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Artificial agents are on their way to interact with us daily. Thus, the design of embodied
artificial agents that can easily cooperate with humans is crucial for their deployment in
social scenarios. Endowing artificial agents with human-like behavior may boost
individuals’ engagement during the interaction. We tested this hypothesis in two
screen-based experiments. In the first one, we compared attentional engagement
displayed by participants while they observed the same set of behaviors displayed by
an avatar of a humanoid robot and a human. In the second experiment, we assessed the
individuals’ tendency to attribute anthropomorphic traits towards the same agents
displaying the same behaviors. The results of both experiments suggest that
individuals need less effort to process and interpret an artificial agent’s behavior when
it closely resembles one of a human being. Our results support the idea that including
subtle hints of human-likeness in artificial agents’ behaviors would ease the
communication between them and the human counterpart during interactive scenarios.

Keywords: humanoid robot, attentional engagement, intentional stance, mindreading, eye movements

GENERAL INTRODUCTION

“Deep,” “sparkling,” “expressive,” “curious,” “sad”: these are only a few of the adjectives that we can
use to describe someone’s eyes. Some writers even referred to this sense as the window to the soul,
as it can provide information related to others’ mental states, emotions, and intentions (Vaidya
et al., 2014). Indeed, every one of us has experienced the feeling to resonate with someone else just
at first glance, by making eye contact. If we think about our everyday life, for example, it may
happen that we meet a stranger and we immediately understand whether he is sad or happy, just by
the look in his eyes (Lee and Anderson, 2017). Neurotypical individuals are usually quite sensitive
to the information conveyed by the eyes and are relatively proficient in inferring other agents’
mental states using such a limited source of information (Baron-Cohen et al., 2001). For example,
when engaged in a joint action with another person, like moving a heavy object, people are
spontaneously inclined to monitor the partner’s eyes to infer his/her mental states (Huang et al.,
2015).

The relevance of the ability to “read”mental states through the eyes has been widely studied in the
literature. A number of studies demonstrated that understanding another agent’s gaze direction and
pattern could be crucial to accomplish a joint task. For example, gaze can cue attention towards an
intended object (Sebanz et al., 2006), it can signal interest in an event happening in the environment
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(Meyer et al., 1998), and even anticipate motor actions
(Johansson et al., 2001). Indeed the ability to understand
such cues is fundamental in social environments
(Butterworth, 1991).

Thousands of years of social interaction contributed to the
development of this ability (Hauser, 1996; Scott-Phillips, 2010), to
the point that people appear to notice gaze cues even when the
agent that is displaying them is artificial (Fiore et al., 2013). This
may be due to the spontaneous adoption of cognitive strategies
that are similar to those involved in interpreting human-like
behaviors displayed by non-human agents (Chaminade et al.,
2012). Indeed, behavioral cues that remind of human beings seem
to elicit the adoption of such strategies (Abubshait and Wiese,
2017). In particular, past research showed that when artificial
agents display behaviors reminiscent of humans, it is likely that
individuals ascribe a mind to them (Heider and Simmel, 1944;
Abell et al., 2000; Castelli et al., 2000). Also, artificial agents that
can express “emotions” at the behavioral level (for example, with
facial and bodily expressions) are often rated as more intentional,
likable, and human-like than non-expressive ones (for a review,
see Hortensius et al., 2018). Even the likelihood that artificial
agents are perceived as social partners depends upon their ability
to create the “illusion” of possessing intentions and mental states
(Wiese et al., 2017).

We speculate that endowing subtle hints of human-likeness in
the behaviors displayed by an artificial agent, such as gaze
patterns and eye-movements, promotes the implicit association
between that agent’s behavior and the behaviors individuals
experience during everyday interactions (Banks, 2019). Indeed,
even the tendency to attribute a mind towards an artificial agent
increases linearly with its perceived human-likeness (Krach et al.,
2008). Therefore, equipping artificial agents with a gaze
repertoire that is typical of human beings may create the
impression that the behavior they display is motivated by
mental states and intentions and, consequently, facilitate
social attunement1 (Wiese et al., 2017). As a cascade effect,
this impression would facilitate the understanding of the
behaviors that the artificial agent displays and would increase
the chance of attributing anthropomorphic traits to the agent.
Understanding how these spontaneous associations work would
provide useful insights for artificial agents’ developers, and
smoothen the inclusion of artificial agents in contexts where
the interaction between technology and humans is required
(Dautenhahn, 2007).

However, most past research assessed individuals’ perception
of anthropomorphism and human-likeness relying mainly on
explicit measures (i.e., interviews, questionnaires, self-report
scales, etc.) (Loth, 2017). If the final aim is to boost social
interaction with artificial agents, qualitative measures collected
after the interaction happened might be not suitable to assess the
easiness of the interaction. After the interaction, participants
report only mental processes that gained access to explicit

cognition, while many processes that occur at the implicit
level are crucial for the quality of social interaction.
Furthermore, judging one’s mental status may follow a
qualitative rather than quantitative pattern (i.e., either one
ascribes a mind to the agent or does not), which cannot allow
for firm conclusions about the mental processes involved while
the interaction is happening (Abubshait and Wiese, 2017). Given
the importance that gaze has for mindreading (Calder et al.,
2002), it would be pivotal to isolate social cognitive mechanisms
that are affected by gaze patterns when individuals observe the
behavior of artificial agents. Thus, it is fundamental 1) to validate
appropriate methods that allow for the evaluation of
individuals’ perceptual and attentional processes during the
interaction or observation of an artificial agent, and 2) to go
beyond explicit attributions of likeability or anthropomorphism
(Loth, 2017). Previous research showed, for example, that
biologically plausible eye movements displayed by an
artificial agent engage an individual’s attention more than
mechanistic movements at an implicit, but not explicit level
(Ghiglino et al., 2020a). In their study, Ghiglino et al. (2020a),
systematically manipulated control parameters of a humanoid
robot’s eye movements, to make the robot look more human-
like or more mechanistic. By combining participants’ subjective
reports with more implicit measures (i.e., eye-tracking metrics),
the authors found that the human-like behavior elicited a higher
attentional engagement. However, subjective reports were only
partially sensitive to the subtle hints of human-likeness
displayed by the artificial agent.

