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The brain’s life-long capacity for experience-dependent plasticity allows adaptation to
new environments or to changes in the environment, and to changes in internal brain
states such as occurs in brain damage. Since the initial discovery by Hebb (1947)
that environmental enrichment (EE) was able to confer improvements in cognitive
behavior, EE has been investigated as a powerful form of experience-dependent plasticity.
Animal studies have shown that exposure to EE results in a number of molecular and
morphological alterations, which are thought to underpin changes in neuronal function and
ultimately, behavior. These consequences of EE make it ideally suited for investigation
into its use as a potential therapy after neurological disorders, such as traumatic brain
injury (TBI). In this review, we aim to first briefly discuss the effects of EE on behavior
and neuronal function, followed by a review of the underlying molecular and structural
changes that account for EE-dependent plasticity in the normal (uninjured) adult brain.
We then extend this review to specifically address the role of EE in the treatment of
experimental TBI, where we will discuss the demonstrated sensorimotor and cognitive
benefits associated with exposure to EE, and their possible mechanisms. Finally, we
will explore the use of EE-based rehabilitation in the treatment of human TBI patients,
highlighting the remaining questions regarding the effects of EE.
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Experience-dependent plasticity encompasses a vast number of
paradigms that range from deprivation to alterations and enrich-
ments in the environment, and has been investigated in great
detail across development through to adulthood (see reviews by
Hubel and Wiesel, 1970; Hubel, 1978; Kaas, 1991; Klintsova and
Greenough, 1999; Sur and Leamey, 2001; De Villers-Sidani and
Merzenich, 2011; Bengoetxea et al., 2012). For the purposes of the
present review, we chose to focus on plasticity conferred by global
changes to the environment, termed environmental enrichment
(EE). We will focus only on the changes evoked by this manipula-
tion when applied in adulthood as our final aim is to demonstrate
that it represents an exciting potential therapy in adult traumatic
brain injury (TBI). As we shall review, EE alters neuronal function
through a range of morphological and molecular interactions,
which lead to alterations in sensorimotor and cognitive behav-
ior. These changes make EE an ideal candidate in the treatment of
TBI. To lead to this thesis, we first commence with a review of EE’s
capacity to evoke plasticity in the uninjured brain, to provide the
context in which we will cast the role of EE in TBI. We focus here
on EE-induced changes in sensory cortices due to the demon-
strated effects of TBI on altering neuronal function in sensory
cortices (Hall and Lifshitz, 2010; Ding et al., 2011; Alwis et al.,
2012; Johnstone et al., 2013); it is also our view that changes in
neuronal activity in sensory cortices after injury must underlie
a significant portion of the persistent cognitive deficits found in
TBI (Caeyenberghs et al., 2009; Davis and Dean, 2010; Lew et al.,
2010; Folmer et al., 2011). The review of EE effects in the normal

brain is also necessary to understand the mechanisms whereby
EE produces changes in neuronal function in the normal brain,
before we can begin to hypothesize about how EE exerts its ben-
eficial effects after brain injury. Finally, we discuss the current
literature regarding the use of EE as a potential therapy post-
TBI, in animal studies with induced TBI, and in studies of human
rehabilitation after injury.

WHAT IS EE?
EE refers to an experimental paradigm in which laboratory ani-
mals are housed in an environment allowing cognitive, motor and
sensory stimulation at levels much greater than those which occur
under standard laboratory housing conditions (Hebb, 1947, 1949;
Van Praag et al., 2000). Early studies in animals have shown that
the enhanced stimulation from EE produces many remarkable
benefits at anatomical, molecular and behavioral levels (Hebb,
1947; Bennett et al., 1969; Diamond et al., 1972, 1976; Greenough
and Volkmar, 1973; Torasdotter et al., 1998), with numerous stud-
ies following on from this work to further characterize the effects
of EE (see reviews by Van Praag et al., 2000; Nithianantharajah
and Hannan, 2006). In EE, the housing environment is modified
by providing a larger enclosure, natural bedding and a variety of
novel objects, in the expectation that this will promote greater
physical activity in exploration and interaction with a novel and
complex environment (Benaroya-Milshtein et al., 2004; Zebunke
et al., 2013). Social enrichment in the EE environment, involving
housing animals with multiple cagemates to encourage complex
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social interactions (Rosenzweig et al., 1978; Mesa-Gresa et al.,
2013), is also believed to contribute to an enhanced sensori-
motor and cognitive experience. Enhanced physical activity and
enhanced social interaction each provide benefits to the brain;
physical activity on its own improves cognitive performance in
parallel with a range of neural changes including enhanced neu-
rogenesis and increased levels of neurotrophic growth factors and
increased neurotransmitter subunit expression (Van Praag et al.,
1999; Farmer et al., 2004; Erickson et al., 2011), while social
enrichment on its own has been shown to result in an increase
in brain weight (Rosenzweig et al., 1978). When the two are com-
bined in an appropriately enriched environment, a much more
extensive set of cerebral changes occurs (Rosenzweig et al., 1978;
Johansson and Ohlsson, 1996; Sozda et al., 2010).

