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Androgens are mainly prescribed to treat several diseases caused by testosterone

deficiency. However, athletes try to promote muscle growth by manipulating testosterone

levels or assuming androgen anabolic steroids (AAS). These substances were originally

synthesized to obtain anabolic effects greater than testosterone. Although AAS are rarely

prescribed compared to testosterone, their off-label utilization is very wide. Furthermore,

combinations of different steroids and doses generally higher than those used in

therapy are common. Symptoms of the chronic use of supra-therapeutic doses of

AAS include anxiety, depression, aggression, paranoia, distractibility, confusion, amnesia.

Interestingly, some studies have shown that AAS elicited electroencephalographic

changes similar to those observed with amphetamine abuse. The frequency of side

effects is higher among AAS abusers, with psychiatric complications such as labile mood,

lack of impulse control and high violence. On the other hand, AAS addiction studies are

complex because data collection is very difficult due to the subjects’ reticence and can

be biased by many variables, including physical exercise, that alter the reward system.

Moreover, it has been reported that AAS may imbalance neurotransmitter systems

involved in the reward process, leading to increased sensitivity toward opioid narcotics

and central stimulants. The goal of this article is to review the literature on steroid abuse

and changes to the reward system in preclinical and clinical studies.

Keywords: anabolic androgenic steroid, reward, dopamine, serotonin, psychosis spectrum disorders, depression

Introduction

Anabolic-androgenic steroids (AAS) are synthetic compounds derived from testosterone, which
is the main male hormone. The binding of testosterone to androgen receptors has anabolic and
androgenic effects. During puberty, the increase in testosterone levels contributes to linear growth
augmentation, as well as muscle mass accumulation (Bhasin et al., 1996, 2001; Brower, 2002;
Kuhn, 2002) by inducing hypertrophy without changes in the absolute number of both Type 1
and 2 muscle fibers (Sinha-Hikim et al., 2002). Testosterone also acts by increasing the number of
muscle progenitor cells (Sinha-Hikim et al., 2003) and promoting their myogenic differentiation
(Singh et al., 2003, 2006). Testosterone promotes mitochondrial biogenesis, improves net oxygen
delivery to the tissue by increasing red cell mass and tissue capillarity, and facilitates oxygen
unloading from oxyhemoglobin (Coviello et al., 2008; Gupta et al., 2008). The idea of designing and
developing steroids with anabolic properties arose during the 1930s soon after the identification
and isolation of the hormone androsterone by the German investigator Butenandt, who collected
this compound from thousands of liters of pooled human urine derived from a number of
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military service volunteers. Most of the AAS used before the
1990s were pharmacological agents approved for medicinal
or veterinary use. By the 1990s, various androgen precursors
became nutritional supplements. Androgen precursors are either
inactive or weak androgens that the body converts into
potent androgens. These include naturally occurring precursors
to testosterone, such as 4-androstenediol, 5-androstenediol,
4-androstenedione, and dehydroepiandrosterone, as well as
precursors to synthetic AAS including 4-norandrostenedione,
4-norandrostenediol, and 5-norandrostenediol, which the body
converts to nandrolone (Pope et al., 2014). Other synthetic
AAS, such as 17-desmethylstanozolol, methylclostebol, and
methyltrienolone have been recently introduced into the market
as dietary supplements. These “designed” steroids have not
undergone toxicological or safety testing in humans or animals.
Thus, they potentially represent an even more serious health risk
than the more traditionally used AAS.

Medical Use

From a clinical standpoint, AAS are commonly prescribed
to treat several disorders, such as the androgen deficiency
syndromes (Conway et al., 2000), hereditary angioedema,
hematological disorders (Shahidi, 2001), catabolic conditions,
such as some types of cancer-related cachexia (Langer et al.,
2001), metabolic dysfunctions induced by severe burn (Hart et al.,
2001), inflammatory pulmonary diseases (Ferreira et al., 2001),
radiation therapy, and AIDS-associated malnutrition (Basaria
et al., 2001; Polsky et al., 2001). Less common medical uses
of AAS deal with heart and renal failure (Basaria et al., 2001).
Contrasting data exists in the literature regarding the use of
AAS in the treatment of androgen deficiency in aging males,
infertility, sexual dysfunctions or impotence, as well as post-
menopausal syndrome in women. Thus, while a review of
Morley (2001) points toward therapeutic effects on libido and
menopause-induced sarcopenia, Conway et al. (2000) consider
their therapeutic application in these pathological conditions as
≪misuse of androgens≫. Hence, according to the state of the
art presented in their review, they reported no indication for
androgen therapy in male infertility because of its suppressing
effect on spermatogenesis. Importantly, there is no evidence in
available literature that AAS abuse or dependence might develop
from the legitimate medical use of AAS.

Non-medical Use

The use of AAS for non-medical intentions can easily
determine abuse and lead to dependence. When used by
athletes, AAS can improve performance to levels obtainable
by virtually any other combination of non-chemical solutions
provided by modern sport techniques (Noakes, 2004). Generally,
supra-pharmacological doses of AAS act either by a direct
mechanism, promoting an increase in mass, force, speed
of muscular contraction, and recovery after intense physical
exercise (Tremblay et al., 2004) or by an indirect pathway through
erythropoietic stimulation, leading to increased synthesis of
2,3-diphospholglycerate and tissutal oxygen transfer facilitation

(Shahidi, 2001). Consumption of high doses of AAS typically
consists in 6–12 week cycles, followed by a 6–12 week period
of wash-out. These patterns of AAS use may easily precipitate
in periods of continuous consumption without any AAS-free
intervals due to the fact that abusers try to assure their muscle
gains while avoiding withdrawal symptoms (Brower, 2002; Kuhn,
2002). Several other drugs are frequently associated with the
use of supra-pharmacological doses of AAS by abusers that are
designed to increase their effects, diminish side effects or avoid
detection by urine testing (Wichstrom and Pedersen, 2001). The
abuse of other illicit drugs, such as amphetamines and opioids,
has also been shown to be strengthened by AAS use (Arvary
and Pope, 2000). Moreover, such abuse might reinforce the
occurrence of adverse substance interactions. In particular, in
the case of AAS and amphetamine association, the overdose
potential appears to be increased, due to cardiotoxicity (Thiblin
et al., 2000). The contemporary consumption of AAS and
bromocriptine, used to rapidly reduce body fat and total weight,
has been described as the cause of a syndrome characterized by
syncopal episodes and atrial fibrillation (Manoharan et al., 2002).