Following this line, it is important to explore whether
individuals display the same perceptual and attentional
mechanisms when processing the behavior of an artificial
agent compared to that of a natural agent. By finding ways to
analyze systematically attentional and perceptual discrepancies in
observing natural and artificial agents, researchers would also be
given reliable tools to assess the quality of interactions.
Importantly, this approach would grant the possibility to
assess mental processes that happen during the interaction,
while processing various behaviors of an agent. The present
study combines qualitative and quantitative measures,
investigating the attentional engagement elicited by natural
and artificial agents. Given the aforementioned evidence
related to the importance of gaze communication, we decided
for the current work to focus solely on eye movements. Thus, to
investigate the role of human-like eye movements, we designed
two screen-based experiments. Specifically, we explored
attentional engagement towards a humanoid and towards a
human avatar displaying the same behaviors, which could be
either human-like or mechanistic. In the first experiment, we
focused on implicit engagement (i.e., attentional focus, decision
times) displayed by individuals while observing the behaviors of
the two agents. In the second experiment, we explored
individuals’ explicit attribution of anthropomorphism towards
the robot and the human displaying the same behavior (self-
report scales). Finally, we compared the results of both
experiments, to understand whether subtle hints of human-
likeness affect only implicit processing as well as explicit
attribution of anthropomorphic traits.

1This is meant to facilitate communication in contexts where it is necessary to do so
(i.e., healthcare application, such as motivating individuals to take medications),
and not to deceive individuals about the nature of artificial agents.
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MATERIAL AND
METHODS—EXPERIMENT 1

Our first experiment investigated whether the appearance of the
agent (natural vs. artificial), the behavior displayed by the agent
(seemingly intentional vs. mechanistic), and the context in
which the agent is acting (congruent or incongruent with the
behavior) modulate spontaneous attentional engagement,
during the observation of other agents involved in a task. As
a secondary aim, we explored whether these factors affected the
ability to recognize an agent’s behavior during a decision-
making task.

Participants
Fifty-three participants were recruited for this experiment (mean
age � 25.2 years SD � 5.0, 37 females). All participants reported
normal or corrected-to-normal vision and no history of
psychiatric or neurological diagnosis, substance abuse, or
psychiatric medication. Our experimental protocols followed
the ethical standards laid down in the Declaration of Helsinki
and were approved by the local Ethics Committee (Comitato
Etico Regione Liguria). All participants provided written
informed consent to participate in the experiment.

Due to a technical problem with the eye-tracker, we excluded
twenty-one participants from data analyses (more than 30% of
their data were corrupted). Excluded subjects were all individuals
with corrected-to-normal vision wearing glasses or corrective
lenses. Despite passing the calibration procedure successfully, a
large portion of their eye-tracking data was not recorded.
Therefore, our final sample consisted of thirty-two participants
(mean age � 24.5 years ±3.63, 22 females).

Experimental Design
Stimuli
To address the aims of our first experiment, we filmed the face of a
human actor while he was either actively reading a text on a
monitor located in front of him (“intentional,” highly variable
behavior in terms of temporal and spatial dynamics) or passively
following a dot that was moving across the same monitor
(“mechanistic,” repetitive behavior). This latter behavior
closely resembled the procedure for calibrating an eye-tracker,
requiring the subject to fixate on a dot that appears on the screen
in several locations. While the actor was filmed, we recorded his
eyemovements using a Tobii Pro Spectrum eye-tracker (TobiiAB,
Stockholm, 2015). The eye-tracker recorded the Cartesian
coordinates of the gaze point relative to the screen during
both actions, at a sampling rate of 600 Hz.

Specifically, we collected eye-tracking data of a single
participant during two different sessions: 1) gaze following of
a calibration marker moving on a screen and 2) gaze reading of a
static text on the same screen. Both the sessions were recorded
using the same eye-tracking system, display, and screen
resolution. Moreover, during the recording, we kept the same
distance of the participant with respect to the screen. We stored
eye-tracking data in two different output files, one for each
session, namely a list of timestamped events containing the 2D
Cartesian coordinates of the gaze points of both eyes. Afterward,

we implemented an algorithm for replicating the observed
behavior by reproducing the human gaze pattern in a
humanoid agent, the iCub robot (Metta et al., 2010). Firstly,
we programmed a method for transforming the 2D Cartesian
coordinates of the human’s eyes into 3D Cartesian coordinates
with respect to optical axes of the robot’s eyes. Secondly, since the
distance from the screen is a known parameter as well as the
screen resolution, we used classical trigonometric methods to
extract eye vergence, version, and tilt from the 3DCartesian in the
robot frame. In such a way, we used this triad of values to control
the motors of the robot responsible for moving the eyeballs at
each timestamp. Finally, we fed the iCub position controller,
namely the YARP IPositionDirect (Metta et al., 2006), with the
timestamped triad of vergence, version, and tilt to move the robot
eyes during the reproduction of the gaze behavior, which was
filmed while emulating the human’s behavior. Then, based on the
recordings of the human and the iCub, for each agent, we
generated two videos where the agents were “Reading a text”
and two videos where they were “Calibrating.” The duration of
each video was fourteen seconds. The videos of the robot were
coupled with the videos of the human so that both agents
displayed the very same eye movements (either “Reading” or
“Calibrating”) at the same time-frequency2.

