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Abstract 

Heavy water is an ideal contrast agent for metabolic activity and can be adapted to a wide range of 
biological systems owing to its non-invasiveness, universal applicability, and cost-effectiveness. As a new 
type of probe, the heavy isotope of water has been widely used in the study of cell development, 
metabolism, tissue homeostasis, aging, and tumor heterogeneity. Herein, we review findings supporting 
the applications of and research on heavy water in monitoring of bacterial metabolism, rapid detection of 
drug sensitivity, identification of tumor cells, precision medicine, and evaluation of skin barrier function 
and promote the use of heavy water as a suitable marker for the development of detection and treatment 
methodologies. 
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Introduction 
Heavy water, also known as deuterium oxide or 

deuterium water, is a compound of heavy hydrogen 
(D) and oxygen (O) (Fig. 1). A molecule of heavy 
water is composed of two heavy hydrogen and one 
oxygen atom, with the molecular and chemical 
formula D2O. Heavy water is similar to ordinary 
water in appearance but has a higher density of 1.1079 
g/cm3, as well as higher freezing and boiling points of 
3.82 °C and 101.42 °C, respectively. The relative 
molecular mass of heavy water, 20.0275 Mr, is higher 
than that of water (H2O, 18.0153 Mr) by about 11%, 
hence the name “heavy” water. The differences 
between deuterium and hydrogen are negligible; 
while they have different neutron numbers, mass 
numbers, and physical properties, they have the same 
number of protons, number of outermost electrons, 
and chemical properties. Hence, the chemical 
properties of heavy water and ordinary water are also 
very similar. It has been proved that a small amount 
of heavy water does not cause adverse reactions [1-2]. 

Heavy water has been widely used as a probe in many 
fields. 

 

 
Figure 1. Chemical formula. Water is a compound of hydrogen (H) and oxygen 
(O), while heavy water is a compound of heavy hydrogen (D) and oxygen (O). 
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Quantitative determination of heavy 
water concentration  

Currently, the commonly used methods to 
quantify heavy water concentration include the 
density method, mass spectrometry, and spectroscopy 
techniques [3]. Among these, Raman spectroscopy has 
attracted increasing attention as a highly sensitive 
molecular imaging technique for studying complex 
biological systems, including cells, tissues, and 
various biological materials [4]. Raman spectroscopy 
analyzes the biochemical components of a sample by 
measuring the inelastic scattering of light by different 
molecular species, producing a spectrum based on the 
chemical bonds present within the analyzed samples. 
This technique allows non-destructive, label-free 
spectral imaging and analysis of cells, tissues, and 
nanoparticles [5-7]. As a new quantitative method, 
heavy water-labeled single-cell Raman microspectro-
scopy can reduce damage to cells and human 
interference factors. This method does not alter the 
cell composition or rely on cell culture and thus 
allows the rapid, quantitative, and nondestructive 
evaluation of the effect of drugs on the real-time 
metabolic activity of microorganisms at the single-cell 
level [8-10]. Simultaneously, the results of Raman 

spectroscopy provide abundant information, which 
can reflect the biochemical and structural 
characteristics of the material of interest. In theory, 
this method can detect the entire spectrum of 
substances in the cell, especially the “fingerprint area” 
in the range of ~600–1800 cm-1, which can distinguish 
cell types and explore the mechanism of microbial 
stress [11-13]. Thus, this technique has a broad 
application prospect and important guiding 
significance. 

The presence of heavy water results in heavy 
water peaks (C-D peaks) in specific regions (~2040–
2300 cm-1) of the Raman spectra of metabolically 
active microorganisms (Fig. 2) [14-15], which 
correspond to symmetric and asymmetric C-D 
stretching vibrations caused primarily by lipids and 
proteins [12,16-17]. Furthermore, the minimum 
inhibitory concentration based on metabolic activity 
(MIC-MA) can be used to quantitatively evaluate the 
effect of drugs on real-time metabolic activity of 
microorganisms based on the ΔC-D ratio (the 
difference between the current time and the baseline 
C-D) [8-9]. This technology has been widely used in 
microbial species identification and has also been 
widely used to evaluate the effect of drugs on 
bacterial metabolic activity. 