Populations of adolescents and young adults have been the
subject of several clinical studies that explore the prevalence
of AAS misuse and abuse. Irving et al. (2002) conducted a
study on a population of 4746 middle and high school students
from public schools of Minneapolis completing surveys and
anthropometric measurements as part of a population-based
study of eating patterns and weight concerns among teenagers
(Project EAT: Eating Among Teens). They observed that steroid
use was more common in non-Caucasian males and in middle
school students as compared to high school. In males, steroid use
was associated with poor self-esteem, higher rates of depressed
mood and attempted suicide, poor knowledge and attitudes
about health, greater participation in sports emphasizing weight
and shape, greater parental concern about weight, and higher
rates of eating disorders and substance abuse. In a study by
Wichstrom and Pedersen (2001), a representative sample of 8877
Norwegian youths (15–22 years of age) was surveyed. Results
showed that AAS use did not vary according to sport involvement
or demographics. Moreover, AAS use was associated mainly with
the abuse of marijuana, aggressive-type conduct problems and
eating disorders.

Adverse Effects

The severity and impact of side effects induced by AAS abuse
depend on a wide range of factors, such as dose, duration of
administration, possible consumption of a combination of AAS,
as well as gender and age of the abusers. Data on the impact of
sustained administration, failed to show any documented adverse
events associated to a single episode of acute consumption
of supra-pharmacological doses of AAS. Their abuse has been
shown to be associated to greater effects on physical performance
in younger individuals and women, together with increased
incidence and risk of developing serious side events (Kindlundh
et al., 1999). Few data exist on the risk of side effects linked to
long-term use of high-dose of AAS for non-therapeutic purposes
(Parssinen and Seppala, 2002). Cardiovascular complications
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have been widely described in AAS abusers, including the
occurrence of arrhythmic events (Furlanello et al., 2003). In
a recent post-mortem study that compared 87 deceased men
positive for AAS with 173 control subjects (Far et al., 2012), AAS
users showed significantly greater cardiac mass.

In another clinical investigation, ventricular hypertrophy,
associated with fibrosis and myocytolysis, was detected after
cardiac death in four AAS users (Montisci et al., 2012).
Also, controlled studies realized by echocardiography (Krieg
et al., 2007; Hassan et al., 2009; Baggish et al., 2010) or by
cardiac magnetic resonance imaging (Luijkx et al., 2013) have
demonstrated lower ventricular ejection fractions and reduced
diastolic tissue velocities in AAS users.

Pathological effects on urogenital and reproductive
systems have been reported. In particular, hypogonadotropic
hypogonadism with consequent testicular atrophy in men
and development of inhibitory mechanisms for FSH and
LH production in women have been described in selected
populations of AAS abusers (Anderson and Wu, 1996; Dohle
et al., 2003). Increased virility and lowering of voice tone,
irregular menstruation with infertility, decreased breast size,
hypertrophic clitoris, and increased sexual desire have also been
described in a population of female AAS abusers (Franke and
Berendonk, 1997; Kutscher et al., 2002). Other complications
include liver damage and hepatitis (Tanaka et al., 2000), insulin-
resistance secondary to glucose intolerance with alterations
of thyroid function (Yesalis et al., 2000), increased risk of
infectious diseases caused by inappropriate use of syringes and
non-protected sexual relations among AAS users (Aitken et al.,
2002). Although several studies point toward a reversibility of
undesirable AAS-induced effects following suspension, they can
become irreversible complications with prolonged AAS abuse
(Kutscher et al., 2002).

Psychiatric Effects

AAS are universally recognized to have psychoactive effects
(Yates, 2000). Although some spared studies have reported their
therapeutic use in depression to improve mood and anergia
(Rabkin et al., 2000), most evidence points toward the association
of AAS with depression, mania, psychosis, suicide and increased
aggression leading to violence and, in extreme cases, to homicide
(Pope and Brower, 2000; Pope et al., 2000; Thiblin et al., 2000).
Indeed, suicide and homicide have been shown to be the main
cause of premature deaths among steroid users and, in particular,
in the teen population (Thiblin et al., 1999b). Although this does
not imply that all steroid users will suffer crippling depression
or homicidal rage, steroids appear to strongly contribute to
psychiatric dysfunctions in susceptible individuals.

Globally, the prevalence of AAS-induced psychiatric disorders
has been hard to evaluate and determine, because of sampling
biases in clinical case reports. In a review of Pope et al., (Pope
et al., 2000), summarizing four prospective, placebo-controlled
trials, it has been reported that at least 5% of AAS users will
experience AAS dose-dependent maniac or hypomaniac episodes
(Pope and Brower, 2000). However, this estimated percentage
appears to be influenced by the fact that in most controlled

trials, it is not possible to completely mimic the extreme doses
and combinations of AAS taken by abusers for ethical reasons.
Thus, estimated rates of AAS-induced psychiatric alterations are
probably even higher. This is also due to the fact that other
factors can increase the likelihood of psychiatric consequences
of AAS abuse, such as the presence of a positive psychiatric
anamnesis, alcohol, or other drug use (Dean, 2000) as well as
other medical comorbidities. For example, in a case-report of
Morton et al. (2000), the authors described the case of a man
suffering from Axis II psychopathology, who developed severe
psychosis after receiving therapeutic doses of an anabolic steroid
for burn injuries in combination with lorazepam and opioids.