When the agents were filmed, a uniform green screen was
positioned behind them, to cover the full background area.
This allowed us to use a basic visual effect technique, where
two video streams are composited together. Thus, we
superimposed a worldly background over the single-
colored backdrop (i.e., the green screen). This allowed us
to manipulate the congruency of the background with the
agent’s behavior. We defined three types of background
scenarios (Context) that we then superimposed on the
green screen: 1) library, 2) eye doctor’s study, 3) fractal.
We assumed that the “Reading” behavior would be congruent
with the library scenarios, but incongruent with the eye
doctor’s study. Besides, we hypothesized that the
“Calibrating” behavior could remind participants of the
optometry test, therefore being congruent with the eye
doctor’s study scenarios and incongruent with the library.
We also added a third scenario, which was abstract and non-
informative, as an additional control condition. For each
scenario, we selected two pictures (i.e., two libraries, two
eye doctors’ studies, two fractals) to add further variability to
the stimuli. We generated a pool of 48 stimuli in total3 (see
Table 1 and Figure 1 for details). Participants saw each video
five times across the experiment, which was divided into five
blocks interleaved by short breaks. Thus, during each block,
each of the 48 videos was displayed once. Thus, we collected
performance data and eye-tracking data during 240 trials per
subject.

2Video comparison between the two agents displaying the two behaviors is
available at: https://osf.io/b65ru/
3Two agents, multiplied by two versions of each of the two behaviors, multiplied by
two versions of each of the three backgrounds.

Frontiers in Robotics and AI | www.frontiersin.org May 2021 | Volume 8 | Article 6427963

Ghiglino et al. Mind the Eyes

https://osf.io/b65ru/
https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


Given the exploratory nature of this study, we opted for a
screen-based experiment instead of a real-time interaction,
mainly considering the potential confounding effect due to
the non-predictable variability of human behavior. Indeed,
variability is a key component of human behavior (Dodge,
1931), to the extent that even the same movement repeated
over and over again might assume different kinematic patterns
(Stergiou and Decker, 2011). An embodied version of the
experiment would not have allowed us to have control over
such variability.

Procedure and Apparatus
Before starting the experiment, we informed participants about
the content of the videos we generated, showing example videos
of both agents displaying the “Reading” and the “Calibrating”
behaviors. During this familiarization phase, we informed them
that the two displayed behaviors corresponded either to the
“Reading” or to the “Calibrating.”

During the experiment, videos were presented on a 23.8′′
LCD screen (resolution: 1920 × 1,080). Participants’ head
position was limited by a chinrest that was mounted at the
edge of the table, at a horizontal distance of 60 cm from the
screen. We recorded the participants’ binocular gaze data with a
screen-mounted Tobii Pro Spectrum eye-tracker with a
sampling rate of 600 Hz. The illumination of the room was
kept constant throughout the experimental sessions. Videos and
questions were displayed with OpenSesame 3.2.8 (Mathôt et al.,
2011).

We instructed participants to carefully watch the videos to
detect, as quickly as possible, whether the behavior displayed by
the agent was either “Reading” or “Calibrating.” Participants
provided their responses by pressing the buttons of a keyboard
corresponding to the letters M and Z, counterbalanced across the
blocks. After providing their response, participants were asked to
rate the confidence in their decision. When this last rating was
provided, or in case of a timeout, a new trial started, with a
fixation cross presented for five seconds.

Participants’ decision times (DTs), the accuracy of the
detections, and confidence ratings were saved along with the
eye-tracker data (fixation duration and fixation count).

All participants were debriefed upon completion of the
experiment, to explain the purposes of the study to them and
to gather qualitative data that could improve the future follow-up
study (i.e., their opinions regarding the duration of the
experiment, the quality of the video, the nature of the
behaviors, etc.).

Analyses
To explore the effects of Agent, Behavior, and Context on the
participants’ attentional engagement during the task, we adopted
various mixed models on our eye-tracking data, using RStudio
Team, (2015). We defined three main areas of interest (AOI) a
priori: 1) the area corresponding to the eye region of the agents; 2)
the area corresponding to the face region of the agents (excluding
the eyes); and 3) the area corresponding to the background
behind the agents (excluding the face). 79.07% of total
fixations were recorded within the first AOI (eye region),
5.84% within the second (face region), and 15.09% within the
third (background region). Considering the insufficient amount
of data points in the non-eye AOIs, we focused our analyses
mainly on the eye region. We excluded trials in which the
participants provided the incorrect attribution (less than 1% of
the total trials) from the analysis.

Fixation duration was the dependent variable of a linear mixed
model. Agent, behavior, and context were treated as fixed factors
and the subjects’ intercept as a random factor. Then, we
converted each participants’ fixation count relative to each
AOI into fixation proportions (i.e., the ratio of fixations

TABLE 1 | Pool of stimuli generated for the current experiment. Numbers in
brackets refer to the two different versions of the behaviors and contexts we
generated for the current experiment.

Agent Behavior Context

Human Reading (1) Library (1)
Human Reading (1) Eye Doctor (1)
Human Reading (1) Fractal (1)
Human Reading (2) Library (1)
Human Reading (2) Eye Doctor (1)
Human Reading (2) Fractal (1)
Human Reading (1) Library (2)
Human Reading (1) Eye Doctor (2)
Human Reading (1) Fractal (2)
Human Reading (2) Library (2)
Human Reading (2) Eye Doctor (2)
Human Reading (2) Fractal (2)
Human Calibrating (1) Library (1)
Human Calibrating (1) Eye Doctor (1)
Human Calibrating (1) Fractal (1)
Human Calibrating (2) Library (1)
Human Calibrating (2) Eye Doctor (1)
Human Calibrating (2) Fractal (1)
Human Calibrating (1) Library (2)
Human Calibrating (1) Eye Doctor (2)
Human Calibrating (1) Fractal (2)
Human Calibrating (2) Library (2)
Human Calibrating (2) Eye Doctor (2)
Human Calibrating (2) Fractal (2)
Robot Reading (1) Library (1)
Robot Reading (1) Eye Doctor (1)
Robot Reading (1) Fractal (1)
Robot Reading (2) Library (1)
Robot Reading (2) Eye Doctor (1)
Robot Reading (2) Fractal (1)
Robot Reading (1) Library (2)
Robot Reading (1) Eye Doctor (2)
Robot Reading (1) Fractal (2)
Robot Reading (2) Library (2)
Robot Reading (2) Eye Doctor (2)
Robot Reading (2) Fractal (2)
Robot Calibrating (1) Library (1)
Robot Calibrating (1) Eye Doctor (1)
Robot Calibrating (1) Fractal (1)
Robot Calibrating (2) Library (1)
Robot Calibrating (2) Eye Doctor (1)
Robot Calibrating (2) Fractal (1)
Robot Calibrating (1) Library (2)
Robot Calibrating (1) Eye Doctor (2)
Robot Calibrating (1) Fractal (2)
Robot Calibrating (2) Library (2)
Robot Calibrating (2) Eye Doctor (2)
Robot Calibrating (2) Fractal (2)
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directed towards each AOI compared to the total number of
fixations). Considering the negatively skewed distribution of
fixation proportion on the eye region, data were arcsine
transformed before the analyses. Then, the arcsine
transformed fixation proportion on the eye region was
included as the dependent variable of another mixed model,
where agent, behavior, and context were treated as fixed factors
and the subjects’ intercept as a random factor.