The combination of social, physical and cognitive stimulation
is most often used in studies of EE and we term this “generic”
EE, wherein the whole environment is non-selectively enriched.
However, in some instances, in what we term “specific” EE,
enrichment has been targeted to affect a specific system, e.g.,
auditory-specific enrichment (Engineer et al., 2004; Percaccio
et al., 2005, 2007; Jakkamsetti et al., 2012) consisting of com-
ponents of generic EE in combination with systems designed to
produce a variety of salient sounds; or tactile-specific enrichment
(Bourgeon et al., 2004; Xerri et al., 2005) where rats were raised
in an environment consisting of objects with various textures.
Differences in generic and specific EE will be highlighted further,
in the context of EE effects on neuronal function in the cortex.

BENEFICIAL EFFECTS OF EE ON BEHAVIOR
EE exposure results in a range of sensorimotor and cognitive
benefits in laboratory animals, which we only briefly summa-
rize as these have been well reviewed elsewhere (Van Praag
et al., 2000; Nithianantharajah and Hannan, 2006; Simpson and
Kelly, 2011). In normal animals, EE significantly improves spatial
and non-spatial learning and memory, novel object discrimina-
tion, increases the speed of spatial learning and enhances spatial
searching strategies (Van Praag et al., 2000; Schrijver et al., 2002;
Nithianantharajah and Hannan, 2006; Kulesskaya et al., 2011;
Vedovelli et al., 2011; Leger et al., 2012). EE appears to decrease
anxiety, as evidenced in a variety of tests (Fernandez-Teruel et al.,
2002; Larsson et al., 2002; Galani et al., 2007; Harati et al., 2013).
EE also improves task-learning, and recent and remote mem-
ory retrieval (Harati et al., 2013), likely due to a greater ability
to consolidate and retain information because of social enrich-
ment (Gardner et al., 1975). However, effects are not all positive
and studies have shown both increases and decreases in aggres-
sive social behavior after EE (Abou-Ismail, 2011; Workman et al.,
2011; McQuaid et al., 2012; Mesa-Gresa et al., 2013), possibly
due to factors such as differences in EE housing conditions, strain
differences, and experimental design.

In a similar vein, the consensus (Nithianantharajah and
Hannan, 2006; Kazlauckas et al., 2011; Landers et al., 2011) is that
EE encourages activity and exploratory behavior though there
are some inconsistencies: some studies show increased activity in
novel environments (Benaroya-Milshtein et al., 2004), and oth-
ers show faster habituation and less activity (Zimmermann et al.,
2001; Schrijver et al., 2002; Elliott and Grunberg, 2005), when

compared with animals housed in standard or impoverished envi-
ronments (Varty et al., 2000; Zimmermann et al., 2001). Recently,
Zebunke et al. (2013) showed a decrease in general activity during
an open field test, with an increase in duration of exploration of
novel objects by pigs exposed to cognitive enrichment. Similarly,
Mesa-Gresa et al. (2013) also found that EE rats exhibited longer
durations of novel object exploration, while Schrijver et al. (2002)
found an increase in activity in a light/dark box in EE rats. Bruel-
Jungerman et al. (2005) have also reported that EE animals were
capable of retaining memory during a novel object recognition
test for up to 48 h after initial exposure, despite a lower object
exploration time during the learning phase of the test.

Among the most robust of findings is that EE and sen-
sory training/learning improves stimulus discrimination (Gibson,
1953; Kendrick et al., 1992; Recanzone et al., 1993). Mandairon
et al. (2006a,b) have shown that olfactory enrichment results in an
improved ability to discriminate between odor pairs, likely due to
changes in neuronal response properties (Buonviso and Chaput,
2000; Fletcher and Wilson, 2003). Similarly, EE enhances spatial
discrimination of sound source, with faster reaction times and
improved discrimination accuracy (Cai et al., 2009). Bourgeon
et al. (2004) reported that while EE housing did not affect an
animal’s tactile ability to discriminate between textured surfaces,
enriched animals did learn to perform the discrimination task
faster. The changes in behavior reported above must occur as a
consequence of the effects of EE on neuronal function, which in
turn, occur as a result of the various molecular and morphological
changes mediated by EE.

NEURONAL FUNCTIONAL CHANGES ASSOCIATED WITH
EXPOSURE TO EE
The EE-induced changes in behavior can be linked to specific
changes in neuronal functionality. This has been studied in best
detail for behavior associated with hippocampal function (Van
Praag et al., 2000; Eckert and Abraham, 2013) and we briefly
describe these as a prelude to describing the changes seen in adult
sensory cortices, the particular brain regions of interest here in the
context of our over-arching thesis (Alwis et al., 2012) that many
persistent cognitive and motor deficits in TBI have sensory deficits
as an underlying cause. The studies discussed below have used
electrophysiological techniques such as in vivo and in vitro intra
and extracellular recordings to specifically investigate EE-induced
changes in neuronal function.

