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Introduction

Lung cancer is the superior reason of cancer deaths 
worldwide.[1] People, who are identified with lung cancer 
in advanced stages, have a very low survival rate, and this 
prevents effective treatments. Earlier detection of cancer 
expands survival and supports people to live a long life by 
taking proper treatment without necessarily extending life. 
In the United States, every year approximately $9.6 billion 
are spent on lung cancer treatment. This poses a significant 
financial burden for the people, though they have health 
insurance. As the newer technologies and treatments increases, 
the expenditures for cancer‑preventive care may increase 
at a faster rate than overall medical expenditures.[2] These 
facts create a demand on cost‑effective cancer control and 
prevention schemes such as computer‑aided lung cancer 

screening programs. The National Lung Screening Trial 
confirms that low‑dose computed tomography  (LDCT) 
screening reduces the mortality rate by lung cancer.[3] The 
American College of Chest Physicians provides guidelines for 
the successful execution of lung cancer screening program.[4] 
Lung cancer screening with LDCT is advised for adults with 
the age of 55–80 years who have about 30 years of smoking 
history. Routine screening with CT imaging is suggested to 
high‑risk patients for early cancer detection. However, an 
extra attention is needed while repeating LDCT screening 
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tests because it accumulates radiation exposure. The recent 
practice guidelines given by the American College of Chest 
Physicians recommended longer intervals between CT scans.[5] 
The US Preventive Services Task Force has reported that the 
consequence of radiation exposure is insignificant as compared 
with the cut‑rate of cancer death.

Screening with LDCT helps to diagnose lung cancer, and if 
lung cancer is diagnosed at an earlier state before spreading to 
other organs, people might have a better chance of long life. 
However, false‑positive (FP) diagnosis results may lead the 
people to one more advanced level radiation testing, which 
may harm their normal health. Hence, cautious screening 
and accurate diagnosis is very important. Recently, the 
machine‑learning community has developed computerized 
tools and learning models for computer‑aided diagnosis (CAD) 
systems that demonstrate clinically acceptable performance. At 
present, the Food and Drug Administration has given premarket 
approval for two CAD application domains such as breast 
cancer diagnosis with mammogram images and lung cancer 
diagnosis with chest radiographs.[6] Vapnik et al. have proposed 
a new artificial intelligence‑based system that could learn 
hidden and essential information to improve CAD technology 
for lung cancer diagnosis.[7] In general, CAD system for 
lung cancer diagnosis comprises two components such as 
parenchyma segmentation and classification of candidate 
nodules. Figure 1 shows the framework of CAD system for 
lung cancer diagnosis with deep learning.

Parenchyma segmentation is a preliminary procedure for 
any clinical diagnosis system intended to simplify the early 
diagnosis of lung diseases. This process obtains the lung 
parenchyma volume from the unprocessed CT scan image by 
removing the undesired parts such as image artifacts, heart, 
spinal cord, trachea, bronchi, bone, and muscle. Classifying 
the normal and cancerous pulmonary nodules is an essential 
step in cancer diagnosis process. Pulmonary nodules are small 
abnormalities existing in the lung region, which are need not 
be cancer nodules that can be caused by old infections or 
other causes. On chest CT scans, a lung nodule is described 
as a small tumor on the lung, which varies in diameter from 
3 mm to 3 cm. In general, the malignant nodules have unusual 
shapes, irregular surfaces, and color mutations. Detectability 
of cancerous nodules in the lung depends on the contrast 
between the nodule and the surrounding nonnodule tissue. 

The samples of true and false pulmonary nodule patches are 
illustrated in Figure 2.

Related work
Deep‑learning techniques produced excellent results in various 
computer vision problems. The reason behind the success 
of deep learning is the feature learning behavior and least 
domain expertise effort. This approach finds the solution 
directly from the target problem by supervised learning 
method. This attracts the researchers toward deep‑learning 
techniques for medical image analysis. Convolutional neural 
network (CNN) is the most popular neural network for spatial 
image (two‑dimensional [2D] matrix) analysis.