Finally, we analyzed participants’ DTs with an additional
linear model. We adopted a minimal a priori data trimming
(Harald Baayen and Milin, 2010). Given the positively skewed
distribution of DTs, we applied a logarithmic transformation to
the data. Then, log-transformed DTs were included as the
dependent variable of a final mixed model, where agent,
behavior, and context were treated as fixed factors and the
subjects’ intercept as a random factor.

To compensate for the lack of consensus on the calculation of
standardized effect sizes for individual model terms (Rights and

Sterba, 2019), for each model we calculated parameters estimated
(β) and their associated t-tests (t, p-value) using the Satterthwaite
approximation method for degrees of freedom. Furthermore, for
each parameter estimated we reported the corresponding
bootstrapped 95% confidence intervals. We reported mean
values of each dependent variable divided by conditions in the
Supplementary Materials to ease the reading of the results. To
avoid redundancy, in the main text we reported only statistics
relative to significant results. Non-significant results can be
found in the Supplementary Materials, along with the
original script used for data analysis. For each dependent
variable, we explored: 1) Three-way interactions (i.e., the effects
due to the interplay between Agent, Behavior, and Context all
together); 2) Two-way interactions (i.e., the effects due to the
interplay between factor dyads; that are Agent and Behavior,
Agent and Context, and Behavior and Context); 3) Main effects
(i.e., the effects due to the factors alone, without considering the
interactions between them).

FIGURE 2 |Raincloud plots showing the fixed effect on Fixation Duration due to the main effects of Agent (A), and Context (B) (GLM). Boxplots associated with the
raincloud plots depict median values (black horizontal lines), interquartile ranges (black boxes), and upper-lower quartile intervals (black whiskers).

FIGURE 1 | Examples of videos used in the experiment. Other than the behavior of “Calibrating” and “reading” (not displayed), we manipulated the agent and the
background. All the stimuli generated for this study were original; the human agent that was filmed and depicted in the image gave explicit consent for the use of the
material included in the experiment and in the manuscript.
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RESULTS—EXPERIMENT 1

Fixation Duration
To assess the effect of the Agent, its Behavior and the surrounding
Context on attentional processing, we first analyzed the inter-trial
differences in fixation duration. No effect due to the interaction
between Agent, Behavior and Context on fixation duration was
found (all p-values > 0.05). However, looking at the single factors,
we found a main effect of Agent [β � −11.80, t (340) � −11.80, p �
0.028, 95% CI � (−22.14, −1.45); Figure 2A] and a main effect of
Context [β � 19.01, t (340) � 3.52, p < 0.001, 95% CI � (8.57,
29.45); Figure 2B]. Planned comparisons revealed that longer
fixations occurred when the Agent was Human compared with
the Robot (t (340) � 4.73, p < 0.001), and when the Context was
Non-Informative compared with both Congruent and
Incongruent contexts (Congruent vs Non-Informative: t (340)
� −7.74 p < 0.001; Incongruent vs. Non-Informative: t (340) �
−7.83, p < 0.001).

Fixation Proportion
We also analyzed the effects of the Agent, its Behavior and the
Context on fixation proportion. Here, our analysis indicated a
significant three-way interaction between Agent, Behavior and
Context [β � −0.08, t (341) � −2.01, p � 0.045, 95% CI � (−0.16,
−0.01); Figure 3A] and a significant two-way interaction between
Agent and Behavior [β � 0.10, t (341) � 3.65, p < 0.001, 95% CI �
(0.05, 0.16); Figure 3B]. Planned comparisons showed that
participants tended to fixate more often on the eye region of
the human during the Calibrating behavior rather than during the
Reading behavior, when the context was congruent (t (341) �
5.85, p < 0.001). A similar difference between the behaviors was
found when the context was non-informative (t (341) � 3.33, p �
0.045). Similarly, when the context was congruent, participants

tended to fixate more often on the robot than on the human when
these agents were displaying the Reading behavior (t (341) � 5.42,
p < 0.001). Likewise, we found a difference between the agents
when the context was incongruent (t (341) � −3.58, p � 0.020).
These results were confirmed by planned comparisons performed
on the two-way interaction, highlighting that the behavior that
required fewer fixations was the human’s Reading compared to
the human’s Calibrating (t (341) � −7.86, p < 0.001) and to the
robot’s Reading (t (341) � −7.01, p < 0.001). Overall, the Reading
behavior required a lower amount of fixations than the
Calibrating behavior, as highlighted by the main effect of the
Behavior [β � −0.12, t (341) � −5.85, p < 0.001, 95% CI � (−0.16,

FIGURE 3 | Histograms and raincloud plots showing respectively the thee-way interaction between Agent, Behavior, and Context (A) and the two-way interaction
between Agent and Behavior (B) (GLM). Vertical bars of the histograms denote ±1 standard error, dots denote mean values, horizontal bars denote differences surviving
post hoc comparison. Asterisks define the level of significance of the comparison (*p < 0.05, **p < 0.01, p < 0.001). Boxplots associated with the raincloud plots depict
median values (black horizontal lines), interquartile ranges (black boxes), and upper-lower quartile intervals (black whiskers).

