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Abstract

Background: Prognostication of Breast Cancer (BC) relies largely on traditional clinical factors and biomarkers such
as hormone or growth factor receptors. Due to their suboptimal specificities, it is challenging to accurately identify
the subset of patients who are likely to undergo recurrence and there remains a major need for markers of higher
utility to guide therapeutic decisions. MicroRNAs (miRNAs) are small non-coding RNAs that function as
post-transcriptional regulators of gene expression and have shown promise as potential prognostic markers in
several cancer types including BC.

Results: In our study, we sequenced miRNAs from 104 BC samples and 11 apparently healthy normal (reduction
mammoplasty) breast tissues. We used Case–control (CC) and Case-only (CO) statistical paradigm to identify
prognostic markers. Cox-proportional hazards regression model was employed and risk score analysis was
performed to identify miRNA signature independent of potential confounders. Representative miRNAs were
validated using qRT-PCR. Gene targets for prognostic miRNAs were identified using in silico predictions and
in-house BC transcriptome dataset. Gene ontology terms were identified using DAVID bioinformatics v6.7. A total of
1,423 miRNAs were captured. In the CC approach, 126 miRNAs were retained with predetermined criteria for good
read counts, from which 80 miRNAs were differentially expressed. Of these, four and two miRNAs were significant
for Overall Survival (OS) and Recurrence Free Survival (RFS), respectively. In the CO approach, from 147 miRNAs
retained after filtering, 11 and 4 miRNAs were significant for OS and RFS, respectively. In both the approaches, the
risk scores were significant after adjusting for potential confounders. The miRNAs associated with OS identified in
our cohort were validated using an external dataset from The Cancer Genome Atlas (TCGA) project. Targets for the
identified miRNAs were enriched for cell proliferation, invasion and migration.

Conclusions: The study identified twelve non-redundant miRNAs associated with OS and/or RFS. These signatures
include those that were reported by others in BC or other cancers. Importantly we report for the first time two new
candidate miRNAs (miR-574-3p and miR-660-5p) as promising prognostic markers. Independent validation of
signatures (for OS) using an external dataset from TCGA further strengthened the study findings.
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Background
The global burden of breast cancer (BC) is 1.7 million
and is one of the leading causes of cancer related death
among women and the most frequently diagnosed can-
cer in 140 of 182 countries, as per the 2012 statistics [1].
Although advancements in diagnosis, screening and
awareness help identify BC at an early stage, optimal
management has remained a challenge due to its histo-
logical and molecular heterogeneity [2], and varying re-
sponse to therapies even within clinical subtypes of BC
[3]. Identification and validation of prognostic markers
that can stratify patients based on their risk for recur-
rence and/or death may help in optimizing therapies to
improve disease outcomes and quality of life. Estrogen
Receptor (ER) and Human Epidermal Growth Factor Re-
ceptor 2 (HER2) are widely being used as both prognos-
tic and predictive markers but remain as imperfect
estimators of the risk for recurrence [4]. While, messen-
ger RNA (mRNA) signatures from global gene expres-
sion profiling have also been put forth as potential
prognostic markers for BC [5–8], their utility is limited
to specific clinical settings [9]. This further emphasizes
the need to identify robust prognostic markers with
higher sensitivity, accuracy and reproducibility.
MicroRNAs (miRNAs, 18–25 nt) are evolutionarily con-

served small non-coding RNAs that have shown promise
as both diagnostic and prognostic biomarkers for several
cancer types [10]. Predominantly, miRNAs behave as post-
transcriptional regulators of gene expression, promoting ei-
ther mRNA degradation or translation inhibition, depend-
ing upon the complementarity shared between the seed
sequence of miRNAs and the corresponding 3' untrans-
lated region of the target sequence [11–13]. However, stud-
ies have shown that they also activate gene expression [14].
Being either pleiotropic (one miRNA regulating several
mRNAs) or highly redundant (several miRNAs targeting
one mRNA) in nature [15], the impact of miRNA dysregu-
lation in cancer is complex and yet promising in the overall
landscape of tumorigenesis and prognostication.
Although several studies have highlighted the signifi-

cance of miRNAs as diagnostic [16, 17] and prognostic
markers for various cancers [18, 19], including BC
[20–23], a consensus signature has not yet been identified
due to differences in the profiling platforms employed,
analytical approaches implemented, sample types (e.g. ad-
jacent normal tissues or reduction mammoplasty speci-
mens) used for analysis and tumor heterogeneity. The
majority of the studies have utilized profiling platforms
such as microarray or qRT-PCR, which are limited to the
detection of known targets at the time of assay develop-
ment. Hybridization platforms are also burdened with the
problems of cross hybridization, background signal, low
sensitivity and limitations on the dynamic range of detec-
tion. These problems are now overcome by Next
Generation Sequencing (NGS) platforms [24]. NGS also
offers the advantage of capturing not just miRNAs but a
whole repertoire of small RNAs, even those present in low
abundance [25], thus enabling a comprehensive analysis of
small RNAome. However, despite several advantages of-
fered by NGS, only few studies have utilized NGS plat-
form to identify prognostic markers for BC [26, 27].
Statistical methods implemented in a study also play a

vital role in determining the reproducibility of findings in a
prognostic signature. Two methods to identify prognostic
markers are widely used in the published literature– the
case–control (CC) approach [20, 23] and the case-only
(CO) approach [18, 19, 28]. While the former method uti-
lizes a set of differentially expressed miRNAs for down-
stream analysis, the latter offers the advantage of being
unbiased in selecting miRNAs for further analysis. Al-
though each of the methods has been used in published
miRNA studies, no study has analyzed a dataset using both
the methods to compare and identify the best approach.
In this study, we hypothesized that relative variations

in miRNA expression in tumors and/or apparently normal
(non-malignant) tissues contribute to inter-individual dif-
ferences in disease trajectory and eventual treatment out-
comes. We profiled miRNAs from 104 breast cancers,
predominantly of Luminal A and triple negative subtypes
and 11 normal tissues (reduction mammoplasty speci-
mens) using the NGS platform (Table 1). Our choice of re-
duction mammoplasty specimens from apparently healthy
subjects was based on the recent literature evidence that
comparisons between reduction mammoplasty specimens
and tumor adjacent normal tissues showed differential ex-
pression of miRNAs, suggesting that adjacent normal tis-
sue may not mirror the normal tissue in terms of
histological and molecular characteristics [29]. Profiling of
long non-coding RNAs showed differences between
tumor adjacent normal tissues and tumor tissues. Differ-
entially expressed long non-coding RNAs were not identi-
fied from tumor adjacent normal tissues vs. tumor tissues
but were identified only when tumor tissues were com-
pared with reduction mammoplasty specimens, further
suggesting that reduction mammoplasty specimens may
be the optimal baseline tissue [30]. Our specific objec-
tives were as follows: (i) to identify differentially
expressed miRNAs in breast tissues (normal vs. tumor
tissues) and (ii) to identify miRNAs as prognostic
markers (outcome: Overall Survival, OS and Recurrence
Free Survival, RFS) for BC (Fig. 1) and validate the sig-
natures using an external dataset. We have identified a
total of twelve miRNAs associated with OS and/or RFS
for BC. Of these twelve, we have replicated the prognos-
tic significance of ten miRNAs already reported in lit-
erature for BC. To the best of our knowledge, this is the
first study to report two novel miRNAs (miR-574-3p
and miR-660-5p) for BC prognosis.