Quite a few ConvNet architectures have been proposed for 
semantic segmentation that acquires the spatial features from 
the annotated datasets and produces a prediction map. Most of 
the segmentation CNN models are symmetrical architecture 
consisting of an encoder and an equivalent decoder.   These 
networks demand high memory configuration and difficult 
to be trained on entire volumetric medical images. However, 
these deep models have been trained with 2D slices or small 
3D crop to learn the global features by accommodating 
memory limitations without compromising its capability. 
Nie et  al. have proposed a multiple fully connected CNN 
to segment infant brain images by fusing feature data from 
multiple modalities.[8] U‑Net is an improved CNN that is 
designed to segment medical images. It is widely employed 
on a range of medical image analysis tasks such as liver 
segmentation[9] and breast segmentation.[10] SegNet[11] is a kind 
of CNN which is also designed for semantic segmentation 
of outdoor scene. SegNet architecture uses the feature maps 
computed from max‑pooling layers in its decoder section; 
thus, it produces accurate results by consuming less memory 
during training phase. Khagi et al.[12] have suggested that the 
encoder‑decoder network of SegNet with certain alterations 
can be used in medical magnetic resonance imaging image 
segmentation.

The existing lung parenchyma segmentation methods such as 
random walk, watershed segmentation, fuzzy logic, and graph 
search algorithms are the compound of multiple procedures 
that consume more time and could not afford result at a 
single step. Recently, few research works have been carried 
particularly on lung segmentation with deep neural networks 
that are presented in Table 1. Due to the computational speed 
and storage capacity limitations, these networks have not been 
trained on entire 3D data.

Figure  1: Computer‑aided diagnosis system for lung cancer with 
deep‑learning approach

Figure 2: Samples of true positive and false nodules extracted from the 
Lung Image Database Consortium dataset, (a) False nodules, (b) True 
nodules. Nodule is located at the center of 64 × 64 mm axial view patch
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The pulmonary nodule classification is a critical task in CAD 
system for lung cancer. This will be done in two steps such as 
candidate nodule detection and FP reduction. The candidate 
nodules are detected using thresholding, followed by a 
morphological opening operation. In FP reduction phase, the 
false nodules are identified and dropped using classification 
techniques. Recognizing the suitable features for distinguishing 
the nodules is more challenging; hence, an automatic feature 
learning method is required to find more descriptive features 
from raw data.

The pulmonary nodule classification is done in two ways such 
as feature‑based approach and deep‑learning‑based approach. 
In a feature‑based approach, the radiological features such as 
nodule volume, position, appearance, texture, and so forth 
are extracted from the candidates, and then, a classifier is 
built to determine the class of the nodule. Here, obtaining and 
choosing the significant subset of features for an accurate lung 
nodule classification is a vital task. In deep‑learning‑based 
approach, a model is designed to learn the essential features 
from the candidate nodules for accurate classification. During 
the last decade, numerous medical image classification tasks 
have employed deep‑learning techniques. Hinton introduced 
deep learning in 2006,[16] which is motivated by the working 
of human neural schema and designed by mimicking the 
intercommunication of several neurons. Table 2 presents the 
overview of recent works carried out on pulmonary nodule 
classification using deep‑learning techniques.

Pulmonary nodule classification is a sort of 3D image analysis 
problem, but most of the present deep models have utilized 
2D details for building the convolutional neural networks 
(CNNs)[28] or multiview 2D CNN[27,29] classifier model. 
Considering only 2D data might skip essential information 
required for malignancy determination. Hussein et al. classify 
the nodules based on the features extracted by 3D CNN model 
and fused with six more featured advised by radiologists.[30] 
Identifying such high‑level nodule attributes based demands 
the knowledge of experienced radiologists. Zhu et al. have 
proposed a 3D deep model to classify lung nodules using 
gradient boosting machine with the features extracted for 
nodule classification.[17] Qi Dou et  al.[26] have proposed a 
hierarchical 3D CNN to extract contextual features from 
candidate nodules at various hierarchical levels and filter the 
high‑probability locations as true nodules. Unbalanced data 
distribution and scarcity problems of medical image dataset 
can be overcome by incorporating transfer learning technique 
while designing the classifier model.[24,27]

