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ABSTRACT

BACKGROUND: It is difficult to simulate the abnormal myocardial strain patterns caused by 
ischemic coronary artery disease (CAD) which are a precursor to heart failure (HF) within an 
animal model. Simulation of these strain changes could contribute to better understanding 
of the early formative stages of HF. This is especially important in investigating the poorly 
understood pathogenesis of heart failure with preserved ejection fraction (HFpEF). Here, 
we discuss delivery of high intensity focused ultrasound (HIFU) in a murine model to 
alter left ventricular (LV) regional longitudinal strain (RLS), and use of speckle tracking 
echocardiography to detect these changes.
METHODS: HIFU pulses (pressure amplitude 1.7 MPa) were generated by amplifying a 
sinusoidal waveform from a function generator into a piezoelectric transducer. These pulses 
were then directed extracorporeally towards the anterior LV surface of C57BI6 mice during 
three time periods (early, mid, and late diastole). Speckle tracking echocardiography was 
then used to quantify changes in RLS within six segments of the LV.
RESULTS: We observed an increase in LV RLS with acoustic augmentation during all three 
time periods. This augmentation was most prominent near the anterior apical region in early 
diastole and near the posterior basilar region during late diastole.
CONCLUSIONS: Our findings demonstrate the application of HIFU to non-invasively induce 
changes in RLS within a murine model. Our results also reflect the capability of speckle tracking 
echocardiography to analyze and quantify these changes. These findings represent the first 
demonstration of ultrasound-induced augmentation in LV RLS within a small animal model.
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INTRODUCTION

The divergent mechanisms which lead to either heart failure with reduced ejection fraction 
(HFrEF) or heart failure with preserved ejection fraction (HFpEF) in patients with ischemic 
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coronary artery disease (CAD) are complex and difficult to model. One common feature 
of these diseases, regardless of their etiology, are early strain changes within the cardiac 
myocardium.1-4) Measurement of abnormal cardiac strain changes has already been validated 
as a predictor of left ventricular (LV) remodeling early after myocardial infarction (MI). 
Regional changes in LV strain occur within days of MI, preceding the process of infarct 
progression and eccentric hypertrophy which take months to years to occur.1) However, 
within the continuum of ischemic heart disease, changes in myocardial strain patterns do not 
require the catastrophic plaque rupture which results in MI. Initial strain changes far precede 
these total occlusion events. In patients with CAD, transient stress-induced local ischemia 
results in intermittent, aberrant strain changes in corresponding regions of the myocardium. 
In fact, comparison of areas of abnormal regional longitudinal strain (RLS) using speckle 
tracking echocardiography (STE) correlate well to areas of ischemia as confirmed by coronary 
angiography (the gold standard).5) Without clinical intervention, areas with pathological 
strain patterns are prone to LV remodeling which can eventually lead to heart failure (HF).6)7) 
Patients with CAD are therefore a population within which early detection of abnormal 
myocardial strain patterns would be a useful tool to predict risk of progression to HF, 
allowing for more timely clinical intervention.

An experimental animal model which can mimic the regional myocardial strain changes 
seen in patients with ‘stuttering’ or unstable angina who eventually develop HF would be an 
important tool to better understand the pathogenesis of the disease. However, creating such 
a model remains a challenge, as no convenient method exists which can mimic the transient, 
intermittent myocardial strain changes caused by changes in blood flow which occur early 
in the pathogenesis of HFrEF and HFpEF. Most currently validated small animal HF models 
study later stages of the disease. In addition the majority of these models induce HFrEF; 
far fewer models exist which are able to reliably provoke HFpEF.8) Many of the methods 
used to induce HFrEF in small animal models, such as transverse aortic constriction (TAC), 
coronary artery ligation, and aorto-caval shunt formation, present additional challenges. For 
instance, these methods involve surgical procedures, which are invasive, require a high level 
of technical skill, and are associated with risk of mortality from ventricular arrhythmias and 
heart block.9) Methods used to induce HFpEF in small animal models (such as the Dahl salt-
sensitive rats, senescence accelerated prone [SAMP] mice, and streptozotocin [STZ] toxicity 
mediated models), are both time intensive and better suited to studying HFpEF once it is 
established rather than the early mechanistic changes of the disease.10) These HFpEF models 
also result in global myocardial changes which more closely mimic systemic causes of HFpEF 
(such as infiltrative disease), rather than the regional myocardial changes which occur in 
ischemic disease.