Psychological motivations contributing to anabolic steroid use
and abuse have received little attention in psychiatric literature.
Clinical studies demonstrate that steroids are used in part to deal
with an earlier trauma, such as childhood physical or sexual abuse
(Porcerelli and Sandler, 1995).

Effects on the Brain Reward Function:
Dependence and Addiction Potential

The data in the literature show no documented cases of
dependence induced by AAS use at therapeutic doses. This
suggests that dependence is likely associated to the use of higher
doses of AAS (Long et al., 2000; Thiblin et al., 2000; Haupt,
2001; Brower, 2002; Kutscher et al., 2002); Figure 1 graphically
represents this hypothesis. However, molecular mechanisms
leading to AAS-induced dependence are still unclear.

In a review of the scientific literature published between 1988
and 1998 (Brower, 2000), AAS dependence was defined as a
diagnosable mental disorder. Between 1999 and 2000, two more
diagnostic studies of AAS dependence were published (Midgley
et al., 1999; Brower, 2000).

A “withdrawal syndrome” induced by AAS abuse has been
clearly described, consisting mainly of depressed mood, fatigue,
AAS craving, restlessness, anorexia, insomnia, and decreased

FIGURE 1 | Main clinical observations linking AAS consumption to AAS

addiction.
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libido lasting for several weeks or months (Brower, 1997, 2000).
In the 1980s, Tennant et al. (1988) described a case report on
which a model of a biphasic course of withdrawal was proposed.
The initial phase of the AAS-induced withdrawal (lasting for
about 1 week) seemed to be comparable to opioid-induced
withdrawal, while the second phase was mostly characterized by
clear depressive symptoms and craving (Tennant et al., 1988).

Considerable evidence suggests that AAS dependence might
share crucial mechanisms of opioid dependence in humans. In
1989, Kashkin and Kleber (1989) posited that AAS dependence
might partly arise via an opioidergic mechanism, through which
AAS might enhance the activity of central endogenous opioids,
and AAS withdrawal would lead to a decrease in this activity
and a subsequent acute hyperadrenergic syndrome (Kashkin and
Kleber, 1989). This posited link between AAS and opioids was
later confirmed by a large number of observations indicating that
AAS users seem to be particularly at risk for developing opioid
abuse or dependence (McBride et al., 1996; Wines et al., 1999).
Additional clinical studies provided evidence that AAS might
decrease the analgesic action of both metamizol and morphine
(Philipova et al., 2003).

In 2009, a study by Kanayama et al. (2009) added further
evidence for a relationship between AAS and opioids. In the
population included in that study, opioid abuse or dependence
began either before or after the onset of AAS use, suggesting the
possibility that these forms of substance abuse might arise from
a commonmolecular pathway (Kanayama et al., 2009). However,
in a study of Negus et al. (2001), authors could not detect any
withdrawal phenomena following administration of high doses
of AAS (Negus et al., 2001).

AAS seem to act through a more modest reinforcement
mechanism compared to cocaine or heroin and resembles
the reinforcement mechanism described for caffeine, nicotine,
and benzodiazepines. In 2002, Brower (2002) proposed a
2-stage model of steroid dependence. In Stage 1, anabolic
effects of AAS provide the initial input and motivation for
AAS consumption. Stage 2 deals with consequent chronic use,
following which physiological and psychological dependence
may develop, thereby making it increasingly difficult for users to
quit. Psychoactive effects, such as mood changes and increases
in aggressive behavior, characterize this stage of dependence.
Diagnostic and Statistical Manual of Mental Disorders criteria
for AAS dependence are met and users are not able to stop or
discontinue AAS consumption. In Stage 2, addiction treatment
may be required, especially when AAS abuse is associated
with other substance dependence, such as alcohol, opioids, or
amphetamine abuse (Brower, 2002). Arvary and Pope (2000)
investigated this phenomenon in a clinical study, including 227
patients admitted to a private facility for dependence on heroin
or other opioids. Results of this study strongly suggested that
these patients were introduced to opioids through AAS use and
bodybuilding physical activity. In particular, 81% of them first
purchased opioids from the same drug dealer who had sold them
AAS; 67% were introduced to opioids by a fellow body-builder;
86% first used opioids to reduce insomnia and irritability induced
by AAS, and 67% used opioids to diminish depression feelings
induced by withdrawal from AAS (Arvary and Pope, 2000).

A second model, explaining mechanisms leading to AAS
dependence, has also been proposed (Bahrke and Yesalis,
1994). This model holds that AAS-dependence development
occurs specifically in socio-cultural contexts that are likely to
motivate certain individuals, particularly men, to attain large
and strong muscles by frequent and intensive training sessions.
These training sessions also improve mood and self-esteem
and are generally associated with very strict and controlled
dietary regimens. Thus, AAS-inducedmuscle-active effectsmight
underlie the reinforcing actions of these compounds (Midgley
et al., 1999) and the compulsive features of AAS use seem to
strengthen the likely compulsive patterns of training and diet.
Studies to elucidate mechanisms leading to AAS dependence
have also included surveys of current and former AAS users,
recruited from gyms, websites, and physicians. Brower et al.
(1990) reported numerous criteria for psychoactive substance
dependence in a survey of eight AAS abusers, including
continued use despite adverse side effects, and withdrawal
symptoms (Brower et al., 1990).