EE-induced improvements in hippocampal-dependent mem-
ory function have been linked to experience-dependent changes
in hippocampal synaptic strength (Kempermann et al., 1997;
Schrijver et al., 2002; Vedovelli et al., 2011), with reports of
increases in excitatory post-synaptic potential (EPSP) amplitudes
and evoked population spikes in rats exposed to generic EE,
both in in vivo studies (Sharp et al., 1985; Irvine and Abraham,
2005; Irvine et al., 2006) and in in vitro studies of slices from
the dentate gyrus (Green and Greenough, 1986; Foster et al.,
1996) or the CA3-CA1 pathway (Foster and Dumas, 2001; Malik
and Chattarji, 2012). The enhanced synaptic efficacy in dentate
gyrus appears likely to act through AMPA and NMDA recep-
tor mediated mechanisms (Foster et al., 1996). Interestingly,
these increases did not outlast the termination of EE housing
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(Green and Greenough, 1986), even though EE-induced changes
in behavior and morphology persist after discontinuation of EE
(Camel et al., 1986; Cheng et al., 2012), suggesting that informa-
tion stored in the dentate gyrus may be related to more transient
behavioral effects of EE. However, there is also contradiction in
studies of EE-induced long-term hippocampal plasticity. Eckert
and Abraham (2010) reported that long-term exposure to EE did
not result in enhanced synaptic transmission in the hippocam-
pus, both in vivo and in vitro, suggesting that the variability in
these studies may have be due to different EE paradigms, or to
homeostatic mechanisms to re-establish normal synaptic trans-
mission (Turrigiano, 1999, 2008). Foster and colleagues (Foster
et al., 1996; Foster and Dumas, 2001) demonstrated that EE
housing inhibits LTP induction in the perforant pathway, sug-
gesting that both experience-dependent synaptic plasticity and
LTP expression share similar yet-unknown underlying mecha-
nisms. Conversely, increased LTP expression has been reported
after EE exposure (Duffy et al., 2001; Artola et al., 2006; Eckert
and Abraham, 2010; Malik and Chattarji, 2012). One resolution
for these effects, other than differences in the EE conditions, is
that LTP induction after EE may be differentially regulated in
different regions of the hippocampus.

It is worth noting here that short-term plasticity in the hip-
pocampus has not been shown to be affected by EE (Foster et al.,
1996; Foster and Dumas, 2001; Eckert and Abraham, 2010; Malik
and Chattarji, 2012).

In contrast to the hippocampus, little is known about EE-
induced changes in neuronal functionality in cortex. What
changes there are in cortical neuronal function have mainly been
examined at the level of the sensory cortices and we discuss these
studies in detail below. EE-induced changes in neuronal function
in the normal (uninjured) sensory cortices are particularly salient
to our thesis and may provide us with insights into the role of
EE on neuronal function after brain injury, of which nothing is
known as yet.

EE AND SENSORY CORTICES
The effects of EE have been studied most extensively in audi-
tory cortex, in some detail in somatosensory cortex, and only to a
limited degree in visual cortex.

In auditory cortex, the effect of EE has been studied at lev-
els ranging from brain slices through to extracellular recordings
from neurons in anaesthetized animals. In the investigation of the
effects of EE on the auditory cortex, studies have used enriched
environments that include specific auditory enrichment in the
form of playback of various sounds within the housing environ-
ment (Engineer et al., 2004; Percaccio et al., 2005, 2007; Nichols
et al., 2007). Many studies report effects that mirror those seen in
the hippocampus, of increased synaptic efficiency. Thus, auditory
cortex slices show that specific EE induces an increase in exci-
tatory post-synaptic current (EPSC) amplitudes, coupled with a
decrease in current rise-times in supragranular cortical layers and
no changes in infragranular layer V (Nichols et al., 2007). In vivo
recordings from the anaesthetized rat, primarily from Layers 4/5
of adult primary auditory cortex after specific auditory EE, have
demonstrated an increase in cortical responsiveness (both sponta-
neous and stimulus-evoked), decreased response latencies, and an

increase in frequency selectivity (Engineer et al., 2004; Percaccio
et al., 2005; Cai et al., 2009). Percaccio et al. (2005, 2007) also
found that EE increased paired pulse depression (PPD) in the
rat auditory cortex, indicating an increased probability of synap-
tic transmitter release and thus, enhanced synaptic transmission.
Other studies in auditory cortex found EE could cause reor-
ganization of the cortical tonotopic map (Norena et al., 2006;
Pienkowski and Eggermont, 2009; Zhou et al., 2011; Kim and Bao,
2013), and alterations in stimulus frequency selectivity over either
a range of frequencies (Zhou et al., 2011) or for frequencies spe-
cific to those used as a part of the enrichment condition (Norena
et al., 2006; Pienkowski and Eggermont, 2009).

The effects of auditory enrichment are not restricted to pri-
mary auditory cortex, and Jakkamsetti et al. (2012) have reported
that responses in posterior auditory field (PAF) are also increased
when compared with animals housed in standard environments.
These increased firing rates were accompanied by decreases in
response latency and duration, and a reduction in receptive field
size, as seen in primary auditory cortex (Engineer et al., 2004;
Zhou et al., 2011; Jakkamsetti et al., 2012).

Unlike the above-noted reports, some studies do not report
increased neuronal responsiveness and sharper frequency tuning
after exposure to auditory enrichment (Condon and Weinberger,
1991; Bao et al., 2003). Instead, these studies found that a repeated
auditory stimulus decreased responsiveness to frequencies used in
the stimulus (Condon and Weinberger, 1991), and exposure to
noise burst trains produced broadly tuned receptive fields (Bao
et al., 2003). Percaccio et al. (2007) have suggested that a criti-
cal variable in eliciting EE effects in auditory cortex is the nature
of the enrichment, i.e., how engaging or complex the stimuli
are. This would explain the increased neuronal responsiveness
reported by Percaccio et al. (2007) in rats receiving even pas-
sive exposure to specific auditory EE, which included situation-
dependent stimuli from the environment and from cagemates, as
opposed to simple, less behaviorally relevant stimuli.