 

 
Figure 2. Heavy water Raman spectroscopy imaging. The heavy water peak (C-D peak) can be measured in the specific region of the Raman spectrum (~ 2040-2300 cm-1) 
by using a certain concentration of heavy-water cultured microorganisms. 
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Biosafety of heavy water 
Compared with other isotope markers, heavy 

water exerts little effect on microorganisms; 
furthermore, it is cost effective. The growth of bacteria 
and single-cell fungi in heavy water within a certain 
concentration range was not significantly inhibited (P 
> 0.05) compared with that in normal water [8]. Prior 
studies have suggested that cells and single-celled 
fungi can tolerate a certain concentration of heavy 
water, and thus, heavy water toxicity is not a limiting 
factor in this technique. In mice, a concentration of 
heavy water below 20% had no effect on physiological 
processes or cell division; did not modulate 
physiology, growth, appetite, or reproduction; and 
was found to have no teratogenic effect in 
multi-generation studies [18-21]. Studies have found 
that drinking 60–70 ml of heavy water daily would 
not cause adverse reactions [23-24]. Therefore, 
deuterium has been widely used as a stable isotope to 
evaluate the human body composition and metabolic 
rate [19,24-25].  

The determination of heavy water concentration 
was used for rapid evaluation of the effect of drugs on 
the metabolic activity of cells and single-cell fungi, 
with high sensitivity [26]. The labeling of heavy water 
as a probe has been widely used environmental 
studies. Li et al. used the heavy water labeling method 
to understand the metabolic flux of microbial 
communities in complex soil systems. Through heavy 
water modification of soil microorganisms, bacteria 
that release phosphate were identified according to 
the ratio of C-D stretching vibration to Raman 
spectroscopy [27]. Eichorst et al. also found the same 
method of heavy water labeling, which was more 
conducive to the objective evaluation of differences in 
metabolic activity of soil bacteria and proved that 
deuterium content was suitable for the detection of 
metabolic activity indicators [28]. A recent study by 
Taubert et al., using heavy water as a probe in the 
study of groundwater microbial communities, proved 
that this probe could identify active microorganisms 
in groundwater and their functional characteristics 
[29]. The special value of heavy water is reflected in 
the application of atomic energy technology. Heavy 
water reduces neutron velocity and controls nuclear 
fission by acting as a retarder in nuclear reactors. 

Medical applications of heavy water in 
the field of D2O-Raman spectroscopy  
Monitoring metabolism in individual bacteria 

Using heavy water with stable isotope labeling, 
deuterium intake was found to be a reliable indicator 
of general bacterial metabolic activity [30-31]. Because 

neither H2O nor D2O have Raman peaks in the C-D 
region, the background from water did not interfere 
with this approach [32]. Therefore, studies have been 
established to examine the effects of carbon sources 
and bacteria on deuterium uptake by quantitatively 
measuring the assimilation of heavy water into a 
single bacterium [33-34]. The deuterium assimilation 
rate was higher in the presence of simple substrates, 
such as sugar, compared to that with complex carbon 
substrates, and the difference was significant in 
bacterial isolates. The quantitative determination of 
deuterium content in heavy water was further used to 
distinguish between various types of bacteria and 
their metabolic activities; thus, this detection method 
could be combined with chemometrics to construct a 
powerful bacterial monitoring method. The 
absorption of deuterium as a marker of bacterial 
metabolic activity determined using Raman 
microspectroscopy was strongly affected by the 
organic carbon source used by a single bacterium for 
growth, as well as by the cell itself [35]. 

Rapid detection technology of drug sensitivity  
To counteract the common problem of antibiotic 