Voxel‑based machine learning (VML) is a kind of supervised 
learning technique used to segment the pulmonary nodules 
directly from the input image without selecting the candidate 
nodules.[31] For accurate lung nodule segmentation, the 
classifier requires both local details about nodule appearance 
and global contextual details about nodule location. In VML 
approach, the model is trained in a supervised manner directly 
from the volumetric features retrieved from voxel values of 

CT images. Tong et al.[32] have proposed a deep‑learning‑based 
pulmonary nodule segmentation algorithm. The algorithm 
segments the pulmonary nodules from the CT image directly 
using modified U‑Net architecture, and the performance is 
evaluated with the Dice coefficient.

A number of research works have been carried out on medical 
image analysis with deep learning, but few works have been 
contributed for developing an effective lung cancer diagnosis 
system. Still, the CAD system for lung cancer requires 
improvement in detecting the cancer case without missing 
true pulmonary nodules. In this study, an enhanced SegNet 
model is proposed to segment the lung region and a modified 
CNN model is implemented to categorize the pulmonary lung 
nodules.

Subjects and Methods

Dataset
Data acquisition is the preliminary act that acquires an input 
image for an effective diagnosis. CT scanners send radiation 

Table 1: Deep-learning approaches for lung parenchyma 
segmentation

Authors Main methods Performance metrics
Harrison et al.[13] Progressive and 

multipath CNN
Dice: 0.985

Agnes et al.[14] Convolutional deep 
and wide network

Dice: 0.950

Skourt et al.[15] U-Net architecture Dice: 0.9502
CNN: Convolutional neural network

Table 2: Pulmonary nodule classification using deep-
learning techniques

Authors Main methods Performance metrics
Zhu et al.[17] 2D-CNN Sensitivity: 0.86
Eun et al.[18] Ensemble 2D CNN Sensitivity: 0.92
Hamidian et al.[19] 3D FCN, 3D CNN Sensitivity: 0.80
Fu et al.[20] Thresholding, 2D 

CNN, hand-crafted 
feature extraction

Accuracy: 0. 91

Li et al.[21] 2D-CNN Sensitivity:0.87
Setio et al.[22] Multistream CNN Sensitivity: 0.85
Ypsilantis and 
Montana[23]

RNN-CNN Sensitivity: 0.90

Ciompi et al.[24] Pretrained CNN 
(OverFeat)

AUC: 0.868

Van Ginneken 
et al.[25]

Pretrained CNN Sensitivity: 0.71

Dou et al.[26] Multilevel 3D 
convolutional neural 
networks

Sensitivity:0.94

Nibali et al.[27] Deep residual network 
(ResNet)

Sensitivity :0.9107

Shen et al.[28] MCNN Accuracy: 86.84
2D: Two-dimensional, 3D: Three-dimensional, CNN: Convolutional 
neural network, MCNN: Multiscale CNN, FCN: Fully convolutional 
network, RNN: Recurrent neural network
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beam to the human body and produce a more detailed CT scan 
image. CT imaging modality produces the volume data in a 
Digital Imaging and Communications in Medicine (DICOM) 
directory where the data are neatly packed with consequent 
numbering. Commonly, the medical images are preserved in 
standard DICOM format that helps the physicians to access 
the images and allows them to diagnosis the disease. Normally, 
the three‑dimensional (3D) CT data are viewed in 2D planes 
such as axial, sagittal, and coronal, which provide an in‑depth 
look to the radiologists for effective diagnosis. Since the 3D 
CT images are complex with many anatomical structures, it 
is reasonable to have a 2D view for better understanding of 
humans. CT scans enable the physicians to detect lung nodules 
accurately rather than chest X‑ray scans.