Similar to studies in auditory cortex, generic EE (i.e., non-
specific enrichment) results in reorganized cortical topographic
maps, decreased receptive field sizes, increased response selectiv-
ity and increased sensory evoked potentials in the somatosensory
cortex (Xerri et al., 1996; Coq and Xerri, 1998; Polley et al., 2004;
Devonshire et al., 2010). One interesting effect demonstrated here
is that EE effects on receptive field sizes and responses to stim-
ulation of the main topographic input to the neurons may be
laminar selective (an effect that does not appear to have been
explored in auditory cortex). Thus, in the rodent barrel cor-
tex that receives tactile input from the mystacial whiskers, EE
caused a decrease in receptive field size and in neuronal responses
evoked by stimulation of the “Principal Whisker” (the topograph-
ically matched whisker providing the main input to a group of
neurons in the barrel cortex) in supragranular cortical Layers
2/3, but there were no changes in response strength or receptive
field size in input Layer 4 (Polley et al., 2004). It is worth not-
ing that Guic et al. (2008) found that EE caused an increase in
cortical representational area in Layer 4. However, these effects
were seen after stimulation of only a few selective whiskers, while
other whiskers were trimmed whereas Polley et al. (2004) used a
non-deprived paradigm where all whiskers remained untrimmed.
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These different effects are likely a reflection of variations in
experimental design of the EE conditions, consistent with the
conclusions drawn from studies in auditory cortex that the nature
of EE conditions influences neuronal outcomes.

These studies, where the emphasis was on measuring recep-
tive field sizes and responses only to simple input from the main
topographically-matched region of the body, indicated laminar
specificity of effects. However, when neuronal encoding of sophis-
ticated sensory input is the metric, the effects of generic EE occur
globally across all cortical layers. Thus, in our own studies, 8–
10 weeks of EE exposure increased neuronal firing rates globally
across all layers 2–5 of the rat barrel cortex, and did so in response
to both simple stimuli and a variety of complex, naturalistic stim-
uli (Alwis and Rajan, 2013). It is interesting to note that these
effects occur even to the complex stimuli as our previous work on
TBI (Alwis et al., 2012) had suggested that the complex stimuli
may engage a diversity of intra-cortical processing mechanisms
not seen with the simple stimuli. These effects occurred without
any change in response latency, suggesting that the effects were
specific to cortex and not due to changes at lower levels of the
somatic pathways to cortex.

Although not often studied on its own in somatosensory cor-
tex, recently EE has been combined with another manipulation
that induces experience-dependent plasticity in barrel cortex, viz.
whisker trimming and/or stimulation (Armstrong-James et al.,
1992; Diamond et al., 1993, 1994; Rema et al., 2006; Guic et al.,
2008; Megevand et al., 2009). Here the picture is rather murky,
with one study suggesting that EE operates through different
mechanisms than other plasticity mechanisms in barrel cor-
tex, but another suggesting that it operates through the same
mechanisms. The first seems to apply in the case of whisker trim-
ming: when whisker pairing (all whiskers on one side of the
face trimmed except for a pair of adjacent whiskers) is coupled
with short (15 h) generic EE exposure, there is an accentuation
of the effects induced by whisker trimming alone: a faster shift
of receptive field bias toward the untrimmed whiskers, stronger
evoked responses to the intact paired whisker than to deprived
whiskers, and increased spontaneous activity in supra-granular
and granular layers (Rema et al., 2006). In contrast EE may oper-
ate through the same mechanisms as some other plasticity cases.
Thus, a short duration of whisker stimulation at a frequency
often used during exploratory whisking behavior increases stim-
ulus evoked potentials in both supra-granular and granular barrel
cortex layers (Megevand et al., 2009)—but, addition of EE to
the whisker stimulation paradigm does not further potentiate
responses (Megevand et al., 2009).

Finally, only a limited number of studies have examined the
effects of EE in the normal visual cortex. In area 17 of the adult
visual cortex, similar to effects seen in the auditory cortex, generic
EE results in sharper bandwidths in orientation tuned cells,
increased neuronal responses to light stimuli, increased visual
acuity, as well as increased stimulus contrast and temporal selec-
tivity (Beaulieu and Cynader, 1990a,b; Mainardi et al., 2010). In
addition to these effects in normal adult visual cortex, studies of
EE-induced plasticity in the adult visual cortex have also exam-
ined effects in the context of monocular deprivation (MD) and
amblyopia. MD during developmentally critical periods induces

a shift in ocular dominance (OD) so that more neurons respond
to stimulation of the open eye (Frenkel and Bear, 2004; Mrsic-
Flogel et al., 2007). Such plasticity is normally not seen when
MD is started in adulthood, but EE housing for 3 weeks re-
activates cortical plasticity in supragranular layers of adult visual
cortex such that OD changes are possible again and visual evoked
potentials (VEPs) elicited by stimulation of the deprived eye are
greatly depressed (Baroncelli et al., 2010b). In amblyopia, indi-
vidual components of EE such as motor and visual stimulation, as
well as the combination of these components, also recover visual
acuity and restore OD plasticity and binocularity in supragranu-
lar layers of adult visual cortex (Sale et al., 2007; Baroncelli et al.,
2012; Tognini et al., 2012).

Taken together, these studies of EE effects in sensory cor-
tices show that generic EE is potent at producing many changes
in neuronal responses, such as stronger responses and greater
stimulus selectivity; that the receptive field effects may be
laminar-selective and depend on the type of enrichment but
that effects on more sophisticated neuronal processing, par-
ticularly of naturalistic stimuli that mimic everyday events,
occur across all cortical laminae; and finally, that EE may
operate independent of some other mechanisms of cortical
plasticity.