resistance [36-37], it is urgent that researchers develop 
technology to rapidly detect antibiotic drug 
sensitivity in clinic [38-39]. As metabolism 
suppressive drugs ultimately alter cellular 
macromolecule metabolism, a method for detecting 
macromolecule-specific metabolites following drug 
therapy would be valuable. The application of heavy 
water as a probe detection method and the C−D band 
shift as a biomarker of cellular metabolic activity to 
quantitatively evaluate the metabolic activity of 
bacteria in their environment in a culture- 
independent manner at the single-cell level has been 
proposed to determine the efficacy of antibiotics 
through metabolic inhibition [30]. In particular, the 
ability to evaluate specific metabolites and newly 
synthesized macromolecules provides greater insights 
into the underlying processes by which cells respond 
to drugs. Using heavy water as a probe to detect low 
numbers of bacteria solved the clinical problem of low 
sample content. By combining single-cell Raman 
spectroscopy and heavy water labeling, the active 
response of bacteria to antibiotics can be evaluated 
according to the deuterium-related characteristic 
peaks after only 30 minutes [40]. By evaluating the 
differences in heavy water assimilation activity 
between drug-resistant bacteria and sensitive bacteria 
under the action of antibiotics, the total time from 
urine collection to drug sensitivity reading can be 
reduced to 2.5 hours, which can guide clinicians to 
perform rapid diagnosis and screen effective 
antibiotics in time [41]. Therefore, this method can be 
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the basis of a new antimicrobial screening platform at 
the single-cell level. 

Identification of tumor stem cells  
Fast-growing tumor cells also appear to 

incorporate more D from heavy water compared to 
other cells; this property would be detected directly 
with a Raman microscope. Using heavy water in 
combination with Raman microscopy, the boundaries 
of a tumor can be revealed by its inherently higher 
metabolic activities compared to the surrounding 
normal tissue. Thus, Raman spectroscopy using heavy 
water as a probe can help identify tumor stem cells 
with specific patterns of metabolic activity [42-44]. 
Studies have found that unsaturated lipid levels in 
ovarian cancer stem cells increased significantly 
compared to those in normal cells [45-46]. In addition, 
the combination of heavy water-Raman spectroscopy 
and fluorescence labeling can be used to monitor the 
metabolic activity of specific cells and lineages in situ, 
especially the metabolic cooperation between glial 
cells and neurons [47]. In addition to monitoring the 
synthesis of lipids and proteins [48], heavy 
water-Raman spectroscopy can be used to monitor 
protein turnover, lipid consumption, and 
macromolecular degradation in tumor cells [49]. 

Positioning of precise targeted drug use  
Extracellular vesicles are biologically derived 

nanocarriers important for intercellular commu-
nication and transportation that have been proposed 
as disease biomarkers and therapeutic drug carriers 
[50-51]. The combination of heavy water-Raman 
spectroscopy imaging and bioactive molecules 
provides an opportunity to study the production and 
uptake of extracellular vesicles in various normal and 
dysfunctional states, as well as a direction for precise 
drug therapy [52-53]. Applying this approach to 
various newly designed drugs that target cell 
metabolism can identify which macromolecules are 
specifically targeted by the drug. This method can 
produce information-rich whole-cell spectral data and 
can be used to directly visualize and analyze 
extracellular vesicles at the two- and three- 
dimensional levels, thus providing guidance for the 
design of future extracellular vesicle treatment 
systems [54-55]. 

Assessment of skin barrier function  
Heavy water can be used as an excellent and 

cost-effective probe to evaluate skin barrier function. 
The penetration dynamics of water can be regulated 
by the integrity of the skin barrier [56-57]. Therefore, 
the application of D2O is a promising method to 
assess the state of the skin barrier, considering the 
isotope substitution and diffusion behavior of water 

[58-59]. Owing to the different Raman spectral 
characteristics of the O-D bond of heavy water and 
the O-H bond of the skin, the influence of external 
osmotic water can be minimized [60-61]. The 
combination of heavy water and Raman microscopy 
can sensitively identify small changes in the 
molecular composition of skin and can detect skin at 
different depths. Heavy water, as a skin probe, can be 
used to detect skin water-related properties by 
extracting spectra from each pixel depth and 
distinguishing endogenous and exogenous hydrogen 
bonds [62-63]. By using different hydrogen-bonding 
water types to calculate the relative water content, the 
total water content of different skin depths can be 
calculated [64].  