In this study, we demonstrate the feasibility of inducing transient regional myocardial 
strain changes using targeted extracorporeal high intensity focused ultrasound (HIFU) 
pulse delivery. HIFU is an application of acoustic radiation force (ARF), which is a term that 
describes the transfer of momentum an acoustic perturbation (such as an ultrasound wave) 
imparts as it passes through a nonlinear medium. ARF has been historically widely utilized 
within the field of medicine for applications ranging from cataract emulsification to renal 
stone lithotripsy.11)12) However, ARF can also be harnessed to deliver force in a tempered 
manner, exerting pressure on tissues without causing tissue destruction. In 2016, Marquet 
et al.,13) used HIFU pulses (1 MHz central frequency, with acoustic pressure 6 MPa over 50 
µs to 1 ms, and 4 MPa over 1 to 10 ms) to successfully perform continuous extracorporeal 
pacing in a swine model. In these experiments the Marquet team was able to use a HIFU 
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beam to precisely (focal width 1.8 mm) target different regions of myocardium within the 
atria and the ventricles, and elicit a consistent electromechanical stimulation response, 
without causing any cardiac tissue damage. We hypothesized that when HIFU is delivered at 
lower acoustic pressures (1.7 MPa) over a greater area (focal width 5 mm) compared to those 
used by Marquet et al13), the imparted ARF would mechanically deform the myocardium 
without inducing a pacing focus. We used speckle tracking echocardiography to analyze 
and compare changes in strain with and without HIFU augmentation using regional 
longitudinal strain (RLS) as the variable of comparison. Speckle tracking echocardiography 
is a technique which uses tracking algorithms to follow the position of kernels (small regions 
within the myocardium each with a unique speckle pattern), frame-by-frame within an 
echocardiogram.14) This approach allows detection of subtle changes in cardiac physiology 
not attainable by traditional echocardiography. The ability to extracorporeally induce 
transient strain changes within the myocardium of a small animal model, and to measure 
these changes could serve as a powerful clinical tool to study the early pathogenesis of 
ischemia induced HFrEF and HFpEF.

METHODS

HIFU characteristics
The capabilities of the HIFU apparatus used in these experiments (see Figure 1 for details 
regarding transducer setup) were first tested using a hydrophone (see Table 1 for recorded 
pressure readings). These acoustic pressures are recorded after the ultrasound wave has 
traveled 7.7 cm from the transducer face through a gel filled plastic standoff. This length of 
the plastic standoff ensured that the ultrasound beam was in its focal zone (which is stable 
between 6-8 cm) when it exited the housing and struck the hydrophone. These recordings 
show that despite some expected pressure dampening within the tube (due to reflections 
and interference), a significant amount of pressure can still be generated by the beam after it 
exits the plastic standoff (310-864 kPa in the input voltage range tested). In prior literature, 
the upper estimate of Young's modulus of murine myocardium does not exceed 60 kPa.15) 
However, the actual acoustic pressure which must be delivered to the skin surface to induce 
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Figure 1. Transducer and positioning apparatus. (A) Schematic of ultrasound transducer housing and positioning apparatus. The transducer is housed within a 
7.7 cm plastic standoff filled with coupling gel. The same coupling gel was spread in a thin layer on the parasternal surface of the mouse, ensuring uninterrupted 
transmission of ultrasound pulses. The ultrasound field is shown, with no divergence within the murine LV myocardium, which is within the axial focal zone of the 
transducer. (B) Mouse affixed to Physiologic Monitoring Unit with Vevo® imaging system probe in place. 
LV: left ventricular.