MECHANISMS UNDERLYING EE-INDUCED CHANGES IN
NEURONAL FUNCTION
There are numerous well-documented structural and biochem-
ical consequences of EE which may underlie the effects of EE
on neuronal function. We broadly review these changes with EE
(summarized in Figure 1). It must be noted that in most cases,
we do not know how these structural and molecular changes
contribute to EE-induced changes in neuronal function: to date,
there has been very limited attempt only to directly manipulate
these fine-scale changes to determine to what extent they cause
EE-related changes in neuronal functionality.

MORPHOLOGICAL CHANGES
It was very early recognized that exposure to complex, enriched
environments causes gross morphological changes in an overall
increase in brain weight, particularly in cortical and hippocam-
pal weight and thickness (Bennett et al., 1969; Walsh et al., 1969;
Diamond et al., 1972, 1976). The factors contributing to these
gross morphological changes include increased neuronal density
and size, increased dendritic branching and length, increased den-
dritic spine density, and increased turnover in pyramidal and
stellate cells (Holloway, 1966; Diamond et al., 1967; Volkmar and
Greenough, 1972; Globus et al., 1973; Greenough and Volkmar,
1973; Greenough et al., 1973; Uylings et al., 1978; Connor et al.,
1982; Turner and Greenough, 1985; Kempermann et al., 1997;
Leggio et al., 2005; Jung and Herms, 2012). Unsurprisingly, the
changes in dendritic morphology are accompanied by synaptic
alterations, with EE resulting in increased numbers of synapses
and synaptic contacts (Jones et al., 1997; Briones et al., 2004;
Landers et al., 2011), which could enhance cortical synaptic trans-
mission and hence, alter cortical excitation/inhibition balances.

One particularly notable EE-induced change is neurogene-
sis, which may contribute to enhanced cognitive performance
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FIGURE 1 | Environmental enrichment induces morphological and

molecular changes in the brain. An overview of the number of
structural and molecular mechanisms that contribute to the changes in

neuronal function, and ultimately, changes in behavior, seen after EE
exposure. These mechanisms are thought to underlie EE-induced neural
plasticity.

(Kempermann et al., 1997, 1998; Nilsson et al., 1999; Bruel-
Jungerman et al., 2005). Cell proliferation, improved neuronal
survival and functional integration of new neurons have all
been demonstrated to occur in the adult dentate gyrus after EE
(Kempermann et al., 1997, 1998; Van Praag et al., 2000; Lu et al.,
2003; Bruel-Jungerman et al., 2005) and pharmacological inhibi-
tion of cell proliferation during EE prevented hippocampal neu-
rogenesis and any improvement in a hippocampal-based memory
task (Bruel-Jungerman et al., 2005). Decreased neurogenesis has
been linked to cognitive decline (Drapeau et al., 2003, 2007),
and restoration of neuronal proliferation and survival leads to an
improvement in cognitive behavior (Kempermann, 2002).

The enhanced hippocampal neurogenesis, improved neuronal
cell survival, increased synaptic density and dendritic branch-
ing (Kempermann et al., 1997, 1998; Bruel-Jungerman et al.,
2005), and the growth factor up-regulation that is discussed
below, have all been suggested to be responsible for EE-induced
improvements in spatial and non-spatial learning and mem-
ory and enhanced spatial searching strategies (Van Praag et al.,
2000; Schrijver et al., 2002; Nithianantharajah and Hannan, 2006;
Kulesskaya et al., 2011; Vedovelli et al., 2011; Leger et al., 2012).
Increased habituation to novel objects has also been attributed
to a decrease in activation of hippocampal neurons during novel
object exposure in enriched animals, in contrast to the increased
activation seen in animals housed in standard conditions when
exposed to objects in novel environments (Zhu et al., 1997; Leger
et al., 2012). These results support the idea that EE-induced mor-
phological changes contribute to alterations in behavior, through
changes in overall neuronal function.

It must be noted here that similar neurogenesis has not been
demonstrated to occur in cortex after EE, but this may be for a
want of study not for an absence of the effect. In the absence
of this effect, it is difficult to speculate to what extent neuro-
genesis contributes to EE-induced changes in cortical neuronal

functionality or cortex-based processes. We will argue below that,
in any case, neurogenesis is not required to occur in cortex to
produce the EE-induced changes in responses and in function-
ality and that those changes can be produced by alterations in
the balance between excitation/inhibition interplay that shapes
neuronal responses and function.

MOLECULAR CHANGES
The EE-induced structural and functional changes described
above occur through molecular cascades that involve increases
in neurotrophic factor and neurotransmitter levels (Van Praag
et al., 2000; Mohammed et al., 2002; Will et al., 2004;
Nithianantharajah and Hannan, 2006), and increased expression
of regulatory proteins that enhance the number and stability of
synapses, increase cell proliferation, and promote neurotrans-
mitter release (Rampon et al., 2000; Frick and Fernandez, 2003;
Nithianantharajah et al., 2004).