Table 1 Demographics of the samples chosen for the study

Characteristics Discovery cohort External validation
cohort

(n = 104) (n = 84)

Median age at diagnosis in
years (range)

50 (24 – 79) 54.5 (35 – 90)

Median follow up time from
diagnosis in days (range)

2927.5 (170 – 6125) 1881.5 (174 – 3807)

Molecular subtypes

Luminal A 62 51

Luminal B 2 0

Luminal B HER2 10 18

Triple Negative 30 15

Menopausal status

Pre 37 24

Post 75 46

Peri 11 3

Unknown 1 11

Family history of Breast
Cancer

Yes 40 N/A

No 58 N/A

Unknown 6 N/A

Stage

I 8 25

II 79 47

III 16 12

IV 1 0

Overall Grade

Low 36 N/A

High 67 N/A

Unknown 1 N/A

Vital Status

Alive 58 57

Dead 46 27

Relapse Status

Relapse 61 N/A

No relapse 43 N/A

Treatment type

Adjuvant 79 84

Neoadjuvant 25 0

N/A = Not available
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Results
Descriptive statistics of NGS and differentially expressed
miRNAs
A total of 164,237,348 reads and 10,016,964 reads were
detected from the tumor and normal samples, respect-
ively, of which 59 % and 51 % of the reads were retained
after adapter trimming. 84–87 % of the reads were map-
pable to the reference human genome and a total of
25,352,720 reads were mappable to different non-coding
RNA classes (miRNAs, piRNAs, snoRNAs, snRNAs,
rRNAs and tRNAs). A total of 25,003,223 reads map-
pable to mature human miRNAs belonged to 1,423
unique miRNAs (RNAs with at least one read count in
any of the samples). A total of 126 miRNAs were
retained after filtering for low read counts. Following
normalization and batch effects correction (Additional
file 1: Figure S1), one tumor sample was identified as a
potential outlier and was removed from further analysis.
Of the 126 miRNAs, 80 were differentially expressed
(DE) with fold change (FC) > 2.0 and false discovery rate
(FDR) cut-off of 0.05, of which 48 miRNAs were up-
regulated and 32 were down-regulated (Additional file 2:
Table S1). Unsupervised hierarchical clustering was per-
formed using DE miRNAs. As expected, there was a clear
separation of normal and tumor samples, illustrating that
the generated miRNA signatures differentiate the two tis-
sue types (Fig. 2). Also, the clustering of samples based on
DE is to indicate that the samples are differentiated by the
relative expression of a common set of miRNAs rather
than by unique miRNAs.

miRNAs as prognostic signatures for OS and RFS

a. Case–control approach: Eighty DE miRNAs were
treated as continuous variables and were subjected
to univariate Cox analysis, followed by permutation
test. Four miRNAs were associated with OS and two
miRNAs were associated with RFS with permutation
p ≤ 0.1. The four and two miRNAs identified for OS
(Table 2A) and RFS (Table 3A), respectively were
used for constructing the risk score. A risk score
cut-off point of 1.07 for OS was used to dichotomize
the cases into low- (≤1.07) and high-risk groups
(>1.07). Similarly, samples were grouped into the
two risk groups based on the cut-off point estimated
for RFS (0.72). Risk score was then treated as a
categorical variable and entered into the univariate
Cox model. Tumor stage, grade, age at diagnosis and
TNBC status were considered as other clinical
covariates and were first tested for their significance
in the univariate Cox model. Tumor stage, grade
and age at diagnosis were considered as potential
confounders, and, irrespective of their significance in
the univariate analysis, they were entered into the
multivariate model along with the risk score. The
higher-risk group was found to have both shorter
OS (Hazard ratio, HR = 2.71, p = 0.004; Table 4A,
Fig. 3a) and RFS (HR = 2.27, p = 0.003; Table 5A,
Fig. 4a), after adjusting for confounders (tumor stage
and age at diagnosis for OS and tumor stage for RFS).



Healthy breast tissues and/or Breast tumor tissues
(n=11, FF) (n=104, FFPE)

Total RNA isolation

Next Generation Sequencing using small RNA libraries
(Illumina Genome Analyzer IIx)

Data analysis of .bam files
(Partek Genomics Suite 6.6)

Quality Control
(Minimum 10 read counts in at least 90% of the samples)

Normalization*, batch effect correction and sample outlier removal

Differential expression of miRNAs
(Fold change > 2.0, FDR cut off 0.05)

Univariate Cox-proportional hazards regression with permutation test (n=10000)
(R program)

Risk score model construction for OS and RFS
(SAS 9.3)

Multivariate Cox regression
(Adjust for confounders)

(SAS 9.3)

qRT-PCR validation of select miRNAs in representative samples
(SYBR Green)

Case-only approach

Case-control approach

Fig. 1 Overall Workflow of the study. In literature, there are two widely used approaches to identify RNAs with prognostic significance – Case–control
approach and Case only. In the former approach, only differentially expressed (DE) RNAs are considered for survival analysis whereas in the
latter approach, all of the profiled RNAs are considered for survival analysis which therefore aids in identifying prognostic RNAs which would
have otherwise not been identified in case–control. While either of the two approaches has been adopted in literature, both the approaches
have been followed in this study. FF = Fresh Frozen; FFPE = Formalin Fixed Paraffin Embedded; Normalization* = Reads per kilobase per million
(RPKM); FDR = False Discovery Rate; OS = Overall Survival; RFS = Recurrence Free Survival
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b. Case-only approach: One hundred and forty seven
miRNAs retained after filtering for low read counts
were treated as continuous variables and subjected
to univariate Cox analysis followed by the
permutation test. In this analysis, 11 miRNAs and 4
miRNAs were associated with OS (Table 2B) and
RFS (Table 3B), respectively, and were used for
constructing the risk score. A risk score cut-off point
of 4.65 for OS was used to dichotomize the cases
into low- (≤4.65) and high-risk groups (>4.65). Simi-
larly, samples were grouped into two risk groups,
based on the cut-off point estimated for RFS (1.17).
Risk score was then treated as a categorical variable
and entered into the univariate Cox model. Similar
to the case–control approach, the higher-risk group
was found to have both shorter OS (HR = 2.76,
p = 0.002; Table 4B, Fig. 3b) and RFS (HR = 1.85,
p = 0.02; Table 5B, Fig. 4b), after adjusting for
confounders (tumor stage for OS and RFS).

qRT-PCR validations of miR-99b-5p, miR-574-3p,
miR-769-5p and miR-660-5p
The expressions of miR-99b-5p with a FC of −2.3, miR-
574-3p with a FC of −5.8, miR-769-5p with a FC of −1.3
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Fig. 2 Unsupervised hierarchical clustering (HC) using differentially expressed miRNAs. Unsupervised hierarchical clustering of 80 differentially
expressed miRNAs was performed using Euclidean as distance measure and Average linkage method for linkage analysis. HC shows normal and
tumor tissues as distinct clusters. 48 miRNAs were up-regulated in tumor and 32 miRNAs were down-regulated in tumor relative to normal tissues.
Rows represent miRNAs and columns represent samples
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(down-regulated) and miR-660-5p with a FC of 12.8 (up-
regulated) were tested in qRT-PCR to confirm the direc-
tion of effect and relative quantification agreement
between NGS and qRT-PCR. Except for miR-660-5p,
that was up-regulated (Fig. 5a), remaining three miRNAs
were found to be significantly down-regulated in tumor
tissues relative to normal samples. qRT-PCR experi-
ments (Fig. 5b) supported the NGS findings.