myocardial strain changes is significantly higher than this theoretical value. This discrepancy 
is firstly because the beam must pass through skin, connective tissue, and bone, all of 
which would cause absorption and scattering. Secondly, Young's modulus is higher in in 
vivo myocardium since dynamic changes in myofilament configuration increases stiffness in 
systole, and potential energy stored during the contraction phase rebounds as elastic recoil 
during diastole.16) We therefore applied an input voltage sufficient to exert pressure an order 
of magnitude higher than that of the measured myocardial Young's modulus in literature. 
After fine tuning our input voltage based on careful evaluation of experimental results, 
we used an input voltage of 1 V (P-P) from the function generator for an acoustic pressure 
(extrapolated from hydrophone data in Table 1) of 1.7 MPa. We targeted the diastolic time 
period for these experiments because we suspected that the relaxed myocardium would 
yield to a greater extent under the impact of the ultrasound pulse as compared to stiffened 
myocardium during systole.

Cardiac imaging
The experimental protocol was approved by the Drexel Institutional Animal Care and Use 
Committee. All experiments were conducted in accordance with the approved guidelines.17) 
A total of 10 female C57BI6 mice (2-3 months old) of approximately the same size (~20-
25 g) were selected (5 control and 5 experimental group). The animals' hair was removed 
using Nair hair removal lotion from their parasternal region to enable visualization of 
the heart during echocardiography. The mice were then affixed to a heated platform with 
electrocardiogram contact pads (THM-150; Indus Instruments, Houston, TX, USA). The mice 
underwent induction of anesthesia with 2.5% (v/v) isoflurane mixed with room air. The heart 
rate, respiratory rate, temperature, and a continuous EKG signal were monitored using the 
Vevo® 2100 linear imaging array (FUJIFILM VisualSonics, Inc., Toronto, Canada). Isoflurane 
concentrations were titrated (1–2%) targeting heart rates between 300 and 400 bpm to 
ensure stable sedation throughout the experiment. The MS400 probe mounted to the Vevo® 
2100 system was used to capture real time images of the murine left ventricle (Figure 1B).

Ultrasound pulse deliverance
To generate the ultrasound pulse, a signal generator (model No. 33220A; Agilent 
Technologies Inc., Santa Clara, CA, USA) was first used to generate an analog sine wave 
signal. Each signal consisted of a train of 8 sequential sinusoidal outputs of peak-to-peak 
voltage 1 V, frequency 2.5 MHz, and duration 5 ms. The total duration of the 8 sequential 
pulses was therefore 40 ms. This signal was outputted to a power amplifier (model No. 
350L RF; Electronic Navigation Industries, Rochester, NY, USA) with gain of 50 dB. The 
amplified output was then fed into a flat-faced mono-element piezoelectric focused 
ultrasound transducer which generated an ultrasound pulse (Figure 2). The transducer had 
characteristics as follows: 11 mm aperture, center frequency 2.5 MHz, bandwidth 2.48–2.53 
MHz, focal spot size 10 × 10 mm, stable over focal length 6–8 cm. To focus the ultrasound 
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Table 1. Hydrophone pressure data
Function generator P-P output (mV) Pressure at focal point 7.7 cm from transducer face (kPa)

100 310
150 405

200 524
250 601
300 691
400 804
450 864



pulse, the transducer was placed in a columned standoff filled with coupling gel with a 
circular aperture of diameter 5 mm at the distal end. The surface of the ultrasound probe was 
positioned 7.7 cm from the left anterolateral chest wall. A microcontroller (Arduino Uno R3) 
and comparator circuit were used to synchronize the ultrasound pulses to 3 different periods 
within the cardiac cycle (early, mid, and late diastole). Figure 2 provides a schematic of the 
overall setup. Figure 1 illustrates the transducer setup relative to the surface of the mouse.