Neurotrophic factors of particular importance to EE include
brain derived neurotrophic factor (BDNF) and nerve growth
factor (NGF), with levels of both increasing following expo-
sure to exercise and EE (Pham et al., 1999; Birch et al., 2013)
in brain regions including cortex, hippocampus and cerebellum
(Torasdotter et al., 1998; Angelucci et al., 2009). In the adult
brain, BDNF and NGF promote experience-dependent plasticity
by enhancing synaptic plasticity, signaling, learning and mem-
ory (Kang and Schuman, 1995; Torasdotter et al., 1998; Pham
et al., 1999; Bekinschtein et al., 2011). Increases in neurotrophins
appear to underlie improved motor and cognitive function after
EE (Falkenberg et al., 1992; Henriksson et al., 1992; Linnarsson
et al., 1997; Bekinschtein et al., 2011; Gelfo et al., 2011; Bechara
and Kelly, 2013; Birch et al., 2013) since suppression of BDNF lev-
els causes deficits in neurogenesis, learning behavior and memory
(Linnarsson et al., 1997; Minichiello et al., 1999; Rossi et al., 2006;
Heldt et al., 2007; Furini et al., 2010).

Frontiers in Systems Neuroscience www.frontiersin.org September 2014 | Volume 8 | Article 156 | 5

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Alwis and Rajan EE and the sensory brain

Similarly, neurotransmitter levels are also affected by exposure
to EE, suggesting a role in the mediation of brain plasticity.
Serotonin is important in promoting neuroplasticity (Maya
Vetencourt et al., 2008; Baroncelli et al., 2010a), and EE induces
an increase in serotonin receptor expression and in serotonin lev-
els (Rasmuson et al., 1998; Koh et al., 2007; Baroncelli et al.,
2010a). Levels of other neurotransmitters associated with synaptic
plasticity, such as acetylcholine and noradrenaline, also increase
following EE (Por et al., 1982; Galani et al., 2007; Brenes et al.,
2009). Increased cortical responsiveness may then be attributed to
increases in synaptic transmission efficacy and synaptic strength
(Mainardi et al., 2010) brought about by EE-induced molecular
changes.

In conjunction with these changes in neurotransmitter levels,
excitatory activity also shifts following EE housing, with increases
in hippocampal extracellular glutamate levels coupled with an
enhanced expression of AMPA and NMDA receptors (Tang et al.,
2001; Naka et al., 2005; Segovia et al., 2006). Changes in hip-
pocampal field potentials have been attributed to factors that
include increased AMPA receptor-mediated transmitter binding,
increased expression of AMPA and NMDA receptor subunits,
increased dendritic spine density and upregulation of growth fac-
tors (Sharp et al., 1985; Green and Greenough, 1986; Foster and
Dumas, 2001; Eckert and Abraham, 2010). There is also evidence
of synaptic plasticity, in the form of increased dentate gyrus LTP,
in the hippocampus after physical activity, which is an impor-
tant component of the EE experience (Van Praag et al., 1999).
The role of these changes in excitation will be discussed in greater
detail below where we argue that a principal mechanism through
which EE alters brain function and behavior is by promoting a
shift toward excitation in neuronal responses.

ROLE OF CHANGES IN CORTICAL EXCITATION/INHIBITION BALANCE IN
EE-INDUCED CHANGES IN NEURONAL FUNCTIONALITY
As shown above, EE-induced brain plasticity is likely to occur
through the combination of structural and biochemical changes
that can impact on neuronal functionality. We believe that there
is substantive evidence that one particularly important end-effect
through which EE alters neuronal function is alterations in the
balance between excitation and inhibition in cortex (Engineer
et al., 2004; Percaccio et al., 2005, 2007). This E/I balance is a criti-
cal factor in regulating cortical neuronal functionality and critical
periods of cortical plasticity which occur throughout develop-
ment are governed by this E/I balance (Hensch and Fagiolini,
2005; Levelt and Hubener, 2012) whereby immaturity of corti-
cal inhibition promotes plasticity while maturation of inhibitory
circuits results in the decrease in plasticity associated with corti-
cal maturation (Huang et al., 1999; Fagiolini and Hensch, 2000).
Shifts in this E/I balance may also play a major role in the
experience-dependent cortical plasticity, which includes plasticity
induced by EE or deprivation, that occurs outside developmen-
tal critical periods (Hensch and Fagiolini, 2005; Sale et al., 2007;
Benali et al., 2008; Maya Vetencourt et al., 2008; Megevand et al.,
2009; Baroncelli et al., 2010b, 2011; Luz and Shamir, 2012; Maya-
Vetencourt et al., 2012). Changes in neuronal function in the
adult brain suggest that EE exposure causes a reactivation of
forms of neuronal plasticity generally seen only in the developing,

immature brain (Chang and Merzenich, 2003; Chang et al., 2005)
in which inhibitory mechanisms are immature.

Experience-dependent changes in response strength and sen-
sitivity in adult sensory cortices have been attributed to decreased
levels of cortical inhibition (Buonomano and Merzenich, 1998;
Baroncelli et al., 2011), which shift cortical E/I ratios to favor
excitation. Studies have demonstrated the importance of GABA
synthesis in promoting plasticity (Hensch et al., 1998; Harauzov
et al., 2010) after MD, and disruption of GABA-ergic inhibition
through pharmacological treatments or EE reinstates plasticity
to restore OD plasticity in adult visual cortex (Sale et al., 2007;
Maya Vetencourt et al., 2008; Harauzov et al., 2010; Zhou et al.,
2011; Maya-Vetencourt et al., 2012). Similarly, Zhou et al. (2011)
found that EE-induced plasticity in auditory cortex was accom-
panied by a decrease in GABA receptor subunit expression. Sale
et al. (2007) have also shown that EE exposure results in a
decrease in basal extracellular GABA levels in the visual cortex,
and that EE-induced plasticity can be countered by pharmaco-
logically increasing inhibitory activity. EE-induced decreases in
cortical inhibition have been demonstrated in studies of auditory
and visual cortex, through decreases in GABA receptor subunit
expression, inhibitory synapse density and basal levels of GABA
(Beaulieu and Colonnier, 1987; Zhou et al., 2011; Jakkamsetti
et al., 2012), while GAD67 expression has also been shown to
decrease following exposure to EE (Scali et al., 2012; Tognini et al.,
2012).