Identification of potential targets for miRNAs and their
role in cancer biology
The in-house transcriptome (mRNA) datasets available
for BC were accessed (GEO accession ID GSE22820)
[31] and analyzed for DE of mRNAs from a matched
subset of samples (n = 17). 2,869 genes (mRNAs) were
DE, of which 628 were up-regulated and 2241 were
down-regulated.
A combined total of 4,762 targets were predicted by Tar-

getScan for the 12 miRNAs associated with OS and/or
RFS. Of these, only 698 targets (~15 % of in silico pre-
dicted targets) overlapped with the mRNA expression
dataset. This low percent overlap between in silico and in
situ comparisons is expected when breast tissue specific
expression signatures filtered for histological and molecu-
lar subtypes are used to interrogate the potential interac-
tions between miRNA-mRNA. The profiled interactions
with transcriptome data also serve as an approach for
functional validation of the miRNA targets within breast
tissues and minimize the number of false positive targets
identified. A total of 168 clusters were found and when in-
terrogated for gene ontology (GO) classifications with an
enrichment score (ES) ≥ 1.3, 57 clusters were retained
(Table 6). We identified two targets for miR-574-3p
(DAB2IP and SAMD4A) which did not belong to any
cluster due to limited hits. From the clusters, statistically
significant GO terms (p < 0.05) related to cancer were
identified. Specifically, the following terms were interro-
gated: transcription, blood vessel development, angiogen-
esis, cell growth, cell morphogenesis, cell motion, cell
migration, cell signaling, mammary gland development,
cell differentiation, cell proliferation, cell division and
cytoskeletal organization. Targets of 8 out of 12 miRNAs
(miR-15a-5p, miR-27a-3p, miR-374a-3p, miR-374a-5p,
miR-221-3p, miR-196a-5p, miR-146b-5p and miR-660-5p)
were enriched for any one of the above-mentioned terms
(Additional file 3: Table S2). Targets of miR-574-3p, miR-
425-5p, miR-210-3p and miR-193b-3p were clustered with
an ES ≤ 1.3 when matched miRNA-mRNA data sets were
used and were therefore not probed further. Similar ana-
lysis of identifying targets from DE mRNAs was attempted
using unmatched samples from the same in-house BC
dataset (n = 141). Excellent concordance was observed
between the results (in terms of number of targets identi-
fied, GO terms and clusters) obtained from matched



Table 3 miRNAs significant for recurrence free survival
(Discovery cohort)

A. Case–control approach

miRNA ID Univariate Cox p-value Permuted p-value

hsa-miR-193b-3p 0.09 0.09

hsa-miR-15a-5p 0.08 0.10

B. Case-only approach

miRNA ID Univariate Cox p-value Permuted p-value

hsa-miR-210-3p 0.01 0.02

hsa-miR-425-5p 0.05 0.08

hsa-miR-193b-3p 0.09 0.09

hsa-miR-15a-5p 0.08 0.10

A: 80 miRNAs were differentially expressed with Fold change > 2.0 and FDR cut
off 0.05. All 80 miRNAs were subjected to Univariate Cox proportional hazards
regression and permutation test (n = 10,000) for Recurrence Free Survival (RFS).
Two miRNAs were significant for RFS with permutation p value ≤ 0.1 and were
used for constructing risk score. Univariate Cox p-value is the unpermuted
p-value for Univariate Cox model. B: All the miRNAs (n = 147) retained after
filtering (minimum 10 read counts in at least 90 % samples) in cases were
considered for further analysis. Four miRNAs were significant for RFS with
permuted p-value ≤ 0.1 and were considered for constructing a risk score.
Univariate Cox p-value is the unpermuted p-value for Univariate Cox model

Table 2 miRNAs significant for overall survival (Discovery cohort)

A. Case–control approach

miRNA ID Univariate Cox p-value Permuted p-value

hsa-miR-15a-5p 0.02 0.03

hsa-miR-660-5p 0.03 0.04

hsa-miR-574-3p 0.08 0.07

hsa-miR-27a-3p 0.06 0.07

B. Case-only approach

miRNA ID Univariate Cox p-value Permuted p-value

hsa-miR-210-3p 0.01 0.02

hsa-miR-15a-5p 0.02 0.03

hsa-miR-660-5p 0.03 0.04

hsa-miR-146b-5p 0.04 0.05

hsa-miR-374a-3p 0.04 0.05

hsa-miR-374a-5p 0.04 0.06

hsa-miR-27a-3p 0.06 0.07

hsa-miR-574-3p 0.08 0.07

hsa-miR-221-3p 0.07 0.08

hsa-miR-196a-5p 0.07 0.09

hsa-miR-425-5p 0.05 0.10

A: 80 miRNAs were differentially expressed with Fold change > 2.0 and at a
FDR cut off <0.05. All 80 miRNAs were subjected to Univariate Cox
proportional hazards regression and permutation test (n = 10,000) for Overall
Survival (OS). Four miRNAs were significant for OS and were used to construct
a risk score. Univariate Cox p-value is the unpermuted p-value for Univariate
Cox model. B: All the miRNAs (n = 147) retained after filtering (minimum 10
read counts in at least 90 % samples) in cases were considered for further
analysis. 11 miRNAs were significant for OS with permuted p-value ≤ 0.1 and
were considered for constructing a risk score. Univariate Cox p-value is the
unpermuted p-value for Univariate Cox model
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samples and unmatched samples (data not shown),
indicating that the use of matched or unmatched samples
have no profound impact on the identification of gene
targets for the miRNAs.

Validation of OS-associated miRNAs in an external (TCGA)
dataset
Eleven miRNAs that were significant for OS in the CO
approach were validated using an external dataset (The
Cancer Genome Atlas, TCGA). Risk score was con-
structed using the eleven miRNAs. An optimal cut-off
point was determined using ROC, to group samples into
low (≤ −1.13) and high risk (> −1.13). Risk score which
was considered as a categorical variable was significant
with a p-value of 0.1 after adjusting for tumor stage.
Similar to the discovery set, high risk group had shorter
survival period with a HR of 2.07 (Fig. 6, Table 7).