Specific dysfunctions of the various components of the
brain reward system have been described in clinical studies.
For example, alterations in levels of monoamine metabolites,
neurohormones, and neuropeptides, which play a crucial
role in the reward mechanism, have been investigated in the
cerebrospinal fluid of subjects who received methyltestosterone
(MT) with respect to placebo-treatment (Daly et al., 2001).
Results showed that levels of 5-hydroxyindolacetic acid
(5-HIAA) increased while 3-metoxy-4-hydroxyphenylglycol
(MHPG) levels decreased in cerebrospinal fluid, following MT
administration. In particular, changes in cerebrospinal fluid
5-HIAA significantly correlated with the activation of specific
psychiatric symptom cluster scores. In addition, according to
this study, a decrease in cerebrospinal fluid MHPG may derive
from reduced norepinephrine clearance, even though authors
did not detect any significant correlations between changes
in MHPG levels and the development of clear psychiatric
symptoms, suggesting a less crucial role for noradrenergic
changes in this process. An increase in substance P levels and
vasopressin (Hallberg et al., 2000; Harrison et al., 2000), as well
as dysfunctions of the central opioid system (Schlussman et al.,
2000), have been proposed as playing a potential role in the
development of aggressive behavior after AAS abuse.

Multiple factors have been associated with the induction of
dependence in AAS users, such as low endogenous levels of
testosterone. Indeed, it has been demonstrated that women,
adolescents and elderly subjects have a lower probability of
developing AAS dependence (Wood et al., 2004). Among
possible risk factors for dependence development, the most
relevant appears to be participation in competitive sports
with intense and repetitive physical exercise (Kanayama et al.,
2003b). Some investigators have also suggested that personality
psychopathology may be a risk factor for AAS abuse. Yates et al.
(1990) reported that AAS users and weight lifters had a higher
prevalence of histrionic, antisocial, and borderline personality
traits than community controls. Although a growing number
of reports, current knowledge of molecular mechanisms leading
to AAS dependence in humans remains limited. In this regard,
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the reinforcing effects of AAS may also be biased by intensive
physical exercise and by increased narcissistic self-esteem arising
from the fulfillment of the desired body appearance. On the other
hand, many users practice “stacking” consumption, consisting in
the contemporary mixed use of multiple steroids.

Since it has been reported that around 96% of users combine
AAS with other drugs in order to relieve non-medical steroid
side effects (Parkinson and Evans, 2006), pharmacodynamics,
and pharmacokinetic interaction studies are surely warranted,
although hardly feasible, in order to exclude further bias.

Behavioral and Neurochemical Responses
to AAS Administration in Animal Models

Preclinical studies have contributed in evaluating the impact
of AAS exposure on neurochemical mechanisms underlying
AAS-induced behavioral outcomes. Animal studies offer a direct
measure of behavioral parameters under conditions where age
and sex of the subjects, along with AAS administration, are
established by the investigator. In this section, we will focus
our attention on the data in the literature from animal models
employing different AAS exposure paradigms, frequently used
to model human abuse patterns. In particular, we will review
laboratory animal research findings to assess AAS-induced
behavioral effects, such as aggression and reward. Moreover, we
will highlight studies that have reported neuronal pathways and
signaling molecules involved in these behaviors.

Aggression

Behavioral human studies linking AAS abuse and aggression have
confounding factors, such as regimen (multiple steroids over a
cycle of use), co-administration with other drugs of abuse and
inaccurate measures of behavior simulated by subjective reports
(McGinnis, 2004). Conversely, experimental designs in animals
that correlate AAS exposure and aggression are less equivocal.

The resident-intruder test is a common paradigm for assessing
aggression. Initial studies on animal models have reported that
long-term exposure to high doses of testosterone raised levels of
aggression in gonadally intact rats and re-established aggression
in castrated rats (Lumia et al., 1994). However, indices of
aggressive responses depend on environmental context, social
cues, sex and hormonal status of the intruder, age of exposure,
physical provocation, and type of AAS administered (Clark and
Henderson, 2003; Lumia and McGinnis, 2010). Hence, studies
in rats showed that AAS-treated males demonstrated a different
predisposition for aggression when tested in three different
environments (home cage, opponent cage, or neutral cage)
(Christie and Barfield, 1979; Lumia et al., 1994; Breuer et al., 2001;
Farrell andMcGinnis, 2003). Adult male rats receiving high doses
of AAS are more aggressive toward the intruder in their home
cage and displayed lower levels of aggression in either opponents
or neutral cages (Breuer et al., 2001; Farrell and McGinnis,
2003). Investigators extended their interest to other experimental
factors demonstrating that AAS-treated rats are typically more
aggressive toward intact rather than castrated rats, as well as

toward ovariectomized rather than sexually receptive females
(Breuer et al., 2001; Farrell and McGinnis, 2003; Cunningham
and McGinnis, 2006, 2007). McGinnis et al. (2002a), showed that
12 weeks of testosterone propionate exposure enhanced inter-
male aggression in adult rats after physical provocation in the
form of a mild tail pinch. Moreover, the environmental and social
discriminating cues described above failed to alter testosterone-
induced aggressive responses to physical provocation (McGinnis
et al., 2002a,b). While testosterone clearly increases aggression,
conflicting results have been reported in the literature concerning
other commonly abused AAS (stanozolol, nandrolone decanoate,
boldenone undecylenate) tested either in combination or
individually. Salas-Ramirez et al. (2010) tested whether a 2-week
administration of an AAS cocktail containing testosterone
cypionate, nandrolone decanoate, and boldenone undecylenate
had dissimilar behavioral consequences when drug exposure
occurred during adolescence or adulthood. Higher aggression
levels were observed in male Syrian hamsters exposed to an
AAS cocktail compared to controls, regardless of age treatment
(Salas-Ramirez et al., 2010). On the other hand, stanozolol failed
to induce aggressive behavior in gonadectomized and intact
rats and mice (Clark and Barber, 1994; Martinez-Sanchis et al.,
1996; McGinnis et al., 2002a). More conflicting results have
been reported by using nandrolone decanoate. Long et al. (1996)
showed increased levels of aggression in Sprague–Dawley rats
receiving chronic nandrolone decanoate, while no effect has
been evidenced in Wistar rats (Zotti et al., 2014). Accordingly,
adult rats exposed to mild physical provocation demonstrated
decreased inter-male aggression when treated with stanozolol,
while no effects of nandrolone have been reported (Breuer
et al., 2001; Farrell and McGinnis, 2003). Regardless of the
experimental methodologies employed to assess aggression, these
findings suggest that strain, AAS chemical composition and
regimen reflect the diversity of supra-therapeutic AAS exposure
on behavioral responses in animals.