Myocardial imaging
Ultrasound pulses were delivered to the mouse ventricle during three different times in 
the cardiac cycle (early, mid, and late diastole). A microcontroller was programmed to 
deliver ultrasound pulses every alternate heartbeat, so that myocardial strain during native 
beats (those without any acoustic pressure augmentation) could be compared to strain 
during pulsed beats (those with acoustic pressure augmentation). This method in theory 
would allow each animal to be used as its own control. The Vevo® 2100 system (FUJIFILM 
VisualSonics, Inc.) was used to obtain in vivo images of the murine left ventricle. We utilized 
B-mode imaging of the parasternal long axis view of the heart (Figure 3). Using the Vevo® 
Strain software package (FUJIFILM VisualSonics, Inc.), these images were uploaded for 
analysis. Both global strain and RLS were calculated using speckle tracking algorithms. The 
strain which was measured and reported was the maximal value attained over a single cardiac 
cycle. For beats with acoustic augmentation, this value inevitably occurred during the period 
when the ventricle was subjected to the ultrasound pulse.
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Figure 2. Experimental design and setup. (A) Schematic of the experimental setup. The murine EKG waveform interfaces with a microcontroller which recognizes 
an R wave and triggers the signal generator to release a sinusoidal signal after a specified onset. This signal is then amplified and transduced into an ultrasound 
pulse. Real time echocardiography is simultaneously performed, while the animal's vital signs were continuously monitored. (B) Image on bottom left shows the 
oscilloscope, signal generator, amplifier, and ultrasound transducer inside plastic standoff. The microcontroller circuit is pictured on bottom right. 
HIFU: high intensity focused ultrasound.



Statistical analysis
The endocardial as well as the epicardial regions were separately traced and analyzed, and for 
each of these regions, 6 areas were analyzed separately (Figure 4), yielding peak RLS as the 
measured variable of comparison. In order to use the Vevo® Strain software to meaningfully 
calculate strain, the program had to first be able to identify the outer and inner boundaries 
of the myocardium and then accurately follow these traced boundaries throughout the entire 
cardiac cycle. Each calculated trace was visually inspected for correspondence with the actual 
movement of the myocardial wall. Any echocardiogram images which did not produce a 
satisfactory trace were manually excluded from data analysis. Within each time period, 5 
control animals and 5 experimental animals were compared. However, for the above reason, 
the data could not be compared in a paired analysis. Statistical differences between the mean 
RLS of the two groups were therefore calculated using unpaired two-tailed two-sample 
Student's t-test assuming equal variance (Microsoft® Excel® 2016; Microsoft, Redmond, WA, 
USA). A p-value of less than 0.05 was considered significant.
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A

Mid diastole
No augmentation

B

Mid diastole
With augmentation

Figure 3. Echocardiography images with and without HIFU augmentation. (A) Representative echocardiography 
image of LV mid-diastole without acoustic augmentation. (B) Representative echocardiography image of LV 
mid-diastole during delivery of the HIFU pulse. As the HIFU pulse travels through the myocardium, ultrasound 
interference patterns are discernable, visible as a faint haze overlying the image. Despite this interference, the 
software is able to detect and track kernels across frames to provide us with usable strain data. 
HIFU: high intensity focused ultrasound, LV: left ventricular.
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Figure 4. Left ventricular regions analyzed. 1 is posterior-base, 2 is posterior-mid, 3 is posterior-apex, 4 is 
anterior-base, 5 is anterior-mid, and 6 is anterior-apex.



RESULTS

Early diastolic ultrasound augmentation
The results of early diastolic delivery of HIFU pulses to the anterior LV surface are shown in 
Figure 5. To synchronize ultrasound delivery to the early diastolic period, an offset of 70 ms 
after recognition of an R wave peak was implemented. As noted previously, each ultrasound 
pulse consisted of a train of 8 sequential 5 ms sinusoidal outputs of peak-to-peak voltage 1 V 
and frequency 2.5 MHz, for a total ultrasound pulse delivery time of 40 ms. Every alternate 
beat received once such ultrasound pulse. As seen in Figure 5, the regions which experienced 
significant (p < 0.05) increase in RLS with acoustic augmentation were the anterior-apex of 
the endocardium, as well as the anterior-mid region of the epicardium.