However, decreased inhibition may just be one mecha-
nism underlying EE-induced plasticity via shifts in the excita-
tion/inhibition balance, with studies also suggesting an increase in
cortical excitation with EE. Nichols et al. (2007) have shown that
exposure to EE induces an AMPA-receptor mediated increase in
EPSC amplitudes in supragranular layers of the auditory cortex,
with no changes in GABA-ergic transmission, while the increase
in PPD after EE demonstrated by Percaccio et al. (2005) suggests
an increase in the transmitter release probability of excitatory
synapses.

Taken together, the results presented in this section suggest that
EE exerts its effects through molecular changes, which in turn
support changes in morphology and neuronal function. These
results also suggest that in conditions such as brain injury, which
result in abnormal neuronal activity, EE-induced plasticity may
have the potential as a therapy to steer neuronal activity toward a
more functionally relevant state. This is particularly the case when
it is considered that excitation/inhibition shifts may also occur in
brain injury (Ding et al., 2008; Alwis et al., 2012; Johnstone et al.,
2013).

EE AND THE DAMAGED BRAIN
Considering that the brain plasticity evoked by EE results in vari-
ous behavioral benefits, it is hardly surprising that EE (and specif-
ically the form we have termed “generic” EE) has been proposed
as a putative therapy for neurological conditions ranging from
Alzheimer’s disease through to ischemia/stroke (Faherty et al.,
2005; Jadavji et al., 2006; Buchhold et al., 2007; Nithianantharajah
et al., 2008; Wang et al., 2008; Hu et al., 2010; Valero et al.,
2011; Du et al., 2012). Indeed, EE ameliorates the behavioral and
pathological deficits associated with many of these conditions:
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for example, in models of Alzheimer’s disease, EE enhances neu-
ronal proliferation, survival and maturation, leading to improved
cognition (Hu et al., 2010; Valero et al., 2011), while in studies
of stroke/ischemia, EE improves sensorimotor function, such as
impaired gait and limb placement (Buchhold et al., 2007; Wang
et al., 2008).

Our focus in this review is on the potential role of EE as a
therapy for TBI, based on its known effects on brain changes
induced by TBI, especially in the sensory cortices. For this con-
sideration, it is necessary to first define some of the basic features
of TBI and its effects on brain and behavior. There are two major
forms of TBI—focal and diffuse. Focal brain injury is caused
by direct, localized damage to the brain, while diffuse injury is
most commonly caused by indirect forces, such as during rapid
acceleration/deceleration of the head (Andriessen et al., 2010;
Alwis et al., 2013). TBI affects approximately 2 million indi-
viduals every year in the US alone (Faul et al., 2010) and has
been shown to result in a number of persistent sensory deficits,
which are thought to underlie TBI-associated cognitive disabili-
ties (Caeyenberghs et al., 2009; Davis and Dean, 2010; Lew et al.,
2010; Folmer et al., 2011). People with mild to moderate diffuse
TBI usually recover motor skills fully, but have other prolonged
deficits, including cognitive deficits and memory loss, likely from
axonal injury (Strich, 1956; Adams et al., 1999; Graham et al.,
2000; Little et al., 2010).

In TBI there are often substantial and prolonged functional
deficits in cognition, memory and movement (Gagnon et al.,
1998; Draper and Ponsford, 2008; Park et al., 2008; Faul et al.,
2010; Risdall and Menon, 2011) and these are invariably viewed as
resulting from damage to brain areas specific to those functions.
What has been consistently overlooked is that most TBI suffer-
ers show deficits in how they process sensory information. What
we see, hear, touch is used to understand the world and guide
complex behaviors like thinking, movement, or memory; sensory
processing deficits easily affect these behaviors. It has been recog-
nized that at least some impairments may involve disruption of
the integration of sensory input (Brosseau-Lachaine et al., 2008;
Patel et al., 2011). In humans, speeded motor tasks and response
time tasks are also affected in mild/moderate TBI (Bawden et al.,
1985; Haaland et al., 1994), and animal studies have shown per-
sistent abnormal sensory behavior (McNamara et al., 2010), again
suggesting disturbances in sensorimotor processing, and there are
many long-lasting sensory and cognitive impairments even after
motor function has recovered (Narayan et al., 2002; Draper and
Ponsford, 2009; Faul et al., 2010; Risdall and Menon, 2011).

Consistent with this hypothesis of a sensory cortices basis for
persistent cognitive, memory and motor deficits in TBI, exper-
imental TBI causes significant time-dependent changes in neu-
ronal excitability in sensory cortices (Hall and Lifshitz, 2010; Ding
et al., 2011; Alwis et al., 2012). In the immediate post-TBI period,
changes in neuronal activity occur across all cortical layers, and
consist in a depth-dependent (from the cortical surface) suppres-
sion of responses to all types of simple and complex naturalistic
stimuli (Johnstone et al., 2013; Yan et al., 2013). However, by the
long-term (8–10 weeks post-TBI), effects are found only in the
upper cortical layers, layers 2 and upper layer 3, and decrease
with cortical depth such that there are no long-term changes

in input layer 4 (Alwis et al., 2012); further the changes in the
upper layers are no longer a suppression of responses but, rather,
a hyper-excitation (Alwis et al., 2012). These persistent effects
are consistent with an imbalance in cortical excitation/inhibition
(Ding et al., 2011; Alwis et al., 2012).