Discussion
In this study, we identified two miRNAs (miR-574-3p
and miR-660-5p) as potential novel prognostic markers
for BC, associated with OS. They have not been reported
earlier for BC, for their association with either OS or
RFS. Overall, from both the approaches (CC and CO)
adopted for the study, eleven miRNAs and four miRNAs
were significant for OS and RFS, respectively. Out of
the four miRNAs identified for RFS, three miRNAs
(miR-210-3p, miR-425-5p and miR-15a-5p) were also
significant for OS.
In recent years, microRNAs have gained prominence

as valuable prognostic markers for several cancer types,
including BC. Although considerable progress has been
made in this field, clinical application of these miRNAs
as prognostic markers has not yet been possible because
of the generation of different signatures by different
studies with only a small number of overlapping mole-
cules [9]. This discrepancy may be attributed to several
reasons [32], the primary being the use of different pro-
filing platforms. Studies employing hybridization tech-
niques or qRT-PCR panels have generated signatures
based on the available number of miRNAs. While there
are ~2,588 miRNAs identified so far [33], as reported in
the miRBase, only a few hundreds have been captured
on these platforms [18, 34], of which even fewer have
been detected in breast tissues. Therefore, we are
blinded to the prognostic value of other miRNAs from
the larger repertoire. On the other hand, NGS profiling
of the entire miRNAome, including even the less abun-
dant ones, can now be used to probe the larger reper-
toire, which was evident from our study. Approximately,
breast tissue specific miRNAs comprise 55 % (n = 1,423)
of the total miRNAs (n = 2,588 annotated thus far)
and these were captured from the 11 normal breast
tissues and 103 breast tumor tissues used for the



Table 4 Univariate and Multivariate results for overall survival (Discovery cohort)

A. Case–control approach

Parameter Univariate analysis Multivariate analysis

HR (95 % CI) p-value HR (95 % CI) p-value

Risk score 2.44 (1.28 – 4.68) 0.01 2.71 (1.38 – 5.35) 0.004

Tumor stage 0.42 (0.22 – 0.81) 0.01 0.36 (0.18 – 0.74) 0.01

Tumor grade 1.93 (0.99 – 3.75) 0.05

Age at diagnosis 1.05 (1.02 – 1.09) 0.003 1.04 (1.01 – 1.07) 0.02

TNBC status 0.88 (0.43 – 1.77) 0.71

B. Case-only approach

Parameter Univariate analysis Multivariate analysis

HR (95 % CI) p-value HR (95 % CI) p-value

Risk score 2.48 (1.34 – 4.61) 0.004 2.76 (1.47 – 5.19) 0.002

Tumor stage 0.42 (0.22 – 0.81) 0.01 0.37 (0.19 – 0.72) 0.004

Tumor grade 1.93 (0.995 – 3.75) 0.05

Age at diagnosis 1.05 (1.02 – 1.09) 0.003

TNBC status 0.88 (0.43 – 1.77) 0.71

A and B: The four and 11 miRNAs from Table 1A and B respectively were used to construct risk scores. Receiver Operating Characteristics Curve was used to
dichotomize cases into low and high-risk groups. Univariate Cox proportional hazards regression model was run for risk score and for other clinical parameters. In the
multivariate analysis, risk score was significant with p < 0.05 after adjusting for confounders.
HR Hazard Ratio; CI Confidence Interval; TNBC Triple Negative Breast Cancer
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study, which is by far the largest miRNA dataset to be
interrogated for identifying prognostic markers for
BC. It is also one of the largest studies in terms of
number of samples with complete clinical information
sequenced for BC.

Statistical considerations
More often than not, high-throughput techniques suffer
from the problems of high dimensionality (a higher number
of markers but lower number of samples) and collinearity
(correlation between two markers), leading to the generation
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Fig. 3 Kaplan-Meier plots for Overall Survival (Discovery cohort). Kaplan-Me
Case-only approach (b). Log rank test was performed to assess differences
high-risk group had shorter OS in both (a) and (b)
of instable co-efficients in a traditional Cox-proportional
hazards regression model [35]. In such cases, the inclusion
of individual miRNAs to build a model may not yield reli-
able results, whereas considering miRNAs as continuous
variables and constructing risk scores overcomes both these
problems. However, there are two widely used methods (CC
approach and CO approach) to identify miRNAs useful for
constructing a risk score. In a typical CC approach, two
groups are compared to identify DE miRNAs, which are
assessed for their prognostic significance. A CO approach
offers a wider data set for interrogation, allowing a
Low-risk group
4.65

High-risk group
> 4.65

Log rank p-value = 0.0029b

P
ro

ba
bi

lit
y 

of
 O

ve
ra

ll 
Su

rv
iv

al

Survival days from Surgery
ier plots were used to estimate OS in Case–control approach (a) and
in survival between the two risk groups. Patients belonging to the



Table 5 Univariate and multivariate results for recurrence free
survival (Discovery cohort)

A. Case–control approach

Parameter Univariate analysis Multivariate analysis

HR (95 % CI) p-value HR (95 % CI) p-value

Risk score 1.95 (1.16 – 3.29) 0.01 2.27 (1.33 -3.88) 0.003

Tumor stage 0.42 (0.23 – 0.76) 0.01 0.34 (0.18 – 0.65) 0.001

Tumor grade 1.52 (0.88 – 2.63) 0.14

Age at diagnosis 1.02 (0.99 – 1.05) 0.29

TNBC status 0.75 (0.39 – 1.41) 0.37

B. Case-only approach Parameter

Parameter Univariate analysis Multivariate analysis

HR (95 % CI) p-value HR (95 % CI) p-value

Risk score 1.68 (0.99 – 2.82) 0.05 1.85 (1.09 – 3.14) 0.02

Tumor stage 0.42 (0.23 – 0.79) 0.01 0.38 (0.20 – 0.71) 0.003

Tumor grade 1.52 (0.88 – 2.63) 0.14

Age at diagnosis 1.02 (0.99 – 1.05) 0.29

TNBC status 0.75 (0.39 – 1.41) 0.37

A and B: The two and four miRNAs from Table 2A and B respectively were
used to construct risk scores. Receiver Operating Characteristics Curve was
used to dichotomize samples into low and high-risk groups. Univariate Cox
proportional hazards regression model was run for risk score and for other
clinical parameters. In the multivariate analysis, risk score was significant with
p < 0.05 after adjusting for confounders.
HR Hazard Ratio; CI Confidence Interval; TNBC Triple Negative Breast Cancer
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comprehensive understanding of miRNAs. As a proof of
principle, we adopted both the approaches to identify prog-
nostic markers. As expected, higher numbers of miRNAs
were identified as significant in the CO approach. Eleven
miRNAs were significant for OS and four miRNAs were sig-
nificant for RFS in the CO approach as opposed to four and
two miRNAs significant for OS and RFS, respectively, in the
CC method. miR-210-3p, miR-425-5p and miR-15a-5p were
Low-risk group
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High-risk group
> 0.72
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Fig. 4 Kaplan-Meier plots for Recurrence Free Survival (Discovery cohort). K
(a) and Case-only approach (b). Log rank test was performed to assess diffe
the high-risk group had shorter RFS in both (a) and (b)
significant for both OS and RFS. A total of 12 non-
redundant miRNAs were found to play a role in BC
prognosis.
Overall, the differential expression in normal vs. tumor

tissues and direction of effects show excellent agreement
with what is known from published literature, as detailed
below.