Mid diastolic ultrasound augmentation
Figure 6 shows the RLS measurements for mid-diastolic HIFU pulse delivery. To target the 
mid-diastolic period for delivery of the ultrasound pulse, we used an offset of 100 ms after 
the R-wave. The same parameters were used for the ultrasound pulse train as mentioned 
previously (8 sequential 5 ms pulses—for total duration 40 ms, peak to peak voltage 1 V, 
frequency 2.5 MHz). Unlike in the early diastolic set of experiments, changes in RLS were 
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Figure 5. Early diastolic assessment of RLS. (A) Early diastolic RLS in the LV endocardium. The gray bars correspond to RLS measured in native beats (n = 5). The 
black bars correspond to RLS measured in beats with HIFU augmentation (n = 5). (B) Early diastolic RLS was measured in the LV epicardium for the same control 
and experimental animal groups. 
RLS: regional longitudinal strain, LV: left ventricular, HIFU: high intensity focused ultrasound.
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Figure 6. Mid diastolic assessment of RLS. (A) Mid diastolic RLS in the LV endocardium. The gray bars correspond to RLS measured in native beats (n = 5). The 
black bars correspond to RLS measured in beats with HIFU augmentation (n = 5). (B) Mid diastolic RLS was measured in the LV epicardium for the same control 
and experimental animal groups. 
RLS: regional longitudinal strain, LV: left ventricular, HIFU: high intensity focused ultrasound.



noted in two non-contiguous regions of the LV. The posterior-base of the endocardium, 
posterior-mid region of the epicardium, as well as the anterior-apex of the epicardium 
experienced significant (p < 0.05) increase in RLS with acoustic augmentation.

Late diastolic ultrasound augmentation
The final set of experiments targeted the anterior LV during the late diastolic time period. 
An offset of 130 ms was used after recognition of the R wave before deliverance of the HIFU 
pulse. Characteristics of the ultrasound pulse train are the same as described previously (8 
sequential 5 ms pulses—for total duration 40 ms, peak to peak voltage 1 V, frequency 2.5 
MHz). The results are shown in Figure 7. The epicardial region did not experience a statistical 
increase in strain with ultrasound augmentation. However, the endocardium however 
experienced statistically significant (p < 0.05) increase in RLS in the posterior-base region.

DISCUSSION

In this study, we explored a novel application of ultrasound energy to non-invasively alter 
regional myocardial strain in a murine model. Our experiments sought to mimic the changes 
seen early in the development of HF caused by ischemic CAD. By delivering a HIFU pulse 
over the anterior surface of the LV, we were successfully able to induce significant (p < 0.05) 
changes in regional LV RLS during early, mid, and late diastole. Our use of multiple impulses 
in rapid succession maximized the strain induced within the myocardium, each impact 
creating additive changes which became significant in the regions mentioned. The specific 
regions within which augmentation was observed were different in each of the three time 
periods. This was a consequence of different areas of the LV being positioned within the 
path of the HIFU beam. In early diastole, significant (p < 0.05) increase in RLS was noted 
in the anterior mid and apical regions which were initially within the focal point of the 
beam. In mid diastole, as the LV expanded, the anterior apex of the epicardium continued to 
show significant (p < 0.05) RLS augmentation. However, regions of significance (p < 0.05) 
spread to include the posterior mid and base regions of the epicardium and endocardium 
respectively as well. Finally, in late diastole, only the posterior base of the endocardium 
was noted to have significant (p < 0.05) increase in RLS, because the apex was now outside 
the focal point of the beam. The difference between the degree of augmentation in the 
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Figure 7. Late diastolic assessment of RLS. (A) Late diastolic RLS in the LV endocardium. The gray bars correspond to RLS measured in native beats (n = 5). The 
black bars correspond to RLS measured in beats with ultrasound augmentation (n = 5). (B) Late diastolic RLS was measured in the LV epicardium for the same 
control and experimental animal groups. 
RLS: regional longitudinal strain, LV: left ventricular, HIFU: high intensity focused ultrasound.



endocardium and epicardium is explained by the fact that in an in vivo cardiac model, the 
heart is somewhat free to roll under the ultrasound impulse. In this setting, some of the 
energy is redirected to torque the heart around its tissue attachments rather than linearly 
travelling perpendicular through both layers. We suspect that in a fixed ex vivo model, the 
endocardium and epicardium would exhibit near identical change in strain.