Several studies in preclinical models of aggression have
investigated the AAS effects on the neurochemical changes in
specific brain areas related to this behavior.

High aggression is often associated to decreased serotonin
(5-HT) neurotransmission. Although this may account for high
aggression as an individual feature, it has been suggested that
serotonergic activity is probably higher during performance of
aggressive behavior (van der Vegt et al., 2003).

In particular, testosterone propionate exposure decreased
both 5-HT and 5-HT metabolite, 5-HIAA, in the hippocampus
but not in the striatum or in the frontal cortex of adult rats
(Bonson et al., 1994). Moreover, the aggressive behavior of
dominant rats was decreased by treatment with selective agonists
of 5-HT1A, 5-HT1B, and 5-HT2A/2C receptors (Bonson et al.,
1994). A significant decrease in 5-HT1A and 5-HT1B receptors
immunoreactive staining has been shown in the latero-anterior
hypothalamus and amygdala of hamsters treated with a mixture
of AAS (Grimes and Melloni, 2005; Ricci et al., 2007). However,
no decrease in the number of 5-HT1A receptor-expressing
neurons and an increase in 5-HT2A receptor immunoreactivity
have been reported in the hypothalamus (Ricci et al., 2006;
Schwartzer et al., 2009). Ambar and Chiavegatto (2009) have
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reported reduced 5-HT1B mRNA levels in the hippocampus,
hypothalamus, amygdala, and prefrontal cortex of nandrolone-
treated mice suggesting that the serotonergic tone in these brain
areas has a pivotal role for AAS-induced aggression in rodents
(Ambar and Chiavegatto, 2009).

Reward

The data in literature highlight the potential for AAS addiction
in humans (Kashkin and Kleber, 1989; Brower et al., 1990,
1991; Brower, 2002; Wood, 2004). Nevertheless, it is difficult
to separate the direct rewarding effects of AAS from the
psychological dependence of users on their physical appearance,
muscular strength, and athletic performance. Hence, studies
in animal models are a useful tool when examining androgen-
reinforcing properties in conditions where anabolic effects
and athletic performance are not relevant. Conditioned
place preference (CPP) and self-administration are relevant
experimental paradigms used to study reward in an experimental
condition (Wood, 2004; Koob, 2006). Several studies in adult
rodents have reported that systemic testosterone injections
induced CPP in male rats and mice (de Beun et al., 1992;
Alexander et al., 1994; Arnedo et al., 2000, 2002; Frye et al.,
2001). In another animal model, it has been demonstrated that
15 days of administration of an AAS cocktail consisting of
testosterone cypionate, nandrolone decanoate, and boldenone
undecylenate, increased the rate of self-administration and
enhanced the sensitivity to amphetamine challenge (Clark et al.,
1996). However, in the same study, a 2 week treatment with
MT had no effect on reward or performance of intracranial
self-stimulation. In this light, Ballard and Wood (2005) have
reported that in animals drostanolone and nandrolone tend to
be self-administered (Ballard and Wood, 2005) and can cause
CPP (Frye et al., 2002). Moreover, such effects can be prevented
by dopaminergic antagonists (Schroeder and Packard, 2000)
indicating that dopaminergic pathways are necessary for these
behavioral outcomes. Indeed, the mesocorticolimbic circuitry,
such as nucleus accumbens (NAc) and ventral tegmental area
(VTA) are crucial for the reward system.

Parrilla-Carrero et al. (2009) investigated the rewarding
effects of three different types of synthetic androgens differing
in chemical structure and metabolism by using the CPP
test in adult mice. They found that systemic injection of
testosterone propionate and nandrolone decanoate, but not 17α-
methyltestosterone, produced a dose-dependent shift in CPP
suggesting that the rewarding properties of AASmight depend on
their interaction with different pathways (Parrilla-Carrero et al.,
2009). Very recently, the same research group has demonstrated
nandrolone’s failure to reward in adolescent mice (Martinez-
Rivera et al., 2015). Although the literature reports that the
adolescent brain is more sensitive to the reinforcing effects of
drugs of abuse, this study suggests that such sensitivity may be
drug dependent (Ernst et al., 2009; Galvan, 2010;Martinez-Rivera
et al., 2015).

Packard et al. (1997) reported that testosterone induced CPP
when directly injected into NAc (Packard et al., 1997). Similarly,
Frye et al. (2002) showed that direct implants of testosterone

or its metabolites (dihydrotestosterone, 3α-androstanediol) in
the NAc shell induced a preference for the androgen-associated
compartment, while no effect was observed with androgenic
stimulation of the NAc core, suggesting a sub-region-specific
functional role in reinforcement and reward pathway.