FIGURE 4 | Histograms and raincloud plots showing the two-way
interaction between Agent and Behavior (GLM). Boxplots associated with the
raincloud plots depict median values (black horizontal lines), interquartile
ranges (black boxes), and upper-lower quartile intervals (black whiskers).
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−0.08)] and subsequent planned comparisons (t (340) � −7.30,
p < 0.001). The interaction was paralleled by a main effect of the
Agent [β � −0.18, t (32, 341) � −6.32, p < 0.001, 95% CI � (−0.24,
−0.13)], indicating that participants were faster to identify the
behavior when displayed by the robot (t (341) � 7.87, p < 0.001).
Finally, we found a main effect of the Behavior too [β � −0.22, t
(32, 341) � −7.71, p < 0.001, 95% CI � (−0.28, −0.17)], indicating
that the Reading behavior was faster to identify than the
Calibrating behavior (t (341) � 12.34, p < 0.001).

Decision Times
To investigate the effect of Agent, Behavior, and Context on
the ability to recognize behaviors during the task, we also
analyzed our participants’ decision times. The analysis pointed
out a two-way interaction between the Agent and the Behavior
[β � 0.17, t (341) � 4.25, p < 0.001, 95% CI � (0.09, 0.25);
Figure 4]. Planned comparisons revealed that the behavior
that took longer to identify was the Calibrating behavior
displayed by the human when compared to the robot
Calibrating (t (341) � 10.19, p < 0.001) or to the human
Reading (t (341) � 13.36, p < 0.001). Furthermore, the
Calibrating behavior displayed by the robot took longer to
be identified than the Reading behavior displayed by the same
agent (t (341) � 4.10, p < 0.001).

DISCUSSION—EXPERIMENT 1

With this experiment, we investigated attentional engagement
during a novel task that required the observation of a human and
a robot displaying the same set of behaviors. The results
indicated that participants displayed longer fixations
towards the eye region of the human compared with the
same region of the robot. Fixation duration is often used as
an implicit measure of attentional engagement (Nummenmaa
et al., 2006; Ghiglino et al., 2020a). Longer fixations are
thought to indicate higher interest than shorter ones
(Geisen and Bergstrom, 2017). Indeed, a human agent
might engage individuals’ spontaneous attention more than
an artificial agent, due to the natural acquaintance people have
with their conspecifics (Byrne, 1991).

The interaction effects we found on fixation proportion
are in line with this hypothesis. We found a lower fixation
proportion on the eye region of a human agent who was
reading, relative to the other conditions, which shows that
participants distributed their fixation rather on other areas,
such as the face and background regions. In other words,
participants distributed their fixations on the area
surrounding the eyes mainly when the agent was the
human, and when he was displaying the reading behavior.
Conversely, individuals explored the face and the background
regions less when the agent was the robot relative to the
human, and when the behavior was calibrating compared
with reading. This suggests that, during the task, participants’
attentional resources were focused almost solely on the eye
movements of the agent when the agent was artificial, and
when the behavior was “mechanistic.” The ratio of on-target

vs. all-targets fixations (i.e., the proportion of fixations on a
specific area) is often associated with the processing of critical
visual information (Holmqvist et al., 2011). We, therefore,
conclude that participants required less attentional efforts to
interpret the behavior that they were able to relate to the most
(i.e., the reading), especially when the human face, to whom
we are more accustomed to, displayed it. Indeed,
understanding intentional behaviors should be easier than
attempting to identify mechanistic ones (Mele and William,
1992).

This is in line with the results we found on participants’
decision times. Specifically, we found that reading behavior was
relatively fast to identify, while the calibrating behavior required
more time to be recognized. Importantly for the aim of the study,
the condition that costs the longest decision time corresponded to
the stimuli where the human was displaying the calibrating
behavior as if observing an “intentional” agent that displays a
mechanistic behavior requires higher processing effort.
Interestingly, participants were faster in recognizing both
behaviors when the robot displayed them than when the
human was. This peculiar effect can be explained by taking
into account the expectations that individuals might have
towards the two agents. From a purely anecdotal point of
view, during the debriefing, a small group of participants
reported that they were surprised seeing the human behaving
“like a robot” (i.e., during the calibrating behavior). We claim that
humans approach artificial agents and their conspecifics with
different attitudes that could modulate the way they interpret
behaviors (Hinz et al., 2019). Based on our results, we can also
speculate that participants were expecting the robot to display a
variety of behaviors (i.e., to behave like a human), but they were
not expecting the human to behave in a repetitive, mechanistic
way (i.e., to behave like a robot).

Along with the effects of Agent and Behavior, we also found
the effect of Context on attentional processing. In particular,
when the Context was non-informative, participants’ fixations on
the eye region were longer. This may indicate that our
participants were more engaged by both agents’ behaviors
when they were not distracted by the semantic content of the
context (i.e., when the context was congruent and incongruent).
This is in line with past research investigating the relation
between local con global features of visual information (De
Cesarei and Loftus, 2011). Indeed, the presence of a “realistic”
context might have distracted our participants from the behavior
and the agent, attracting their attention towards the background.
Thus, the cognitive cost associated with the processing of
Congruent and Incongruent backgrounds could explain the
presence of shorter fixation on the eye region of both agents.
The three-way interaction we found on fixation proportions is in
line with this hypothesis; indicating that the interaction between
the Agent and the Behavior is particularly strong when the
Context is congruent with the Behavior. Thus, we can claim
that context could prime the attention towards local cues.

Taken together, these findings highlight the complex interplay
between visual information and attentional engagement,
suggesting that intentional agents and seemingly intentional
behaviors spontaneously attract individuals’ attention.
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However, it might also be the case that the effects we discussed
could be biased by familiarity. Perhaps both the Human-agent
and the reading behavior were simply more familiar to the
participants than the Robot who was calibrating, respectively.
Indeed, we had to provide examples of the calibrating behavior to
participants before the experiment, as it is not common behavior
for a human being. In a natural environment, this kind of
behavior is displayed only during medical visits (eye-exam).
On the contrary, reading is an action commonly used in
everyday life, and this might have facilitated individuals in the
early detection of such behavior. Therefore, the results we found
with Experiment 1 might have been biased due to the disparity of
the behaviors we selected in terms of prior exposure.