By our estimation, this work is the first demonstration of ultrasound-induced augmentation 
of LV RLS in a small animal model. We propose that a rapid non-invasive method of inducing 
regional LV strain changes would be beneficial in understanding the link between ischemic 
CAD and the early formative stages of HFrEF and HFpEF. This application is particularly 
needed in the understanding of the pathogenesis of HFpEF. HFpEF constitutes a significant 
and growing proportion of total HF cases, with morbidity and mortality on par with HFrEF 
and disproportionately worsening. However, it is far more poorly understood in terms of its 
causative mechanisms and underlying pathophysiology.18)19) In addition, aside from diuretics 
for symptom management and treatment of underlying risk factors, there is a concerning lack 
of morbidity and mortality altering treatments available for HFpEF. This represents a very 
real unmet medical crisis. One culprit for the scarcity of therapies for HFpEF is the lack of 
representative animal experimental models that accurately simulate its early pathophysiology.20)

There are several potential areas for future work based on these results. In addition to 
measuring RLS, we also measured LV ejection fraction, mitral and tricuspid E/A ratios, 
mitral and tricuspid annular plane of systolic excursion,21-23) however we did not find 
significant differences in these parameters between the 2 groups. Inducing changes in these 
parameters will be a goal for future studies. In addition, the mouse model presents some 
logistical challenges. The average LV dimension in our mice was 7–10 mm in length and 5–7 
mm in width. The width of the ultrasound beam was 5 mm, which is the same diameter 
as the aperture bored into the end of the plastic housing syringe. As the beam penetrates 
3 mm of skin and connective tissue to reach the LV myocardial surface of the left ventricle, 
it remains in its focal zone, maintaining a stable diameter of 5 mm. The beam was aligned 
with the LV using anatomic landmarks,24) and positioning confirmed by the appearance 
of faint ultrasound interference patterns seen on echocardiography images (Figure 3B). 
However, with such a small LV area to target, it is difficult to position the ultrasound probe 
precisely so that the focal point is aligned directly with the center of the ventricle and remains 
consistently aligned throughout each delivered pulse. Even if the location of the murine 
LV relative to the probe tip shifts by a few millimeters (which may occur during normal 
respirations of the mouse), the targeting of the ultrasound pulse will no longer be optimal. 
The ultrasound waves could strike the edges of the ventricle, creating a torque and rolling the 
heart, rather than buckling it. Experimenting with larger animal models, such as a porcine 
model, could circumvent this issue. This would give us a larger cardiac target and more 
consistently allow us to strike the center of the ventricle with every pulse.

Another topic which will be addressed in future studies is the safety assessment of the 
delivered energy and intensity used in this manuscript. At 2.5 MHz and with acoustic output 
of 200 W/cm2 at the mouse surface, our transducer was kept below power levels known to 
cause cavitation in vivo.25) Another area of concern is the extent of thermal effects within the 
myocardium. Thermal index in soft tissue, which is calculated from acoustic output and 
frequency,26) and the parameter around which ultrasound safety guidelines are based, does 
not translate well to the field of HIFU. HIFU uses short (on the order of µs to ms) pulses, 
compared to longer pulses (on the order of seconds to minutes) used in traditional diagnostic 
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ultrasound, for which this safety parameter was developed.27) With the very brief (5 ms per 
pulse, total 40 ms per pulse train) duration of our pulses, there is low risk of significant rise 
in temperature or damage to cardiac tissue. In comparison, HIFU pulses which have been 
used in literature to cause myocardial lesions have had power on the order of > 1,000 W/cm2 
and exposure time on the order of seconds.28)29) Upon dissection of the animals subjected 
to HIFU, inspection of the skin, rib cage, as well as the myocardial surface did not reveal 
any sign of edema, hemorrhage, or other damage when compared to control animals. In 
future large animal studies, as we utilize more powerful pulses over longer periods of time, 
histological analysis to look for cellular level of damage will become important.
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