelyshev A, Pinheiro J. Optimal designs for dose-finding studies. J Am Stat Assoc. 2008;103(483):1225-1237.
7. Bornkamp B, Bretz F, Dette H, Pinheiro J. Response-adaptive dose-finding under model uncertainty. Ann Appl Stat. 2011;1611-1631.
8. Miller F, Guilbaud O, Dette H. Optimal designs for estimating the interesting part of a dose-effect curve. J Biopharm Stat.

2007;17(6):1097-1115.
9. Bornkamp B, Bretz F, Dmitrienko A, et al. Innovative approaches for designing and analyzing adaptive dose-ranging trials. J Biopharm

Stat. 2007;17(6):965-995.
10. Dragalin V, Bornkamp B, Bretz F, et al. A simulation study to compare new adaptive dose-ranging designs. Stat Biopharm Res.

2010;2(4):487-512.
11. Sutton RS, Barto AG. Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press; 2018.
12. Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O. Proximal policy optimization algorithms; 2017. arXiv preprint arXiv:1707.06347.
13. Mercier F, Bornkamp B, Ohlssen D, Wallstroem E. Characterization of dose-response for count data using a generalized MCP-Mod

approach in an adaptive dose-ranging trial. Pharm Stat. 2015;14(4):359-367.
14. Lewis RJ, Berry DA. Group sequential clinical trials: a classical evaluation of Bayesian decision-theoretic designs. J Am Stat Assoc.

1994;89(428):1528-1534.
15. Espeholt L, Soyer H, Munos R, et al. IMPALA: scalable distributed deep-RL with importance weighted actor-learner architectures.

Proceedings of the 35th International Conference on Machine Learning; Vol. 80, 2018:1407-1416.
16. Fujimoto S, Hoof H, Meger D. Addressing function approximation error in actor-critic methods. Proceedings of the 35th International

Conference on Machine Learning; Vol. 80, 2018:1587-1596.
17. Pukelsheim F, Rieder S. Efficient rounding of approximate designs. Biometrika. 1992;79(4):763-770.
18. Liang Eric, Liaw Richard, Nishihara Robert, et al. RLlib: abstractions for distributed reinforcement learning. Proceedings of the 35th

International Conference on Machine Learning; Vol. 80, 2018:3053-3062.
19. Bretz F, Hsu J, Pinheiro J, Liu Y. Dose finding–a challenge in statistics. Biometr J J Math Methods Biosci. 2008;50(4):480-504.
20. PDUFA. reauthorization performance goals and procedures fiscal years 2018 through 2022 https://www.fda.gov/downloads/ForIndustry/

UserFees/PrescriptionDrugUserFee/UCM511438.pdf. Accessed June 15, 2021.
21. Bornkamp B, Pinheiro J, Bretz F. MCPMod: an R package for the design and analysis of dose-finding studies. J Stat Softw. 2009;29(7):1-23.
22. Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. Nature. 2015;518(7540):

529-533.
23. Schulman J, Moritz P, Levine S, Jordan M, Abbeel P. High-dimensional continuous control using generalized advantage estimation; 2015.

arXiv preprint arXiv:1506.02438.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Matsuura K, Honda J, El Hanafi I, Sozu T, Sakamaki K. Optimal adaptive allocation
using deep reinforcement learning in a dose-response study. Statistics in Medicine. 2022;41(7):1157-1171. doi:
10.1002/sim.9247

APPENDIX

In this appendix, we introduce the overview of reinforcement learning techniques used in the proposed method. See, for
example, Sutton and Barto11 for general introduction to reinforcement learning.
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A.1 Preliminaries for reinforcement learning
Formally, a reinforcement learning problem can be characterized by a Markov Decision Process defined by the 4-tuple
( ,,P,R):

• State space of the environment  : At each time step t the agent observes a state of the environment denoted st ∈  .
The initial state is sampled from an initial distribution on  .

• Action space : At time step t, the agent selects an action at ∈  according to a policy 𝜋 as at ∼ 𝜋(⋅|st), where 𝜋(⋅ | s) is
a probability distribution over  that represents the strategy of the agent when the state is s.

• Transition probability P(s′ | s, a): Given the action at and the state st, the environment evolves into a new state st+1 with
probability P(st+1 | st, at).

• Reward function R(s, a, s′): The agent receives a reward rt = R(st, at, st+1) when taking action at at state st and the new
state becomes st+1. We denote by r(st, at) the expected value of R(st, at, st+1) given (st, at).

The interaction between the agent and the environment lasts for an episode, that is limited by time or by reaching a
terminal state, and then the process restarts. For simplicity of notation we denote by T the end of the interaction and it
can be finite or infinite.

The return Gt defined by

Gt =
T∑

k=t
𝛾k−tr(sk, ak)

is the discounted cumulative reward after time t with a discount factor 𝛾 ∈ [0, 1]. Small values of 𝛾 leads the agent to focus
on short-term rewards while a large value favors long-term rewards. The goal of the agent is to select at each state the
action that will lead the highest expected cumulative discounted reward.

The value function V𝜋 of a state s is the expected return from this state following the policy 𝜋 and denoted as

V𝜋(s) = E𝜋 (Gt|st = s) ,

where the expectation is taken over all possible stochastic trajectories under 𝜋. The state-action value function Q𝜋 is the
expected return from state s by taking action a and after that following the policy 𝜋:

Q𝜋(s, a) = E𝜋 (Gt|st = s, at = a) .

The advantage function A𝜋 is defined by

A𝜋(s, a) = Q𝜋(s, a) − V𝜋(s).

The advantage expresses how much better or worse the reward obtained by action a in state s is compared with the average
expected reward V𝜋(s) from state s.