Novel prognostic miRNAs for BC
Of the 12 miRNAs identified in this study, two miRNAs
(miR-574-3p and miR-660-5p) are potential novel prognos-
tic markers for BC. Both the miRNAs were DE in a tumor
vs. normal comparison, with miR-574-3p being down-
regulated (FC = −5.8) and miR-660-5p being up-regulated
(FC = 12.8) in the tumor samples. A similar direction of
effect has been observed for miR-574-3p and miR-660-5p
for ovarian cancer [36], colorectal cancer [37] and gastric
cancer [38]; and chronic lymphocytic leukemia [39],
respectively. However, this is the first report of a potential
prognostic role for these miRNAs in BC, although mechan-
istic insights are required to understand their contribution
to tumorigenesis.

miRNAs with dual roles as tumor suppressor and
oncogene
In our study, miR-15a-5p was found to be up-regulated in
breast tissues (FC = 12.16) and the same direction of
expression was observed in Kaposi sarcoma [40] and
papillary thyroid carcinomas [41]. However, in other cancer
types such as colorectal cancer [42], non-small-cell lung
cancer (NSCLC) [43] and pituitary tumors [44], it is
expressed in the opposite direction (down-regulation).
Amongst BC reports, Kodahl et al. have reported an
up-regulation of this miRNA [45], and a recent report by
Shinden et al. has shown miR-15a as an independent
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aplan-Meier plots were used to estimate RFS in Case–control approach
rences in survival between the two risk groups. Patients belonging to
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obtained in NGS platform. miR-574-3p and miR-660-5p were also found to be associated with Overall Survival
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prognostic marker for BC [46]. Similarly, miR-27a-3p,
which was found to be up-regulated in tumors (FC = 6.45)
in our study, is in accordance with the direction of expres-
sion observed in pancreatic cancer [47] and glioma [48].
Tang et al. have also reported miR-27a to be an oncomiR,
the high expression of which promotes breast tumor
growth and metastasis and is associated with poor OS in
BC patients [49]. However, it is down-regulated in bladder
cancer, compared with the normal samples [50]. The obser-
vations on miR-15a-5p and miR-27a-3p point to the dual
roles of an oncogene and a tumor suppressor and their
relative role may be governed in a tissue-specific manner.
Table 6 Identification of mRNA targets for miRNAs significant for OS

miRNA ID Target Identification

Number of mRNA targets
identified from TargetScan

Number of predicte
with mRNA express

hsa-miR-15a-5p 1275 181

hsa-miR-27a-3p 1212 183

hsa-miR-193b-3p 222 30

hsa-miR-574-3p 13 2

hsa-miR-660-5p 149 25

hsa-miR-210-3p 32 6

hsa-miR-146b-5p 226 31

hsa-miR-374a-3p;
hsa-miR-374a-5p

680 110

hsa-miR-221-3p 446 60

hsa-miR-196a-5p 295 46

hsa-miR-425-5p 212 24

Gene targets for 12 miRNAs significant in survival analysis were identified using in s
matched expression dataset (n = 17). Gene ontology terms were identified for mRN
annotation clusters with Enrichment Score (ES) ≥ 1.3 were considered. However, no c
and miR-425-5p
miRNAs as oncogenes
We observed high expression (FC = 1.98) of miR-425-5p in
breast tumors compared to the normal samples, which is
concordant with the results published by Kodahl et al. for
BC [45]. Likewise, Peng et al. have also observed the
oncogenic function of miR-425, which promotes cell prolif-
eration, cell cycle progression, migration and invasion in
gastric cancer [51].
Up-regulation of miR-146b in tumors and its adverse

effect on survival has been demonstrated in lung cancer
[52, 53], thyroid carcinoma [54] and prostate cancer [55],
among other cancer types. Interestingly, miR-146b-5p has
and/or RFS

Gene Ontology

d targets overlapping
ion dataset

Total number of
annotation clusters

Number of clusters
with enrichment
score≥ 1.3

48 15

47 13

4 0

0 0

2 1

1 0

4 1

22 9

25 13

13 5

2 0

ilico prediction (TargetScan) and were confirmed with in-house mRNA-miRNA
As overlapping with in-house dataset using DAVID bioinformatics tool. Only
luster with ES≥ 1.3 could be identified for miR-193b-3p, miR-574-3p, miR-210-3p
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also been reported to be up-regulated in BC, which is in
accordance with our results (FC = 1.42) and is known
to repress BRCA1 expression, thereby promoting cell
proliferation [56].
miR-221 is a widely studied oncogene whose high

expression is invariably associated with poor outcomes
in several cancer types [57–59], including BC [60]. We
also report the same direction of expression in tumor
tissues with a FC of 1.27.
Cell proliferation, migration, invasion and metastasis

have been found to be promoted in BC [61–63], glio-
blastoma [64, 65], head and neck cancer [66] and gastric
cancer [67, 68] due to high expressions of miR-210,
Table 7 Univariate and multivariate results for overall survival
(External Validation cohort/TCGA)

Parameter Univariate analysis Multivariate analysis

HR (95 % CI) p-value HR (95 % CI) p-value

Risk score 2.16 (0.92 – 5.05) 0.08 2.07 (0.87 – 4.92) 0.101

Tumor stage 0.32 (0.13 – 0.78) 0.01 0.26 (0.1 – 0.67) 0.005

Age at
diagnosis

1.03 (1.003 – 1.06) 0.03

TNBC status 0.63 (0.19 – 2.12) 0.46

The eleven miRNAs identified as significant for OS in CO approach from the
discovery set was validated using TCGA dataset. Risk score was constructed
using the 11 miRNAs and an optimal cut-off point was estimated using
Receiver Operating Characteristics Curve, which dichotomized the samples
into low and high-risk groups. Univariate Cox proportional hazards regression
model was run for risk score and for other clinical parameters. In the
multivariate analysis, risk score was significant with p = 0.1 after adjusting for
tumor stage.
HR Hazard Ratio; CI Confidence Interval; TNBC Triple Negative Breast Cancer
miR-196a and miR-374a (including miR-374a-3p and -5p),
demonstrating their oncogenic potential. Their role as
prognostic markers has also been studied in the above-
mentioned cancer types. We were able to identify their
prognostic significance following the CO approach, and
these findings could have been missed if only the CC ap-
proach had been used. The read counts of the two groups
(normal and tumor) revealed that these miRNAs were in-
deed present in higher amounts in tumors relative to the
normal samples; the average read counts of miR-210-3p,
miR-196a-5p, miR-374a-3p and miR-374a-5p in the nor-
mal samples were 2.5, 9.2, 0.7 and 1.09 respectively as
against 59.7, 307.6, 46.1 and 108.9 for the tumor group.
The lower read counts in normal samples have limited
our ability to consider them in a CC study due to our
stringent filtering criteria. Overall, the patterns of DE and
prognostic significance for the above miRNAs mirror ob-
servations from other cancer types.
miRNAs as tumor suppressors
In our study, apart from miR-574-3p, miR-193b-3p was
also found to be down-regulated (FC = −4.3) in tumors
compared to normal samples, which is in agreement
with the studies on endometrioid adenocarcinoma [69],
pancreatic cancer [70], oesophageal cancer [71] and gas-
tric cancer [68]. Even in BC, Li et al. have reported a
down-regulation of miR-193b in BC cell lines, and the
low expression of miR-193b was found to be associated
with shorter disease-free survival [72].
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Functional roles of the identified prognostic miRNAs
The prognostic significance for recurrence or survival of
an associated miRNA is better appreciated from the as-
pect of potential functional impact on cellular signaling
and metabolic pathways, as these contribute to cell death,
invasion and overall outcomes for the patient. Apart from
functional insights, the potential for development of thera-
peutics is also important. Keeping these factors in mind,
the following discussion is focused on the delineation of
pathways using GO terms that are specifically enriched by
the identified prognostic miRNAs.
Databases such as TargetScan, miRanda (http://

www.microrna.org/) and PicTar (http://pictar.mdc-ber-
lin.de/) have predicted mRNA targets, but a validation of
the predicted targets adds more credence to in silico pre-
dictions. To this end, we first predicted the targets for all
12 miRNAs using the commonly used database - TargetS-
can; these were then compared with DE mRNAs obtained
from the in-house BC transcriptome dataset. GO terms
were identified with a specific focus on terms pertaining
to hallmarks of cancer. Interestingly, targets of eight miR-
NAs were found to be relevant for cell growth and devel-
opment, indicating that these miRNAs may play key roles
in tumorigenesis. Two targets (DAB2IP and SAMD4A)
were found for miR-574-3p, of which DAB2IP is involved
in apoptosis [73], cell survival [74], among other functions
and SAMD4A functions as a translational regulator [75].