Therefore, after Experiment 1, we needed to clarify whether
the effects we found could be explained with reference to the
familiarity participants had with the two behaviors, rather than
with reference to the degree of intentionality displayed in the
behaviors. For this reason, we designed a second experiment, in
which we focused more on the self-report impressions that a
second group of participants had towards the behaviors used in
Experiment 1. Thus, we tested the familiarity of the participants
with the behaviors along with their attribution of
anthropomorphic traits towards the human and the robot.

MATERIAL AND
METHODS—EXPERIMENT 2

Our second experiment investigated how individuals explicitly
interpret the behaviors displayed by two different agents, namely
the iCub robot and a human. We exposed our participants to a
number of videos depicting the humanoid and the human engaged
in certain activities on a computer, and we asked them to infer what
the agent was doing. We explored our participants’ spontaneous
attributions as well as their tendency to attribute anthropomorphic
traits towards the two agents. This allowed us for a deeper
comprehension of the results we found in Experiment 1.

Participants
Fifty participants took part in this experiment and were tested via
Prolific (Prolific, Oxford, UK, 2015), an online recruiting
platform (mean age � 26.1 ± 6.0, 20 females). All participants
reported normal or corrected-to-normal vision and no history of
psychiatric or neurological diagnosis, substance abuse, or
psychiatric medication. All participants declared that their first
language was English. Each participant provided a simplified
informed consent (adapted for online studies) before the
beginning of the experiment. All participants that took part in
this follow-up experiment were naïve to the videos, and they did
not participate in Experiment 1. Our experimental protocols
followed the ethical standards laid down in the Declaration of
Helsinki and were approved by the local Ethics Committee
(Comitato Etico Regione Liguria).

Stimuli and Apparatus
To address the aim of our second experiment, we used the same
pool of stimuli used in Experiment 1, with a few modifications.

Since here we were interested exclusively in the interpretation of
the behavior as a function of the agent displaying it, we removed
the background information from the videos (i.e., we used the
original green-screen background). We also included a third
behavior that we filmed at the same time as the calibrating
and the reading behaviors, which corresponded to the agents
Watching movies. We excluded this behavior from Experiment 1,
as we wanted to have a clear distinction between the active, more
“mentalistic” behavior (i.e., reading) and the passive, more
“mechanistic” behavior (i.e., calibrating). Human eye
movement while watching movies is a visually-guided
behavior, but it is not purely stimulus-driven and might
constitute a fuzzy category between “intentional” and “non-
intentional” behaviors (Peters and Itti, 2007). Furthermore, in
Experiment 2 we also wanted to clarify whether the differences
between the calibrating and reading (found in Experiment 1)
were due to the familiarity with the behaviors (i.e., calibrating
being unfamiliar to most of the participants) or to the proprieties
of the behavior (i.e., mentalistic vs. mechanistic). Thus, by adding
Watching, we included an additional behavior that was
qualitatively different from the reading yet with similar
familiarity. Consequently, we extracted a pool of 12 videos
fitting a two by three repeated-measures design4. Given the
more qualitative approach, each video was repeated only twice
across experiment two, mainly to check the coherence of
participants’ responses.

Procedure
We ran the experiment online, using Prolific to recruit
participants and SoSci Survey (Leiner, 2016) to present the
stimuli and collect individuals’ responses. We instructed
participants to carefully watch the videos depicting the human
and the iCub robot engaged in multiple activities on a computer
screen. Before the beginning of the experiment, we asked
participants to think about all the activities that a person can
do with a computer (i.e., playing videogames, browsing, taking
part in a meeting, etc.) and that their task would be to infer what
the agents depicted in the videos were doing when we filmed
them. Participants were allowed to type their answers without a
word limit. After providing their attributions, participants were
asked to report whether the behavior displayed by the agent
looked familiar to them (two-alternative forced-choice: yes/no),
and to rate, on a 10-point Likert scale, how much the agent was
aware, focused, and interested, as well as the naturalness of the
displayed behavior.

Analyses
We extracted the verbs used by the participants to describe the
actions depicted in the videos. Then, we converted each verb into
its non-personal form (gerund). Thus, for each video, we
excerpted fifty verbs describing the behavior enacted by the
agent, according to participants’ answers. We then performed
a text mining analysis on the verbs to determine the frequency of

4Factor 1: Agent (Human vs. Robot); Factor 2: Behavior (Reading vs. Calibrating vs.
Watching).
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their use across the entire experiment. Then, we compared the
frequencies of the most common verbs across conditions, using a
series of generalized linearmixedmodels (GLMM) in R Studio. Agent
and Behavior were treated as fixed factors of the model, and the
subjects’ intercept was treated as a random factor. Given the nature of
our dependent variable (frequency of use), Poisson’s frequency
distribution was used as a reference function for the models.

Separately, we analyzed the familiarity reported by
participants with each video. We used a GLMM to compare
conditions. Agent and Behavior were treated as fixed factors and
the subjects’ intercept was treated as a random factor. Since the
dependent variable was binary (familiarity), we used the binomial
distribution as the reference function of the model.

Finally, we analyzed participants’ ratings on their perceived
naturalness of the behavior as well as their ratings on perceived
awareness, focus, and interest displayed by the agent.
Considering the negatively skewed distribution of ratings,
data were arcsine transformed before the analyses. Then,
we applied a series of linear mixed models (GLM) to
investigate the effects of the Agent and Behavior, treated as

fixed factors, on the ratings, given the subjects’ intercept as a
random factor.

To clarify whether the effects found on the ratings could be
better explained by participants’ familiarity with the behaviors,
rather than by our experimental design, we estimated four final
alternative linear models that comprised familiarity as the only
fixed factor and each rating as a dependent variable. Then, we
evaluated the adequacy of each model fit based on a Chi-square
difference test and the Akaike’s Information Criterion (AIC)
associated with each model.