A.2 Proximal policy optimization
Many algorithms have been proposed to optimize 𝜋. For example, deep Q-network (DQN) tries to find a good
policy indirectly by estimating Q-values and choosing the action maximizing the estimated Q-value for each
state s.22 In contrast, policy optimization methods perform a gradient update directly on the parameters of
a policy.

Proximal Policy Optimization (PPO) belongs to these methods, which parameterizes the policy as 𝜋(at|st; 𝜃) and
update 𝜃 directly using the observed rewards rt. For update of 𝜃, PPO considers the following objective function to optimize
in order to estimate the optimal parameter �̂�.

Let us denote the probability ratio between the old and new policies as

f (𝜃, t) = 𝜋𝜃(at|st)
𝜋𝜃old(at|st)

,
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where 𝜃old is the parameter obtained in the last update. Conceptually, PPO tries to improve the policy by maximizing

J(𝜃) = Et
(

f (𝜃, t)Â𝜃old (st, at)
)
, (A1)

where Et indicates the empirical average over a finite batch of trajectories (the histories of the states, actions, and rewards
through timesteps) and Â𝜃old(st, at) is an approximation of the advantage function (this approximation is discussed later).

Still, it is empirically known that maximizing this objective with respect to 𝜃, without a restriction on the distance
between 𝜃old and 𝜃, results in instability and too aggressive updates. PPO solves this problem by imposing a constraint on
f (𝜃, t) to be within a small interval around 1, precisely [1 − 𝜖, 1 + 𝜖]. To be more specific, PPO replaces f (𝜃, t)Â𝜃old(st, at) in
Equation (A1) with

min{f (𝜃, t)Â𝜃old (st, at), clip(f (𝜃, t), 1 − 𝜖, 1 + 𝜖)Â𝜃old(st, at)},

where clip(x, a, b) = min{max{x, a}, b} for a < b.
The estimator of Â𝜃old (st, at) is built using generalized advantage estimation (GAE)23 given by

Â𝜃old (st, at) = 𝛿t + (𝛾𝜆)𝛿t+1 + · · · + (𝛾𝜆)T−t+1𝛿T−1,

where 𝜆 ∈ [0, 1] is a hyperparameter and 𝛿t = rt + 𝛾V𝜃old(st+1) − V𝜃old (st).
Here note that the estimation of the advantage function involves the learned value function V𝜃(s). The authors of

PPO suggest to use the Actor-Critic method to estimate the value function. As the name suggest, it has two components:
the actor and the critic. The actor corresponds to the policy 𝜋 and is used to choose the action for the agent. The critic
corresponds to the value function V . The Actor-Critic is represented by a shared neural network 𝜃, which then branches
into two heads (one for the actor and one for the critic) at the end of the architecture (Figure A1). Therefore 𝜃 includes
the parameter 𝜃v for the value function V and 𝜃𝜋 for the policy 𝜋. So that the critic approximates the actual return well,
PPO imposes the penalty for the approximation error given by

− (V𝜃(st) − V target
t )2,

where V target
t = Gt is the observed return (from the simulation) at time t, V𝜃(st) is the estimated value function from the

neural network at state st.
In summary, PPO maximizes the following objective function:

J(𝜃)CLIP = Et

(
min{f (𝜃, t)Â𝜃old(st, at), clip(f (𝜃, t), 1 − 𝜖, 1 + 𝜖)Â𝜃old (st, at)} − c1

(
V𝜃(st) − V target

t

)2
+ c2S[𝜋𝜃](st)

)
,

where c1, c2 and 𝜖 are hyperparameters. Here S in the last term is some entropy function such as S[𝜋](s) =
−
∑

a∈ 𝜋(a|s) log𝜋(a|s), which gives a bonus to a policy that explores a variety of actions.

A.3 Algorithm
For each update of the neural network parameter 𝜃, an actor collects data of Ttrain timesteps over multiple episodes. Then
we construct the objective function given in the last section on these Ttrain timesteps data, and maximize it with the
stochastic gradient descent (SGD) or Adam algorithm.
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Algorithm 1. PPO Algorithm

1: procedure PPO( ,,P,R)
2: Initialize weights 𝜃old.
3: while the total number of episodes ≤ E do
4: Run policy 𝜋𝜃old in environment for Ttrain timesteps, where a new episode starts from the initial state when the

current episode has ended.
5: Collect a batch of Ttrain samples

{ (
si, ai, ri, s′i

) }Ttrain
i=1 .

6: Compute advantage Â𝜃old(st, at) for Ttrain timesteps.
7: Update the neural network parameters 𝜃old ← argmax

𝜃

J(𝜃)CLIP.

8: end while
9: end procedure

A.4 Specification in our problem
In our problem setting, the episode, time t, and policy 𝜋 correspond to the simulated trial, block b, and allocation rule 𝜋,
respectively. For the reward, r had a value described in Section 2.3 if the time was at the end of the trial, but otherwise
r = 0. We used the discount factor 𝛾 = 1 (ie, there is no discount). Therefore, the expected return is equivalent to the
expected value of the reward at the end of the trial. For the advantage, we used 𝜆 = 1. For the objective function, we used
c1 = 1, c2 = 0, and 𝜖 = 0.3. For the update of 𝜃, we used E = 1 000 000 and Ttrain = 10 000. That is, 𝜃 was updated after
each Ttrain∕B = 10 000∕10 = 1 000 simulated trials. To maximize the object function, we used the SGD algorithm with
the minibatch size = 200, the stepsize (ie, learning rate) = 0.00005, and the number of epochs = 20. Although we used
the default values of the software for 𝜆, c1, c2, 𝜖, and the stepsize, we had to tune Ttrain and the minibatch size.