Validation of the identified signatures
In a biomarker study, a validation of the findings across
different platforms is critical to rule out technical arti-
facts. Four miRNAs exhibiting different FC (lowest FC
being −1.3) were validated using qRT-PCR, with two of
the representative miRNAs identified as significant in
survival analysis. The validation of representative miR-
NAs confirms cross-platform concordance and the rela-
tive utility of the signatures identified. However,
validations using independent cohorts are also crucial
for a biomarker study as they facilitate inter-study con-
cordance of expression trends and signatures. NGS data
for BC with a larger sample size and complete clinical
information are limited in the public domain. We used
the available data from TCGA project and applied strin-
gent filtering criteria to obtain a dataset that would be
comparable to the discovery set. A total of eleven miR-
NAs which were found to be associated with OS from
the CO approach were considered for validation using
the TCGA dataset. TCGA samples were sequenced using
Illumina Genome analyzer and Illumina HiSeq plat-
forms. However, all samples were not sequenced on a
single platform limiting the analysis and comparisons.
Although our discovery set of samples were sequenced
using the Illumina Genome analyzer, the number of
samples with events (deaths, n = 8) on this platform were
limited for the data from TCGA. Therefore, we consid-
ered samples sequenced using Illumina HiSeq with suffi-
cient follow-up and events (deaths, n = 27). Due to the
fact that NGS platform specific differences in read
counts may potentially influence the risk scores we did
not adopt the risk scores and cut-off points generated in
discovery set. We therefore generated a new risk score
for the validation set and an optimal cut-off point was
estimated to dichotomize the samples into low and high
risk groups. Multivariate analysis revealed that the risk
score was significant with p = 0.1 after adjusting for
tumor stage. TCGA dataset lacks information on tumor
grade. However, tumor grade did not influence the
multivariate analysis even in the discovery set. Therefore
we reasoned that lack of information on grade in the
TCGA data set would not have influenced the study
findings. Although for our initial analysis using discovery
set we considered p < 0.05 as nominal, the TCGA dataset
did not meet this threshold, presumably due to modest
sample size (n = 84) and events (n = 27) compared to the
discovery set (sample size, n = 104 and events, n = 46).
Nevertheless, we still observed the same direction of effect
(Hazard Ratio), i.e., patients belonging to the high-risk
group was associated with shorter survival period and this
validates our initial observations from the discovery set.
Several differences existed between the discovery and

validation datasets: (i) the NGS platform for discovery
set was Genome Analyzer IIx where as for the validation
set was HiSeq; (ii) the risk score cut-off point were esti-
mated individually due to NGS platform differences; (iii)
TCGA samples considered for this study were fresh fro-
zen breast cancer tissues whereas the discovery set of
breast cancer tissues were from FFPE blocks, (iv) infor-
mation on tumor grade was not available for TCGA
samples and (v) percent cellularity differences were also
noted between the discovery and validation cohorts (see
methods). However, despite these differences and other
characteristics (Table 1), we could demonstrate the
trends in the direction of effects (Hazard Ratio) in both
the discovery and validation cohorts. The apparent lack
of statistical significance (defined nominal value of 0.05)
in the OS analysis attempted with TCGA data may be
due to the limited sample size and limited number of
events in the validation set affecting the power. Further
validation of findings is warranted using independent co-
horts and higher sample size and events. Overall, we re-
port two novel miRNAs as potential prognostic markers
for breast cancer. Remaining miRNAs reported in this
study showed excellent concordance to the published re-
ports for their role in BC prognosis.

Conclusions
In summary, we identified a total of twelve non-
redundant miRNAs associated with OS and/or RFS. As

http://www.microrna.org/
http://www.microrna.org/
http://pictar.mdc-berlin.de/
http://pictar.mdc-berlin.de/
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explained above, ten of the identified miRNAs have been
reported in literature as associated with BC prognosis
and lends support to the findings in this independent
study. However, two miRNAs (miR-574-3p and miR-
660-5p) have not been reported previously for BC prog-
nosis. The use of NGS platform to profile miRNAs on a
whole genome level in BC has been limited thus far in
literature and the data provided complements such ef-
forts towards a comprehensive search for biomarkers.
The miRNAs reported for OS have also been validated
in independent dataset (TCGA) and functional
characterization may help to understand the complex
interplay of miRNA mediated gene regulation.
Overall, despite the increasing feasibility of profiling

miRNAs and their role in prognostication, mechanistic
insights in to the role of miRNAs, establishing gold
standard approaches for analysis, and confirmation of
these findings by independent laboratories within the
context of confounding variables (histological and mo-
lecular heterogeneity, stage, grade and treatment) are
needed to advance these promising biomarkers into clin-
ical validation.
There is also a growing body of evidence that other

small non-coding RNAs such as tRNAs [76], snoRNAs
[77] and piRNAs [78] may contribute to tumorigenesis;
however their role in BC prognosis is an area of active in-
vestigation. Therefore, a deeper exploration of their roles
may pave the way for a comprehensive understanding of
the small non-coding RNA classes, aiding in the discovery
of newer diagnostic and prognostic biomarkers for BC.

Methods
Discovery cohort
One hundred and four breast tumor samples (belonging
to the invasive ductal carcinoma histological subtype),
along with complete clinicopathological characteristics
(Table 1), were accessed from the Alberta Cancer Re-
search Biobank/Canadian Breast Cancer Foundation
(CBCF) tumor bank (http://www.acrb.ca/). All of the
samples sequenced were non-metastatic (M0) at the
time of diagnosis except one, with metastatic cancer
(M1) at the time of presentation. Of the 104 patients, 25
were treated with either standard chemotherapeutic
drugs (neoadjuvant) or had undergone radiotherapy be-
fore tumor resection and 79 were given adjuvant therapy,
and were treated predominantly with a polychemotherapy
regimen of Taxotere, Adriamycin and Cyclophosphamide
(TAC, n = 57). Despite standard care of therapy, 61 pa-
tients experienced recurrence and 43 did not; 46 patients
had died and 58 were alive at the time of completion of
this study. The median age was 50 (Range: 24–79) years
and the median follow-up period was 2927.5 (Range: 170
– 6,125) days from the date of diagnosis (between years
1996 and 2008) till January 2015. Patients were further
classified into different subtypes based on the presence or
absence of immunohistochemical markers such as ER,
progesterone receptor (PR) and HER2. Most of the sam-
ples (n = 62) belonged to Luminal A subtype with ER posi-
tive or PR positive and HER2 negative disease. Thirty
samples were negative for ER, PR and HER2 based on im-
munohistochemical staining score and were classified as
Triple Negative breast cancer (TNBC). Ten samples were
positive for ER/PR and HER2 staining and were grouped
into Luminal HER2 subtype. Two samples were positive
for ER and PR (HER2 unknown), but the overall grade
was high, and these were grouped into Luminal B subtype,
as described earlier [79–81]. All the BC tissues were ar-
chived as Formalin Fixed Paraffin-Embedded (FFPE) tissue
blocks. All of the samples considered for profiling of miR-
NAs showed ≥ 70 % tumor cells. The percent distribution
of tumor cells in samples were as follows: 70 % (n = 7),
80 - 90 % (n = 13), 90 % (n = 24), 95 % (n = 35) and
100 % (n = 25). Eleven apparently normal breast tissues
(confirmed by the pathologist to be free of malignancy,
based on the absence of morphological and histological
anomalies) were obtained from reduction mammoplasty
surgery and were preserved as Fresh Frozen (FF) tissues.
We estimated the number of samples needed to detect