RESULTS—EXPERIMENT 2

The ten most used verbs to describe the agents’ behaviors were:
reading (count � 207), looking (count � 94), watching (count �
86), playing (count � 36), browsing (count � 25), following
(count � 24), staring (count � 17), moving (count � 13), meeting
(count � 12), working (count � 12) (Figure 5). Only the first
three verbs led to converging models, therefore we excluded all
the other verbs from data analysis to avoid overfitting of data
(Finnoff et al., 1993). Regarding the frequency of use of the verb
“reading,” we found a significant main effect of the Behavior [β
� 2.69, t (293) � 6.37, p < 0.001, 95% CI � (1.86, 3.51)],
indicating that this verb was used significantly more to
describe the Reading behavior rather than for the Calibrating
(z (297) � 8.97, p < 0.001) and Watching (z (297) � 9.09, p <
0.001) behaviors. We found a complementary main effect of the
Behavior on the frequency of use of the verb “looking” [β �
−1.99, t (293) � −3.24, p � 0.001, 95% CI � (−3.20, −0.79)],
indicating that this latter verb was used less frequently to
describe the Reading behavior than to describe the
Calibrating (z (297) � −4.48, p < 0.001) or the Watching (z
(297) � −3.84, p < 0.001) behaviors. We also found a trend of the
Behavior on the frequency of use of the verb “watching” [β �
0.58, t (293) � 1.74, p � 0.082, 95% CI � (−0.07, 1.23)] that did
not reach significance, but suggested that such verb was used to
describe the Watching behavior more often than for the
Reading behavior (z (297) � 4.33, p < 0.001). In addition,

FIGURE 5 | Frequency plot of the ten most used verbs used by
participants to describe the agents’ behaviors.

FIGURE 6 | Histograms representing participants’ familiarity with the Agent (A) and with the Behavior (B). Horizontal bars denote differences surviving post hoc
comparison, asterisks define the level of significance of the comparison (*p < 0.05, **p < 0.01, p < 0.001).
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participants used the verb “watching” slightly more often after
the Watching behavior than after the Calibrating one (z (297)
� 2.16, p � 0.078), and more often after the Calibrating
behavior than after the Reading behavior (z (297) � 2.63,
p � 0.023).

When we analyzed the evaluation of familiarity attributed to
the videos, we observed a main effect of both the Agent [β �
−1.70, t (293) � −3.23, p � 0.001, 95% CI � (−2.72, −0.67);
Figure 6A] and the Behavior [β � 2.74, t (293) � 3.15, p � 0.002,
95% CI � (1.04, 4.45); Figure 6B]. The main effect of the Agent
indicated that videos depicting the human agent were rated as
more familiar than videos depicting the iCub (z (297) � 3.94, p <
0.001). The main effect of the Behavior indicated that the Reading
behavior was perceived as more familiar than both the Calibrating
(z (297) � 4.82, p < 0.001) and Watching (z (297) � 6.10, p <
0.001) behaviors. Surprisingly, the Calibrating behavior was
evaluated as slightly more familiar than the Watching behavior
(z (297) � 2.38, p � 0.046).

Our analyses on participants’ ratings of anthropomorphic
traits pointed out a systematic main effect of the Agent on all
the attributes (i.e., “Naturalness,” “Awareness,” “Focus,”
“Interest”). Specifically, the human always received higher
ratings than the iCub (see Supplementary Materials for
detailed comparisons). Furthermore, we found a systematic
main effect of the Behavior, indicating that the Reading
behavior received higher ratings than both the Calibrating and
the Watching behaviors (see Supplementary Materials for
detailed comparisons). There was no interaction effect between
Agent and Behavior.

Finally, we compared whether the effects on participants’
ratings could be better explained by their Familiarity with the
behaviors, rather than by the intrinsic characteristics of the Agent
and the Behavior. For all comparisons, the most predictive
models were the ones including the Agent and the Behavior as
fixed factors, instead of the Familiarity (see Table 2 for detailed
comparisons).

DISCUSSION—EXPERIMENT 2

With our second experiment, we tested individuals’ familiarity
with the behaviors and agents used in Experiment 1. When asked
to infer the Agents’ actions, participants were highly accurate in
identifying the reading behavior, which we designed to be the

“intentional” behavior of our stimuli. Indeed, the eye movements
recorded during the watching and the calibrating behaviors were
dependent on the occurrence of visual stimuli, or, in other words,
to a bottom-up oculomotor capture (Troscianko and Hinde,
2011). On the other hand, the eye movements performed
during the reading behavior were actively controlled by the
agent himself, who was indeed displaying a top-down
modulated action (Radach et al., 2008). Observing an
“intentional” behavior (i.e., the reading behavior in our
experiment) may elicit social cognitive mechanisms related to
mindreading, which would, consequently, facilitate its
identification. This facilitation may sound trivial when applied
to a natural human-human interaction, as we usually assume
human behavior to be driven by underpinning mental states and
intentions (Dennett, 1971). However, it may be less intuitive
when applied to artificial agents, as the same facilitation may not
apply during observation of robot behavior. Indeed, robots do
not possess a proper mind to read, but eliciting the ascription of
a mind towards them could foster human-robot interaction,
potentially smoothing the communication between natural and
artificial systems (Wiese et al., 2017). Indeed, our result suggests
that for our participants it was easier to identify the correct
behavior when the action displayed was seemingly intentional.
We claim that embedding intentional behaviors into embodied,
artificial agents could boost social engagement by smoothing
communication.

In line with this hypothesis, participants rated the reading
behavior as more natural than the other behaviors. Furthermore,
when either the human or the robot was displaying it, participants
tended to rate the agent as more focused, interested, and aware.
This suggests that behavioral cues of intentionality may affect
individuals’ tendency to attribute anthropomorphic traits
towards an artificial agent.

It is important to point out that participants perceived the
reading behavior as the most familiar of the set, regardless of the
agent that was displaying it. Additionally, the nature of the Agent
affected the attribution of naturalness towards the Behavior,
along with the perceived focus, interest, and awareness of the
Agent (i.e., participants reported high familiarity with the videos
that were depicting the human agent). However, the model
comparisons revealed that the nature of the Agent and the
Behavior explain our data better than the familiarity ratings
alone. This supports the idea that familiarity alone cannot
fully explain the differences we found in participants’
attributions. At the same time, we recognize that intentionality
alone might not be the only factor affecting individuals’
attribution of anthropomorphic traits towards natural and
artificial agents.