The National Cancer Institute has made a collaborative work 
known as the Lung Image Database Consortium (LIDC) and 
Image Database Resource Initiative. LIDC‑  IDRI  collection 
provides thoracic CT images and the marked lesions, and this 
stimulates the research progress on lung cancer diagnosis 
from CT images.[8] The LIDC is a collaborative effort of five 
educational foundations that are operating collectively to 
build an image archive that supports universal research for the 
innovation of the CAD system for lung nodule detection on CT 
scans. LIDC‑IDRI dataset contains nearly a thousand of patient 
data in DICOM file. Each file includes a series with stacked 
of axial slices of the chest cavity. The amount of 2D slices for 
every patient depends on the scanner machine, which takes the 
scan. Commonly, the thickness of slice in an axial direction 
is more than 2.5 mm. The identified lesions are categorized 
into three classes such as nonnodules, nodules smaller than 
3 mm, and nodules bigger than 3 mm. Every study in this 
collection includes thoracic CT scan images and the related 
eXtensible Markup Language file that specify the coordinates 
of the nodule and its label. The nodule annotations have been 
marked by four qualified radiologists.

Convolutional neural network
CNN is a backpropagation neural network that works on 
multidimensional data. The standard CNN model should 
have a pile of convolutional and pooling layers tailed by a 
fully connected layer and a final softmax layer. Piling the 
convolutional layers enables the model to explore the hidden 
features and pattern of the input image at hierarchical levels. 
The basic operation of the convolutional layer is a convolution 
that recognizes the spatial relationship among pixels. The 
hierarchical order of convolution filters may extract features 
directly from the raw input image at different levels. The 
convolutional filter is called kernel, and the kernel weights are 
learned during the model training. Pooling is a downsampling 
process which reduces the dimensionality of the feature 
map which is obtained from the previous convolutional 
layer without missing any important information. The fully 
connected layer consolidates the set of features obtained from 
multiple convolutional layers into a single feature. Finally, 
the softmax layer classifies the outputs using the softmax 
activation function.

Dilated SegNet
SegNet is a kind of CNN that consists of a symmetrical 
encoder and decoder part. The encoder comprises a sequence 
of convolutional and downsampling layers. The decoder has a 
sequence of deconvolutional and upsampling layers and ended 
with a softmax layer that does pixel‑wise classification. SegNet 
model does not contain a fully connected layer; therefore, this 
is faster than other segmentation neural networks such as fully 
convolutional network and DeconvNet. The proposed dilated 
SegNet model for lung segmentation is illustrated in Figure 3. 
The dilated SegNet model contains an improved encoder that 
produces fused convolved feature sets extracted at different 
dilation rates. Dilation rate specifies the gaps between the 
kernels and fills the empty positions with zeroes. A  3  ×  3 
kernel with a dilation rate of 2 will have the wider field view 
of 5 × 5 kernel. The dilated convolutional operations help the 
segmentation CNN model to sustain minimum computation 
time even higher field views are used. The encoder part consists 
of 2 convolutional layers, and each of them is followed by 
max‑pooling layers. At convolutional layer, 32 kernels of size 
3 × 3 with dilation rate of 1 and another 32 kernels of size 3 × 3 
with dilation rate of 2 are applied. The convolved features 
obtained by both dilated and nondilated convolutional layers 
are fused and forwarded to the next pooling layer. Max‑pooling 
operation with 2 × 2 window size (nonoverlapping) and a stride 
of two is applied at pooling layer to downsample the feature 
set by skipping the redundant details.

Convolution operation convolves two matrixes such as input 
image I and kernel filter H and produces the convolved matrix 
using Eq. 1, where * indicates the convolution operation.