A growing body of evidence has shown the reinforcing
effects of AAS using the experimental self-administration (oral,
intravenous iv, intracerebroventricular icv) paradigm, which
is considered as a model of addiction with the greatest face
validity (Johnson andWood, 2001; Wood, 2004; Frye, 2007; Frye
et al., 2007). Wood (2002) demonstrated that gonadally intact
adult male hamsters preferentially self-administer testosterone
orally by using a food-induced drinking model (Wood, 2002).
Although oral self-administration resembles oral AAS intake
in humans, potential effects of taste solution or gut fill might
present an inherent limitation on AAS oral consumption.
Thus, Wood et al. (2004) used an operant chamber to
train animals with chronic jugular cannulae and demonstrated
an increase in testosterone iv self-administration compared
to controls. Moreover, Syrian hamsters voluntarily consume
testosterone through icv self-administration, suggesting that
testosterone-reinforcing effects are centrally mediated (DiMeo
and Wood, 2004; Wood, 2004). Ballard and Wood (2005)
extended their research study on androgens and compared icv
self-administration of four commonly abused AAS (nandrolone,
drostanolone, oxymetholone, stanozolol) that differ in their
method of administration, duration of action and metabolism.
Results from this study showed that male hamsters preferentially
self-administered nandrolone or drostanolone, which are two of
the mostly used injectable androgens in humans. Conversely,
animals failed to self-administer the orally active androgens
oxymetholone or stanozolol, suggesting that injectable androgens
may be more reinforcing than orally active steroids (Ballard and
Wood, 2005).

To better understand the behavioral outcomes described
above, various neurochemical studies have examined AAS effects
on the monoaminergic system by measuring neurotransmitter
and metabolite levels or by detecting receptors and enzyme
alterations in key brain areas linked to the reward pathway. It
has been reported that CPP induced by testosterone was blocked
when adult male rats were directly injected into NAc with a
D1-like or D2-like dopamine receptor antagonist (SCH23390
or sulpiride, respectively) (Schroeder and Packard, 2000). Sub-
chronic administration of high AAS doses reduced dopamine
D1-like receptor protein and mRNA levels in the NAc core and
shell and increased D4-receptor mRNA expression in NAc, while
D2-like receptors were up-regulated in the NAc core but down-
regulated in the shell (Kindlundh et al., 2001b, 2003; Birgner
et al., 2008a; Martinez-Rivera et al., 2015). An up-regulation of
the dopamine transporter (DAT) protein was observed in vivo
by a binding study using positron emission tomography (PET),
in the striatum of male rat brain after chronic treatment with
nandrolone (Kindlundh et al., 2002). Interestingly, Martinez-
Rivera et al. (2015), observed no difference of D1-receptor protein
expression in adolescent mice suggesting that the mesolimbic
dopaminergic system during adolescence is immature or not
sensitive to the rewarding response induced by nandrolone.
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Studies in Syrian hamsters suggested that testosterone reduced
dopamine (DA) release in NAc (Triemstra et al., 2008). Likewise,
our research group showed a reduction in DA content in NAc
of rats treated for 4 weeks with nandrolone, changes which were
accompanied by reduced hedonic-related behavior (Zotti et al.,
2014). Furthermore, Birgner et al. (2007), in a microdialysis
study, demonstrated that sub-chronic nandrolone decreased
extracellular levels of DA metabolites (DOPAC and HVA) in rat
NAc shell without affecting the release of DA. In line with these
results, nandrolone was shown to reduce type A and B activity
of monoamine oxidase (MAO) (Birgner et al., 2008b), although a
previous study reported no effects of the drug on these enzymes
activity in rats (Thiblin et al., 1999a). Further confirming the
role of dopaminergic system in AAS effects on reward pathway,
subchronic nandrolone has been shown to significantly down-
regulate D1 receptors in the NAc and caudate putamen of rats,
and to up-regulate D2-like receptors in the NAc core and VTA
(Kindlundh et al., 2001b). In this regard, D1 and D2 receptors
have been implicated in the reinforcing effects of drugs, as D1

is necessary for the acquisition of the effect and D2 crucial in
mediating positive reinforcement (Missale et al., 1998). On the
other hand, we have previously reported that stanozolol had
no effect on DA content in NAc (Tucci et al., 2012). Findings
regarding the impact of different AAS on brain reward function
are summarized in Table 1.

Contradictory neurochemical results have been reported
regarding AAS effects on the serotonergic system. In particular,
intranasal administration of testosterone has been shown
to increase dopaminergic and serotonergic systems in rat
neostriatum and NAc (de Souza Silva et al., 2009). Accordingly,
nandrolone decanoate and oxymethenolone treatment enhanced
5-HT and 5-HIAA concentrations in rat cerebral cortex and
hypothalamus, while decreased levels of 5-HT and 5-HIAA were
observed in the striatum of nandrolone-treated rats (Thiblin
et al., 1999a; Lindqvist et al., 2002; Tamaki et al., 2003). Moreover,
it has been shown that AAS affects 5-HT receptor expression.
In particular, sub-chronic nandrolone administration down-
regulates 5-HT1B and up-regulates 5-HT2 receptor density in
rat brain (Kindlundh et al., 2003). In addition, McQueen et al.
(1999) have demonstrated that serotonin transporter (SERT)
mRNA-expressing cells in the dorsal raphe nucleus, as well as the
density of SERT sites increase after sub-chronic treatment with
testosterone (McQueen et al., 1999).

On the other hand, several studies have associated the
endogenous opioid system to behaviors linked to reward
and reinforcement (Gianoulakis, 2009). Thus, a number of
experimental investigations have been carried out to ascertain
whether AAS treatment modifies the levels of opioid peptides
and their receptors in brain areas mediating reward. In particular,
β-endorphin levels have been reported to significantly increase
in the paraventricular thalamic nucleus and VTA of rats
treated with AAS cocktails or nandrolone decanoate, respectively
(Johansson et al., 1997; Harlan et al., 2000). In line with
previous reports, chronic exposure to nandrolone decanoate
has been linked to enhanced µ-, δ-, and κ-receptor binding in
the hypothalamus, striatum, and midbrain periaqueductal gray
(Johansson et al., 2000a). However, in the NAc shell and central

amygdala of rats treated with the higher dose of nandrolone
regimen, a down-regulation of κ-receptor binding, as measured
by autoradiography has been demonstrated (Magnusson et al.,
2009). Moreover, an increase in dynorphin converting enzyme-
like activity was found only in the NAc of rats exposed to chronic
nandrolone, suggesting an increased biosynthesis of dynorphin
peptides, which, in turn, might affect basal DA levels in the NAc
(Spanagel et al., 1992; Steiner and Gerfen, 1998; Magnusson et al.,
2007).