statistically significant differences for the measured tran-
scripts between cases and controls in the current study
(http://bioinformatics.mdanderson.org/MicroarraySample
Size/ and http://linus.nci.nih.gov/brb/samplesize/) [82, 83].
The following parameters were considered to estimate the
sample sizes: α = 0.05, β = 80 % and a fold difference of 2
or more in miRNA expression. Under these conditions,
we needed at least 8–11 samples in each group (controls
and cases). Our study design included 11 control samples
and 104 cases, thus meeting the statistical rigor needed to
interpret the data with confidence. Informed consent was
obtained from all the patients and the study was approved
by the local Institutional Research Ethics committee
(Health Research Ethics board of Alberta- Cancer
Committee).

Total RNA isolation for small RNA sequencing
Briefly, FF tissues were homogenized using TRIzol (Invi-
trogen) and total RNA was isolated using Qiagen RNeasy
kit according to manufacturers' instructions. Total RNA
from FFPE blocks was isolated using the RecoverAll Total
Nucleic Acid Isolation Kit (Life Technologies). RNA qual-
ity and quantity were analyzed with Bioanalyzer 2100 and
RNA Nano Chips (Agilent Technologies). We have
followed RNA extraction protocols that have previously
been optimized for FF and FFPE tissues wherein the use
of different extraction protocols in a comparative miRNA
study was shown to result in expression profiles that are
highly reproducible and strongly correlated between FF
and FFPE tissue types [24, 84].

http://www.acrb.ca/
http://bioinformatics.mdanderson.org/MicroarraySampleSize/
http://bioinformatics.mdanderson.org/MicroarraySampleSize/
http://linus.nci.nih.gov/brb/samplesize/
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Small RNA library preparation, sequencing and
generation of .bam files
Services from PlantBiosis Ltd (Lethbridge, Alberta,
Canada; http://www.plantbiosis.com/) were utilized for
the preparation of small RNA libraries and for the gen-
eration of .bam files. Small RNAs were sequenced using
TruSeq Small RNA Sequencing Kit (Illumina), TruSeq
SR Cluster Kit v5-CS-GA (Illumina) and TruSeq SBS Kit
v5-GA (Illumina) according to manufacturer’s instructions.
All the samples were sequenced on Illumina Genome
Analyzer IIx with 36-cycle single-end protocol. Base call-
ing and demultiplexing were done using CASAVA 1.8.2
with default settings, followed by trimming of adapters
using CutAdapt software (http://code.google.com/p/cuta
dapt/). Options were given to retain sequences longer than
17 nucleotides. Quality trimming was performed to retain
only reads with a Sanger quality score cut-off of 30. The
quality of the sequenced reads after adapter trimming was
assessed using FASTQC software (http://www.bioinforma
tics.babraham.ac.uk/projects/fastqc/). One tumor sample
was not processed further due to poor quality and was
therefore excluded, leaving 103 tumor samples for further
analysis. Trimmed sequences were then aligned to the ref-
erence genome using Bowtie [85] and were allowed a max-
imum of two mismatches. Human hg19 genomic assembly
(UCSC), downloaded from Illumina iGenome repository
was used as a reference for mapping. Aligned sequences
were saved as .sam files, converted to more memory effi-
cient .bam files and sorted by genomic position. Sequen-
cing data and the normalized data for miRNAs were
submitted to Gene Expression Omnibus (GEO accession
ID GSE68085).
Analysis of .bam files and identification of differentially
expressed miRNAs
The .bam files of 11 FF and 103 FFPE tissues were
imported into in-house Partek Genomics Suite 6.6 (PGS)
software for further analysis (Partek® Genomics Suite
software, Version 6.6 beta, Copyright © 2009 Partek Inc.,
St. Louis, MO, USA). They were mapped to known ma-
ture miRNAs using miRBase V20. miRNAs were first fil-
tered to retain only those with a minimum of 10 read
counts in at least 90 % of the samples (normal and tumor).
Reads per kilobase per million method (RPKM) was used
for normalization [86], followed by batch effects correc-
tion using the ANOVA model. Principal Component Ana-
lysis (PCA) using batch-effects-corrected raw counts was
used to identify potential sample outliers. Subsequently,
differentially expressed (DE) miRNAs with a fold change
(FC) >2.0 and a False Discovery Rate (FDR) cut-off of 0.05
were identified using one-way ANOVA from batch-
effects-corrected and filtered normalized counts (after re-
moving sample outliers).
Statistical considerations for the identification of miRNAs
as prognostic markers for BC
Case–control approach (CC): miRNAs were filtered to
retain only those with a minimum of 10 read counts in
at least 90 % of the tumor and normal samples. Consid-
ered as continuous variables, DE miRNAs were sub-
jected to univariate Cox proportional hazards regression
model with permutation test (n = 10,000), using the R
statistical program (‘glmperm’ package) for both OS and
RFS. OS and RFS were calculated from the date of diag-
nosis until an event occurred (death and relapse, re-
spectively). Further statistical analyses were done using
SAS (SAS institute Inc., Cary, NC) Version 9.3. For all
the statistical analyses except permutation test, p < 0.05
was considered to be statistically significant. The risk
score for each sample was constructed for OS and RFS
separately, using miRNAs significant in the permutation
test (p ≤ 0.1) for OS and RFS. Risk score is a summation
obtained by multiplying the expression values of each
miRNA with its corresponding co-efficient [18]. In order
to dichotomize the cases into low- and high-risk groups,
Receiver Operating Characteristic (ROC) curve was used
to determine the optimal cut-off point. Kaplan-Meier
plots were constructed to estimate the median survival
function, and log-rank tests were performed to compare
the survival curves of the two survival groups (low- and
high-risk groups). Furthermore, multivariate Cox pro-
portional hazards regression model was employed to
investigate whether the risk score was a potential inde-
pendent prognostic factor after accounting for the fol-
lowing variables: age at diagnosis (continuous), tumor
stage (I, II vs. III, IV), tumor grade (High vs. Low) and
TNBC status (Triple Negative vs. Luminal). Luminal A,
Luminal B and Luminal HER2 were grouped as Luminal.
Hazard ratio (HR) and their corresponding 95 % confi-
dence interval (CI) were reported for the univariate and
multivariate Cox’ regression model.
Case-only approach (CO): miRNAs were filtered to re-

tain only those with a minimum of 10 read counts in at
least 90 % of the tumor samples. The filtered list of miR-
NAs was subjected to univariate analysis (with permuta-
tion test), risk score computation and multivariate tests,
similar to the case–control approach.
Survival analysis for case–control and case only ap-

proaches was performed using only the outcome data
from tumor samples. The overall workflow of the study
is depicted in Fig. 1.