C[x, y] = [I[x.y] * H[x, y]� Eq. 1

Convolution is a process of summing each pixel I [i, j] of the 
image to its neighbors, weighted by the kernel filter H[x‑I, y‑j]

Figure 3: Illustration of the proposed dilated SegNet for lung segmentation
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C x y I i j H x i y j
ij

, [ , ] [ , ][ ] = − −∑∑ � Eq. 2

Dilated convolution requires an additional parameter called 
dilation rate, which describes the gap between pixels. It 
enlarges the receptive field by introducing the gap between the 
cells in a kernel. Figure 4 illustrates an example of convolution 
operation on 6 × 6 input data with 3 × 3 filter at different 
dilation rates.

The decoder part contains deconvolutional layers, followed by 
upsampling layer. Upsampling operation helps the network to 
get back the original image dimension. In the proposed model, 
hidden convolution layers use ReLU activation function 
ReLU  (x) = max  (0, x) and the output layer uses softmax 
activation function. A softmax function is a type of squeezing 
function which confines the output vector into the range of 
0–1. The softmax function takes an N‑dimensional input vector 
with float values and produces another N‑dimensional vector 
with real values in the range (0, 1) using Eq. 3.

Softmax  (X):  (x1,  x2….xn) S:  (s1,  s2…sn) ,  where
S e ei

xi xj
j n

/
...=∑ 1

	� Eq. 3

The objective function of the dilated SegNet aims to minimize 
the Dice loss that is calculated simply as:

Diceloss = 1 ‑ DiceCoeff� Eq. 4

Dice coefficient is computed using Eq. 5, where R is the 
segmented region mask image and G is the ground truth mask 
image.

DiceCoef R G G
R G

( , ) | |
| | | |

=
∩
+

2 R � Eq. 5

Convolutional neural network with batch normalization
The CNN is a backpropagation neural network that comprises 
a series of convolutional and pooling layers, followed by 
a final classification layer. The 2D CNN model with batch 
normalization  (BN) is developed to classify the nodule 
patches with a size of 64 × 64. The learning process should 
not dilute the discriminant features between true and false 
nodule patches. Hence, a BN layer is attached after every 

convolutional layer to standardize data throughout the network. 
BN technique helps to avoid network overfitting problem and 
improve the stability of the network. BN layer is used before 
the activation layer that normalizes the input by applying a 
linear scale and shift to the mini‑batch.[33] During training time, 
a BN layer calculates the batch mean µbatch and variance σbatch 
of the layer input X: (x1, x2…xm).

µbatch iim
x=

=∑1 1...
� Eq. 5

σ µbatch i batchi mm
x=

=∑1 2
1
( _ )

...
� Eq. 6

normalize the layer inputs using the calculated batch mean 
and variance. Output Y: (y1, y2…ym) is obtained by scaling and 
shifting the normalized inputs x–i with the learned parameters 
γ and β.

X
X

i
i batch

batch
=

−
+

µ
σ ξ2

� Eq. 7

y xi i= +γ β � Eq. 8

2D CNN framework for lung nodule patch classification is 
shown in Figure 5. The CNN model consists of convolutional 
layer, followed by BN and max‑pooling layer. Finally, a 
softmax layer classifies the nodule patches using the features 
extracted by the network. Every convolution layer in the model 
uses increasing number of kernels such as 16, 32 and 64  with 
the size of 3 × 3 and ReLU activation function. ReLU activation 
is a nonlinear activation function which does not suppress 
the effect of backpropagation and helps faster convergence 
of the network. The deep neural network efficiently works 
on normalized data so that the network can converge steadily 
without oscillations. The BN layer controls the magnitude 
and mean of the activations independent of all other layers. 
Max‑pooling layer helps to eliminate the redundant details by 
choosing the maximum value within the block of size 2 × 2. The 
softmax classifier implements classification by fitting the data 
classification boundaries, using gradient descent optimization 
technique. The softmax activation function maps the output 
vector into categorical probability vector