Other medical applications of heavy 
water  

 Deuterium in water has been reported to be 
rapidly balanced with mediators such as urine, saliva 
or serum [65-67], which can be used to measure the 
total amount of water in the body [68]. Lichtenbelt et 
al. showed that a 10-hour sampling time appears to be 
preferable for measuring total body water space and 
body composition by the deuterium-dilution 
technique [69]. Studies have shown that D2O can be 
used as a tracer to measure tissue perfusion and blood 
flow [70-71]. Recently, Lin Chen et al. demonstrated 
that D2O can be used as a new contrast agent to guide 
intravascular neurointervention and that deuterium- 
based MRI is a secure and practical method that can to 
accurately identify the perfusion area and to predict 
the affected area, which can guide real-time 
endovascular intervention [72]. Studies have 
demonstrated the potential of the deuterium 
compound-based MRS method in assessing tissue 
metabolokinetics [73]. DMRS-based deuterium 
metabolic imaging has also been shown to be useful in 
detecting tumor cells [74]. Recently, Laurie et al. 
proposed quantitative exchange-label turnover MRS, 
which can improve the sensitivity of the metabolic 
map and directly monitor cell metabolism in vivo. This 
approach is expected to be a new approach for 
exploring metabolic disorders in a wide range of 
human diseases [75]. Based on the hypothesis that the 
conversion of amino acids in the presence of D2O 
leads to the production of deuterium-labeled amino 
acids [76-77], some studies have proved that the rate 
of protein synthesis can be estimated under the action 
of D2O [77-79]. Herath et al. demonstrated that 
deuterium-based high-resolution mass spectrometry 
provides a useful method for the quantification of low 
levels of deuterium enrichment that is not limited to 
specific molecular classes; this method is expected to 
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be useful for the study of metabolic flux of 
deuterium-labeled tracers [80]. 

Development prospects 
The exploration of the applications of heavy 

water provides novel insights and aids the 
development of new diagnostic and therapeutic 
strategies. Heavy water can be applied to the study of 
a variety of developmental processes, including cell 
development, metabolism, tissue homeostasis, drug 
resistance, and aging. As a nondestructive, 
noninvasive, and context-free imaging method, the 
combination of heavy water and Raman microscopy 
can be used to visualize the kinetics of protein 
synthesis, lipid production, and DNA metabolism in 
various model organisms at a low cost and without 
tissue bias. The latest developments in the 
applications of the heavy water labeling method 
indicate the possibility of real-time tracking of single 
cells, thus providing further understanding of the 
transport of single cells and making the in vitro study 
of single cells possible. This method will facilitate the 
comprehensive real-time molecular characterization 
and imaging of single cells in vitro to promote the 
understanding of single-cell biology. The newly 
developed classification strategy based on the C-D 
stretching vibration range avoids interference from 
other Raman bands owing to its higher sensitivity and 
thus saves time by negating the need to analyze large 
data sets. Heavy water provides a basis for the rapid 
clinical diagnosis and selection of appropriate 
antibiotics to treat bacterial infection. In particular, it 
provides a valuable method to facilitate the treatment 
and diagnosis of critical bacterial infections and can 
also be used to assay drug susceptibility. The 
recognition ability of heavy water to cancer stem cells 
with specific metabolic activities provides a new 
direction and visual angle for the diagnosis and 
treatment of clinical tumors. The combination of 
heavy water with Raman spectroscopy could be used 
to reveal the molecular components with biochemical 
significance through multivariable analysis, such as in 
the rapid identification of metabolically active 
drug-resistant cells or cancer stem cells with 
metabolic pattern changes after chemotherapy or in 
the exploration of the roles of such cells in 
chemotherapy failure, and could thus provide a 
direction for the development of personalized cancer 
therapy. Through the determination of heavy water 
concentration, data processing, and analysis 
framework, we can further promote the comparative 
study of extracellular vesicle uptake under different 
conditions or by different cell types, which may 
provide further guidance in the study of the role of 
different molecules, targeting and uptake of 

extracellular vesicles, and design of extracellular 
vesicle-based therapeutics. Heavy water provides 
data on different penetration depths and molecular 
skin effects to varying degrees, supporting the idea of 
multiple roles of heavy water in the skin as a 
convenient and inexpensive target. 

 As an emerging class of biomarker, heavy water 
has considerable advantages over traditional markers. 
Currently, several studies have partially elucidated 
the value of heavy water in medical research. 
However, the applications of heavy water in medical 
research need to be further explored, and heavy water 
is expected to play a more important role in the 
development of novel clinical management 
modalities. 

Abbreviations 
D: heavy hydrogen; H2O: water; MIC-MA: 

minimum inhibitory concentration based on 
metabolic activity; O: oxygen. 
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