Other AAS Pathways and Reward

It is worth noting that AAS effects are commonly described
after chronic or sub-chronic drug exposure. Indeed, acute
subcutaneous testosterone administration failed to influence
accumbal DA release (Triemstra et al., 2008). In this regard,
it has been proposed that AAS effects on the reinforcement
system may be DA-independent, as happens with other abuse
substances such as ethanol and benzodiazepines. Moreover,
AAS effects on mesolimbic dopamine might be indirect or
rely on non-classic androgen-sensitive pathways. Thus, based
on accumulated evidence, AAS have an addictive potential,
especially in susceptible subjects.

As reported, many discrepancies need to be better clarified.
First, it is important to clarify whether classic nuclear receptors
are involved in these effects or if other mechanisms are also
involved. Moreover, scientific evidence exists for fast actions of
steroids acting on calcium channels, membrane receptors, second
messengers and membrane fluidity (for a review see Foradori
et al., 2008). In this regard, a recent in vitro study has shown
that testosterone, by acting on membrane receptors, was able to
increase hippocampal plasticity within 2 h, leading to increased
spine density (Li et al., 2015). Sato et al. (2010) investigated the
possible involvement of these types of receptors on reinforcement
effect of AAS. In particular, their experiments demonstrated that
animals, intact or carrying the testicular feminization mutation,
preferentially self-administer dihydrotestosterone (DHT) and
DHT conjugated to bovine serum albumin, DHT-BSA, which
acts only on cell surface. These observations prompted the
authors to conclude that androgen self-administration may be
mediated by plasma membrane receptors (Sato et al., 2010).
Accordingly, it has been postulated that classical genomic action
of androgen may be not fast enough to assure reinforcement.
In agreement to such hypothesis, the distribution of androgen
receptors in NAc and VTA is resulted quite sparse (Kritzer and
Creutz, 2008; Sato et al., 2008).

Nonetheless, it is worth to note that further signaling systems,
other than dopaminergic or opioidergic, can be implicated in
reward. Indeed, chronic nandrolone decanoate was found to
down-regulate the NR1 subunit of NMDA receptors in NAc of
treated rats (Le Greves et al., 1997). This finding led the Authors
to hypothesize that AAS may thus sensitize reward mechanisms.

However, the number of studies investigating the effects of
AAS on glutamatergic system in reward is still limited; hence,
future investigations should be focused accordingly to clarify
whether AAS reinforcement relies on non-classic pathways or on
other signaling systems.
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TABLE 1 | Preclinical overview of the impact of different AAS on reward system.

Drug Route and dose of administration Impact on reward system Species References

Testosterone 0.8–1.2mg/kg s.c ↑ CPP Mice Arnedo et al., 2000

1–2mg/kg s.c Arnedo et al., 2002

0.75mg/kg; 7.5mg/kg i.p Parrilla-Carrero et al., 2009

0.5–1mg/kg s.c ↑ self-administration Rats de Beun et al., 1992

0.8–1.2mg/kg s.c Alexander et al., 1994

1µg icv infusion, ↑ self-administration Hamsters Wood et al., 2004

50µg iv, DiMeo and Wood, 2004

1–4mg/ml oral self-administration Wood, 2002

2µg icv infusion ↓ DA (NAc) Hamsters Triemstra et al., 2008

Nandrolone 0.75mg/kg; ↑ CPP Adult Mice Parrilla-Carrero et al., 2009

7.5mg/kg i.p ↓ D1R (NAc) Martinez-Rivera et al., 2015

7.5mg/kg i.p No effect on CPP, no difference in D1R Adolescent Mice Martinez-Rivera et al., 2015

1µg/µl; 2µg/µl icv self-administration ↑ self-administration Hamsters Ballard and Wood, 2005

15mg/kg i.m ↑ DAT Rats Kindlundh et al., 2002

↓ D1R; ↓ D2R (NAc shell) Kindlundh et al., 2001b, 2003

↓ DOPAC, ↓ HVA Birgner et al., 2007

↓ MAO-A, ↓ MAO-B Birgner et al., 2008b

15mg/kg s.c ↓ DA (NAc) Rats Zotti et al., 2014

3mg/kg; 15mg/kg i.m ↑ D4R mRNA (NAc) Rats Birgner et al., 2008a

Stanozolol 1µg/µl; 2µg/µl icv self-administration No effect on self-administration Hamsters Ballard and Wood, 2005

15mg/kg s.c No effect on DA Rats Tucci et al., 2012

Methandrostenolone 1mg s.c No effect on intracranial self-stimulation Rats Clark et al., 1996

17α-methyltestosterone 0.75mg/kg; 7.5mg/kg i.p No effect on CPP Mice Parrilla-Carrero et al., 2009

AAS Effects on Other Drugs of Abuse

Clinical and epidemiological data have reported that the abuse of
AAS in humans is often associated with the abuse of psychotropic
drugs, such as cocaine, opiates, alcohol, cannabis, amphetamine,
and 3,4-methylenedioxy-methamphetamine (MDMA). These
surveys have suggested a role of AAS as a gateway to other
dependency-inducing drugs (DuRant et al., 1995; Arvary and
Pope, 2000; Kindlundh et al., 2001a; Kanayama et al., 2003a;
Thevis et al., 2008). Based on these findings, different animal
paradigms have been used to investigate AAS pre-exposure
effects on neurochemical and behavioral response to other
addictive substances. Consistent with reported higher alcohol
intake in AAS abusers, increased voluntary alcohol consumption
after cessation of AAS administration has also been observed
in male adult rats (Johansson et al., 2000b). In line with
these findings, corticotropin releasing factor modulation of
GABAergic transmission in the amygdala seems to play a
pivotal role in ethanol effects, suggesting that AAS might
alter the sensitivity of these circuits and predispose to alcohol
abuse (Roberto et al., 2004, 2010; Oberlander and Henderson,
2012). Chronic nandrolone decanoate administration has
been found to significantly impair CPP induced by 19-
tetrahydrocannabinol (THC) without affecting CB1 receptor

binding. Interestingly, nandrolone administration increased
THC abstinence precipitated by the CB1 cannabinoid antagonist
rimonabant (Celerier et al., 2006).