Discussion

Lung segmentation with dilated SegNet
Dilated SegNet is modified SegNet model for separating lung 
region from chest CT images. The model has been trained with 
a subset of 1000 2D axial images obtained from LIDC dataset. 
The center axial slice is obtained from each volumetric CT scan 
images, and the slice is rescaled into 512 × 512 resolutions. 
The network weights are initialized randomly and fixed 
during training by backpropagation method. The first‑order 
gradient optimizer “Adam” is used for tuning the model. Dice 
coefficient loss is used as the cost function, and a fixed learning 
rate of 1 × 10 − 3 is set for all iterations. The segmented result 
of the dilated SegNet is compared with the segmented results 

Figure 4: Illustration of convolution on 6 × 6 input data with 3 × 3 filter 
at different dilation rates
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obtained by Fuzzy C‑means  (FCM) clustering and SegNet 
models. Figure 6 shows the segmentation results of all models. 
The output images confirm that the proposed dilated SegNet 
model could segment the lung region accurately than FCM 
and SegNet algorithms. From the results, it is apparent that 
the intensity of the lung and scanner regions is similar, but the 
lung region has a clear boundary and different texture details 
as compared with the surrounding region. This helps the CNN 
to learn the abstract level features from the raw image and 
segment lung region accurately.

The performance of segmentation algorithms is quantitatively 
evaluated by the Dice coefficient that calculates the spatial 
overlay between the segmentation results and the ground truth 
results. In Dice coefficient measure, a value of one indicates 
the perfect spatial intersection between the ground truth result 
and the segmented result and a value of zero represents no 
spatial overlap. The performance of the dilated SegNet model 
in terms of Dice coefficient during network training is shown 
in Figure  7. The performance graph shows that the model 
has converged after 90 epochs. During the training phase, the 
dilated SegNet model attains the maximum Dice coefficient 
of 0.9745 with dice loss of 0.0255.

The models have been tested with 50 images, and an average 
Dice coefficient and accuracy of various lung segmentation 
methods are shown in Table 3. The quantitative performance 
analysis states that dilated SegNet shows improved 
performance in terms of both Dice coefficient and accuracy 
as compared with FCM and SegNet models. The dilated 

convolution increases the receptive area without increasing 
the computation load and helps to learn global features. The 
proposed dilated SegNet model learns both the local and 
global features by the different receptive areas using dilated 
convolution operation. The features obtained by the dilated 
convolutional layers are combined, and the fused feature 
set obtained by dilated SegNet is used for segmenting 
the lung region. The experiment results confirm that the 
incorporation of global features enhances the performance 
of the SegNet.

Patch‑level nodule classification with convolutional neural 
network + batch normalization
Based on the annotations given by the radiologists, the nodule 
patches are extracted from the LUNA16 data set. The 2D nodule 
patches in axial view with the dimension of 64 × 64 are sliced 
from the CT images. The number of true nodules is very low 
than false nodules; this imbalance dataset made the classifier 
bias toward the majority class. Data augmentation technique 
makes the dataset balanced by augmenting the minority class 
samples and also prevents the CNN model for overfitting issue. 
Data augmentation techniques such as rotation, horizontal 
flipping, and vertical flipping are adapted to augment the nodule 
patches. Random 5000 patches from each category are used to 
build the model. The CNN + BN model is trained from scratch, 
and the weights are adjusted at the learning rate of 0.001. The 
model is trained with Adamax optimizer and a weight decay 
of 1e‑5 for 100 epochs. The metric accuracy is used as a cost 
function for tuning the network.

Figure 5: Illustration of the proposed convolutional neural network + batch normalization model for lung nodule patch classification

Figure 6: Lung segmentation results of various models (from left to right), (a) Chest computed tomography image in axial view, (b) Lung obtained 
from ground truth mask, (c) Lung segmented from Fuzzy C‑means, (d) Lung segmented by SegNet, (e) Lung segmented by dilated SegNet

dcba e
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The performance of the CNN +  BN model is qualitatively 
examined by visualizing the learned features. Figure 8 shows 
the abstract feature maps learned at various convolutional 
layers. The essential features activated by the convolutional 
layers during the feedforward operation are highlighted. 
Figure 9 shows the precisely classified nodule patches from 
the test dataset. This result confirms that the CNN model with 
BN could classify the true nodules that are smaller in size and 
complex structures with a probability of higher than 0.60.