GENERAL DISCUSSION

In the current study, we presented two experiments aimed at
investigating how individuals perceive and attribute human-
likeness traits towards natural and artificial agents depending
upon the level of “intentionality” displayed by their behaviors.
Taken together, the results of both experiments suggest that

TABLE 2 | Detailed Akaike’s Information Criterion (AIC) of models for each
comparison.

Measure Fixed Factor(s) AIC χ2 P

Naturalness Familiarity −1,040 –

Agent*Behavior −1,085.5 53.52 <0.001
Awareness Familiarity −1,056.4 –

Agent*Behavior −1,107.3 58.95 <0.001
Focus Familiarity −1,108.2 –

Agent*Behavior −1,114 13.86 0.008
Interest Familiarity −959.93 –

Agent*Behavior −984.17 32.248 <0.001
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observing a human and a humanoid displaying the same set of
behaviors evokes different implicit attentional processes and,
consequently, different explicit attributions.

Our first experiment highlighted the differences in
spontaneous attentional engagement during the visual
processing of the behavior displayed by the two agents.
Processing behaviors that we designed to appear as
“intentional” (i.e., controlled by the agent itself) required less
attentional effort than “mechanistic” behaviors (i.e., purely
stimulus-driven). Based on the results of our second
experiment, we associate attentional engagement with the
attribution of human-like traits towards the agent that displays
the behavior. Indeed, in our second experiment, participants
evaluated the seemingly intentional behavior as the most
“anthropomorphic” of the set (i.e., agents displaying it seemed
to be “more aware,” “focused,” “interested,” and “natural”).
Additionally, the word-choice participant made to describe the
behaviors was extremely accurate for the “intentional” ones,
suggesting that it is easier for the observer to recognize the
behavior of an artificial agent when the intent behind it is
clear. It is important to point out that such facilitation does
not depend solely upon the familiarity that participants perceived
with the behaviors, but mostly on the degree of perceived
intentionality and anthropomorphism. In other words, the
degree of intentionality displayed by an artificial agent may
affect attentional engagement, which, in turn, affects perceived
familiarity and anthropomorphism. Thus, facilitating attentional
engagement may be desirable to improve communication with
artificial agents.

In this sense, endowing artificial agents with human-like
behaviors, such as human-inspired eye movements, may boost
communication and attunement towards them, a crucial aspect
for deploying robots in environments where social interaction is
inevitable (e.g., assistive robotics) (Leite et al., 2013). Our results
bring further clarity to these hypotheses, highlighting the
complex interplay between explicit attribution of
anthropomorphic traits and attentional engagement. We claim
that the attribution of anthropomorphic traits towards an
artificial agent is the consequence of the perceived difficulty in
processing the information related to its behavior. In turn, such
perceived complexity may be modulated by the ease to ascribe
intentions towards the artificial agent. However, it is important to
point out that clarifying the causal relationship between
attentional processing and attribution of anthropomorphism
goes beyond the scope of the current work, and should be
investigated in future research.

The acceptance of robots as social agents might depend upon
their ability to elicit adequately the same social cognitive
processes that are required during human-human interaction,
even at an implicit level (Dennett, 1971). At the same time, their
behavior needs to be easy to predict and to understand from the
user perspective (Leite et al., 2013). In the last decade, we have
been exposed to seemingly smart devices daily. Technological
progress made the interaction with technology increasingly
smooth and dynamic due to the implementation of human-
like characteristics in the way artificial agents behave and
communicate (González et al., 2012). The implementation of

human-based and human-inspired behaviors in artificial agents
may positively affect both implicit attentional processing and
explicit attributions, and the spontaneity and naturalness of
interaction (Dautenhahn, 2007). Furthermore, providing
artificial agents with human-like behavior affects positively the
quality of the interaction (Ghiglino et al., 2020b). In particular,
when the physical aspect and the behavioral repertoire of artificial
agents resemble one of the human beings, individuals tend to
attribute spontaneously to the agent anthropomorphic traits,
including mental states, intentional agency, and
anthropomorphic traits (Ghiglino et al., 2020b). Subtle hints of
human-likeness displayed by a humanoid robot seem to affect
attentional engagement and attribution of anthropomorphic traits
(see, for example, Martini et al., 2015; Thepsoonthorn et al., 2018).
However, we demonstrated that such claims could not be
generalized to all possible behaviors that artificial agents might
display during spontaneous interaction with the users.

These promising results present new intriguing questions to be
addressed in future studies. For instance, the choice of using a
screen-based paradigm to study complex attentional mechanisms
sacrifices some ecological validity of our results in favor of better
experimental control. Indeed, when it comes to human-robot
interaction and communication, embodiment plays a
fundamental role (Kuniyoshi et al., 2004; Wainer et al., 2006;
Deng et al., 2019; Ventre-Dominey et al., 2019). However, we
found it necessary to test people’s sensitivity to subtle hints of
human likeness using a systematic approach, first with in-lab
experiments, and only later in naturalistic environments. Indeed,
focusing on few isolated variables at a time, using well-controlled
experimental designs, allows for minimizing the risk of
confounding effects due to unforeseen variables. With this
study, we demonstrated that implicit measures such as eye-
tracking metrics can be adopted to study attentional
mechanisms involved in the processing of artificial agents’
behaviors. We acknowledge that this approach was
conservative, as it also led us to the investigation of a limited
behavioral repertoire. In short, the study offers a reliable
methodology that can be adapted to more interactive scenarios.

In conclusion, the current study supports the hypothesis that
embedding robots with human-inspired behaviors may facilitate
the interaction between them and humans. However, our results
suggest that it is not sufficient to generate human-like behavior to
ease the interaction. Besides, it may be crucial that the behavior
exhibited by the agent displays traits that can be interpreted as
intentional.
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