Administration of supra-pharmacological doses of
nandrolone decanoate has been shown to decrease the hyper-
locomotion and stereotyped behavior induced by amphetamine
and MDMA, in a dose-dependent manner (Kurling et al.,
2008). Such behavioral outcomes have been corroborated by
microdialysis results. In particular, nandrolone decanoate
attenuated the effect of amphetamine and MDMA on DA
baseline and DA metabolites levels in the NAc. However,
the higher dose of nandrolone decanoate has enhanced the
acute effects of MDMA-induced release of 5-HT, followed by
exhaustion of neuronal 5-HT stores. Thus, high-dose nandrolone
decanoate treatment might enhance neuron vulnerability to
MDMA, leading to effects resembling MDMA neurotoxicity
(Kurling et al., 2008). In addition, it has been demonstrated
that the effects of amphetamine on the hippocampal and
hypothalamic DOPAC/DA ratio were prevented by nandrolone
decanoate, with no changes to DA baseline levels (Birgner
et al., 2007). Likewise, it has been shown that pretreatment
with nandrolone decanoate attenuates accumbal DA and 5-HT
outflow, as well as the consequent stereotyped behavior induced
by cocaine (Kurling-Kailanto et al., 2010; Kailanto et al., 2011).
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Nandrolone might decrease neurochemical and behavioral
effects induced by cocaine via up-regulation of DAT and SERT
binding sites. In these studies, the authors showed that changes
in DA and 5-HT systems endure, even after a long recovery
period from the last dose of nandrolone. This confirms the
hypothesis that drug abuse causes long lasting changes in brain
dopaminergic and serotonergic pathways (Kurling et al., 2008;
Kailanto et al., 2011). These data are in line with earlier findings
demonstrating that chronic cocaine and methamphetamine
decreased D2-receptor and DAT expression during withdrawal
and lasted up to 11 months after the last drug administration
(Volkow et al., 1990, 2001a,b). Collectively, these results
demonstrate that pre-treatment with nandrolone decanoate
dose-dependently attenuates neurochemical and behavioral
effects relating to the reward system induced by psychostimulant
drugs. These findings indicate that such reduced dopaminergic
and serotonergic activity in brain regions strictly involved in
the reward system might represent the neurochemical substrate
that could underlie a higher prevalence of illicit drug use
among AAS abusers. Indeed, to achieve the desired effect of
psychostimulant drugs, AAS users may require increased doses
of these substances.

On the other hand, testosterone has been hypothesized
to act as a partial agonist on the opiod system considering
that, depending on type of receptors involved, steroid effects
are brain region specific (Wood, 2008). As the reinforcing
effects of opioids are thought to be mediated principally by
µ- and δ-receptors (Peters and Wood, 2005), many data
in the literature are available with regard to altered opioid
receptor binding after AAS. In particular, nandrolone has
been reported to increase binding of µ-, δ-, and κ-receptors
in the hypothalamus, striatum, and midbrain periaqueductal
gray (Johansson et al., 2000a), while reduced κ-receptors have
been found in NAc (Johansson et al., 2000b). In addition,
increased β-endorphin levels in the VTA (Johansson et al.,
1997) and paraventricular thalamus (PVT) (Harlan et al.,
2000) along with and higher β-endorphin fiber staining in
bed nucleus of the stria terminalis and PVT (Menard et al.,

1995) have been described. However, the total β-endorphin
immunoreactivity is lower in arcuate nucleus (Menard et al.,
1995).

On the other hand, nandrolone has been found to enhance
morphine-induced hypothermia while testosterone increases the
antinociceptive effect of a κ-agonist. However, contrasting data
exist since no effects of AAS on morphine antinociception have
been reported in other animal models (Negus et al., 2001; Celerier
et al., 2003; Philipova et al., 2003). In fact, nandrolone pre-
exposure has been shown to inhibit tolerance to antinociceptive
properties of morphine and CPP induced by morphine in
mice (Celerier et al., 2003) and rats (Philipova et al., 2003).
Accordingly, pre-exposure to AAS has been shown to prevent
morphine-induced striatal Fos expression (Harlan et al., 2000).
High variability is present in findings linking AAS to opiate
withdrawal. In monkeys no effect of AAS has been described for
naloxone-precipitated morphine withdrawal paradigm, although
Celerier et al. (2003) found that nandrolone increased withdrawal
symptoms induced by naloxone in morphine-dependent mice.
Moreover, the dysphoric effect mediated by nandrolone pre-
treatment has been correlated to elevated striatal levels of
dynorphin B, which in turn may account for the inhibition of
dopaminergic activity in this brain region (Steiner and Gerfen,
1998; Johansson et al., 2000a). Finally, testosterone has been
shown not to increase motivation for morphine (Cooper and
Wood, 2014). Such discrepancies may rely on different AAS and
schedule of treatment used, as well as different species or strain
of animal used.

Although literature has been populated by many clinical or
preclinical reports, many knots in the unraveling of deleterious
addictive effects of AAS still need to be untied. Furthermore,
taking into account that the use of these substances is becoming
popular, especially among adolescents, a deeper knowledge of
CNS effects of AAS is nowadays mandatory.
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