The performance of the pulmonary nodule classification model 
is quantitatively assessed with accuracy and sensitivity. In 
medical image classification, true positive (TP) denotes the 
exact classification rate of positive units, and true negative 
denotes the exact classification rate of negative units. FP 
indicates the wrong classification rate of negative units and 
false negative (FN) refers to the wrong classification rate of 
positive units. The sensitivity (or recall) represents the ratio 
between TPs and TPs plus FNs. Higher accuracy and sensitivity 
indicate better classification performance. Confusion matrix 
results for CNN model with and without BN are shown in 
Figure 10. These results show that CNN + BN model has fewer 
FPs compared to CNN model without BN and maintains a high 
sensitivity of 94.8.

Table  4 presents the performance of CNN model with BN 
in comparison with CNN model without BN in nodule 
classification. BN layer is injected after every convolution 
layer in the CNN model to regulate the features derived by a 
convolutional layer. This feature normalization assures that the 
model could retain the required discriminant features across 

multiple iterations. The CNN + BN achieves the accuracy of 
93.8, which is higher than the CNN model without BN. The 
test results confirm that the BN improves the efficiency of the 
CNN model by discovering generalized features for classifying 
the true and false nodules.

Both CNN models achieved good results in classifying the 2D 
nodule patches. Further, the impact of BN in CNN is examined 
using the principal component analysis method. Although the 
CNN model without BN classifies the nodule patches with 
satisfying accuracy, the discriminative capability of the features 
learned by the CNN model without BN is poor as compared 
with CNN with BN layer.

Figure 11 illustrates the discriminant ability of the features 
learned by both CNN model with and without BN. The first 
two principal components obtained from the 256 features 
learned by CNN models are visualized with a scatter plot to 
analyze its discriminative ability. From this plot, it is observed 
that the CNN + BN model learns generalized features that 
help to discriminate true nodules from the false nodules 
precisely.

Conclusions

A perfect CAD system is required to avoid the unnecessarily 
repeated CT scans. The enhancement of CAD for lung cancer 
is the most required assignment in the current market scenario. 
In this study, deep‑learning models such as dilated SegNet 
for lung segmentation and CNN model with BN layer for 2D 
nodule patch classification have been implemented for lung 
cancer detection. The obtained results of these proposed models 
demonstrate satisfied performance in the lung cancer diagnosis. 
The dilated SegNet shows the improved results of 0.89 ± 0.23 
Dice coefficient as compared with FCM and SegNet models . 
Furthermore, the CNN with BN layer extracted features with 
the high discriminant ability and classifies the nodule patches 
with a sensitivity of 94.8. The visual results confirm that the 
CNN model with BN classifies the true nodules that are smaller 
in size and complex structures with a satisfied probability 
value. However, certain aspects still require attention in the 
development of CAD tools for lung cancer detection such as 
the inclusion of 3D data in lung parenchyma segmentation and 
nodule detection. It is recommended that the better utilization 
of 3D data along with deep‑learning techniques may boost the 
performance of the current CAD system.

Figure 7: The performance analysis graphs of dilated SegNet model for 
lung segmentation during training phase

Figure 8: Visualization of the activations (feature maps) of the consecutive 
convolutional layers such as conv1, conv2, and conv3 for a nodule patch

Table 3: Performance comparisons of dilated SegNet with 
other methods

Method Dice coefficient Accuracy
FCM 0.75±0.19 0.87±0.11
SegNet 0.84±0.69 0.92±0.04
Dilated SegNet 0.89±0.23 0.94±0.07
FCM: Fuzzy C-means
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