qRT-PCR validation of select miRNAs
We have validated three down-regulated miRNAs whose
FC ranged from −1.3 to −5.8 and one miRNA which was
found to be up-regulated (FC = 12.8), using samples for
which RNA was available following NGS. This was done
to exemplify the dynamic range of detection and

http://www.plantbiosis.com/
http://code.google.com/p/cutadapt/
http://code.google.com/p/cutadapt/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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concordance between NGS and qRT-PCR. This analysis
included two representative miRNAs (miR-574-3p and
miR-660-5p) that were identified to be of prognostic
value and considered as novel in BC. miR-99b-5p (FC =
−2.3), miR-574-3p (FC = −5.8), miR-769-5p (FC = −1.3)
and miR-660-5p (FC = 12.8) were validated using miS-
cript II RT kit (QIAGEN), miScript SYBR Green PCR kit
(QIAGEN) and their corresponding miScript Primer
Assays according to manufacturers' instructions. All
assays were performed in triplicates and human RNU6-2
(QIAGEN) served as the loading control. Fold-expression
changes of miRNAs were calculated using the 2-ΔΔCt

method [87].

Breast tumor transcriptome analysis (mRNA) and
identification of targets for miRNAs
Messenger RNA (mRNA) expression datasets generated
previously (GEO accession ID GSE22820) using Agilent
microarray platform were available in-house for 176
tumor samples and 10 normal (reduction mammoplasty)
samples. Of these, all the normal samples (n = 10) and
17 tumor samples matching with our discovery cohort
were selected for analysis. Raw intensity values were
Quantile normalized and log 2 transformed, and one-
way ANOVA was performed to identify DE genes with
FC > 2.0 and FDR cut-off of 0.05 (PGS 6.6).
mRNA targets for miRNAs associated with OS and

RFS were first predicted in silico using TargetScan data-
base (Version 6.2) (http://www.targetscan.org/). The tar-
gets thus obtained were overlapped with DE mRNAs
generated from the in-house dataset. The benefit of
using mRNA datasets from breast tissues is that they act
as a proxy to the functional validation of mRNA targets
identified by the in silico prediction algorithm. The iden-
tification of targets was not restricted to those exhibiting
inverse relationships with miRNAs, but any correlation
of miRNA to mRNA was captured since the miRNA-
mRNA interactions are more complex. Gene ontology
(GO) terms were identified for targets of every miRNA
separately using DAVID bioinformatics tools v6.7
(http://david.abcc.ncifcrf.gov/) [88]. Only clusters with
enrichment scores (ES) ≥ 1.3 [88] were used to identify
specific GO terms related to cancer with p < 0.05.

External validation cohort
A total of 1,088 BC cases were available in The Cancer
Genome Atlas (TCGA) and samples were filtered based
on the following criteria: (i) female patients, (ii) no his-
tory of other malignancy, (iii) samples with no metasta-
sis at the time of diagnosis, (iv) samples from non
Caucasian subjects were removed (self declared ethni-
city) and (v) invasive ductal carcinoma. A total of 479
samples were retained after filtering for the above cri-
teria and subtype classification data based on the
receptor status is available for 332 samples:203 Luminal
A, 58 Luminal B, 52 TNBC and 19 HER2+. Of the 332
samples, information on tumor stage was available for
328 samples. TCGA dataset has samples sequenced in
Illumina Genome analyzer and in Illumina HiSeq. Of the
328 samples, 156 were sequenced using the former
whereas 172 were sequenced using the latter. Only sam-
ples sequenced using Illumina HiSeq were considered
for this study as the number of samples with events
(deaths) were higher in this subset. Since the discovery
set did not have Her2+ subtype, we did not consider
these samples from the TCGA dataset as well leaving the
sample size at 162. We considered a follow up period
of > 3 years for patients who were alive based on our
previous work to define the minimum follow-up period
[81] for recurrence or survival analysis. Overall, a total
of 84 samples (with 27 events and 57 patients who were
alive) were retained for survival analysis (Table 1). The
percent distribution of tumor cells (cellularity) in TCGA
dataset were as follows: (i) 30 – 50 % = 14, (ii) 55 –
70 % = 19 and (iii) 75 – 100 % = 50. One sample did not
have any information on tumor cellularity. Compared
to the TCGA samples, our discovery cohort had all 104
samples at >70 % cellularity and these differences along
with NGS platforms utilized for different cohorts
should be taken in to account for finer interpretations
of the data.
We analyzed .bam files of 84 samples using PGS and

were normalized using RPKM method. The normalized
counts were adjusted for confounders such as Batch ID,
plate ID and Tissue source site (data not shown). Nor-
malized counts for the eleven miRNAs which were sig-
nificant for OS in CO approach were extracted for
constructing the risk score and an optimal cut-off point
was determined using ROC. The new risk score was sub-
jected to univariate and multivariate Cox proportional
hazards regression model and was adjusted for tumor
stage, age at diagnosis and TNBC status. Since the infor-
mation on recurrence was not available or was limited,
we did not consider validation of miRNAs identified for
RFS.
Additional files

Additional file 1: Figure S1. Batch effects correction. Description: 104
tumor and 11 normal samples were sequenced in different batches.
ANOVA model was used to capture the different sources of variation. All
the factors having a mean F ratio above the mean F ratio of the error bar
has to be corrected for (Figure S1a). Since normal and tumor tissues are
sources of biological variation, the tissue factor was not corrected for and
only batch (being a technical variation) was corrected for. The value of 0
for the factor batch in Figure S1b indicates that the data has been
adjusted for batch effects (implemented in Partek Genomics Suite 6.6; see
methods). Tissue = Normal and Tumor tissue; Batch = Different batches in
which the samples were sequenced. (PDF 39 kb)

http://www.targetscan.org/
http://david.abcc.ncifcrf.gov/
http://www.biomedcentral.com/content/supplementary/s12864-015-1899-0-s1.pdf
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Additional file 2: Table S1. Differentially expressed miRNAs.
Description: miRNAs were profiled from apparently healthy normal
(n = 11) reduction mammoplasty breast tissues and breast tumor tissues
(n = 104). RNAs were filtered for low read counts (minimum 10 read
counts in at least 90 % of the samples). Following batch effects
correction, sample outlier removal and RPKM normalization, differentially
expressed RNAs with fold change > 2.0 and a false discovery rate
(FDR) < 0.05 were identified. (PDF 63 kb)

Additional file 3: Table S2. Gene ontology terms and associated
genes. The identified miRNAs significant for OS and RFS (n = 12) from
both the approaches were interrogated for mRNA targets, followed by
identification of Gene ontology terms. Eight out of the 12 miRNAs had
targets involved in cell growth and development (p < 0.05). (PDF 102 kb)
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