Given the known effects of EE on the E/I balance in cortex, we
believe that there is potential for EE to remediate TBI-induced
changes in neuronal function by restoring the cortical excita-
tion/inhibition balance, to improve sensorimotor and cognitive
behavior. However, there is no current literature probing the
effects of EE specifically on neuronal function post-TBI, high-
lighting the need for studies examining the mechanisms under-
lying the EE-induced functional improvements that have been
reported in the literature. Hence, in the following section of the
review, we will first consolidate and discuss studies that have
examined the effects of EE after experimental brain injury, which
have focussed on mainly behavioral effects. We will then discuss
possible mechanisms through which EE acts to improve func-
tional outcomes post-injury, based on the known mechanisms
underlying the effects of EE (as discussed above). Finally, we will
review the implementation and efficacy of EE as a therapeutic
option to remediate brain injury in a clinical setting.

THE BENEFICIAL EFFECTS OF EE POST-TBI
Only a few studies have investigated the effects of EE on func-
tional recovery post-experimental TBI and shown that exposure
to EE ameliorates motor and cognitive deficits and TBI-induced
histopathologies (Hamm et al., 1996; Passineau et al., 2001; Hicks
et al., 2002; Sozda et al., 2010; De Witt et al., 2011; Matter et al.,
2011; Monaco et al., 2013; Bondi et al., 2014), with some very
limited work on the effect of EE on TBI-induced sensory mor-
bidities. These studies have predominantly studied the use of
generic EE in the treatment of TBI, except for some work that has
included the use of multi-modal sensory stimulation with generic
EE (discussed further below).

EE improves TBI-induced cellular histopathologies: EE-
treated animals show decreases in lesion volume, increased neu-
ronal survival, and reduced neuronal degeneration in cortex
(Passineau et al., 2001; Lippert-Gruner et al., 2007; Monaco et al.,
2013). Muthuraju et al. (2012) recently reported an EE-mediated
decrease in cell death, in conjunction with an increase in neuroge-
nesis in the striatum, post-TBI. Additionally, in correlation with
the positive effects on motor and cognitive function, decreased
apoptosis and lesion volume have also been shown using a com-
bination of multi-modal sensory stimulation and EE (Maegele
et al., 2005a; Lippert-Gruner et al., 2007). These effects suggest
that EE may be able to ameliorate or attenuate damage caused by
secondary injury processes, which are often complex and dynamic
in nature.

The effects of EE on motor and cognitive function after TBI
have only been investigated in TBI models that cause a mixture of
focal and diffuse TBI (Hamm et al., 1996; Passineau et al., 2001;
Hicks et al., 2002; Hoffman et al., 2008; Sozda et al., 2010; De Witt
et al., 2011; Matter et al., 2011; Monaco et al., 2013), and to date,
no studies have examined the effect of EE after a purely diffuse
model of TBI. The studies of EE effects in mixed model TBI have
demonstrated positive effects of EE on neuromotor and cognitive
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function, especially for spatial navigation and memory. Hamm
et al. (1996) found that at 11–15 days after mixed-model TBI,
animals exposed to generic EE displayed elevated spatial memory
function in the Morris Water Maze (MWM) test, when compared
with TBI animals housed in standard conditions. EE housing also
improved cognitive functioning to levels comparable to those of
sham controls (Hamm et al., 1996). These findings are similar
to reports demonstrating EE-induced recovery of spatial naviga-
tion and spatial memory after hippocampal/cortical lesions (Will
et al., 1977; Einon et al., 1980; Whishaw et al., 1984). EE-induced
improvements in spatial navigation, increases in spatial acquisi-
tion task rate, as well as improved spatial memory, have been
demonstrated in other experimental models of mixed-model TBI
(Passineau et al., 2001; Hicks et al., 2002; Wagner et al., 2002; De
Witt et al., 2011; Matter et al., 2011; Monaco et al., 2013). EE-
mediated recovery of locomotor activity and motor function in
beam-walking and rotatod tasks has also been documented post-
TBI (Wagner et al., 2002; De Witt et al., 2011; Matter et al., 2011;
Monaco et al., 2013), while EE exposure also improved recovery
time of forelimb function after CCI (controlled cortical impact)
injury (Smith et al., 2007).

While EE on its own has all of these benefits for motor and
cognitive function, there is also evidence that the use of addi-
tional multi-modal sensorimotor stimulation together with EE
can improve cognitive and motor function (Maegele et al., 2005b;
Lippert-Gruener et al., 2007; Lippert-Gruner et al., 2007, 2011) at
both acute (7 and 15d; Maegele et al., 2005a,b; Lippert-Gruner
et al., 2007), and chronic (30d; Lippert-Gruener et al., 2007)
time-points post-injury. Such enhanced stimulation is thought to
better mimic rehabilitation paradigms used in clinical settings in
the treatment of brain injury. Maegele et al. (2005a) have demon-
strated that enhanced sensory stimulation in combination with
EE improves behavioral outcomes more than the use of EE on
its own (Maegele et al., 2005a), suggesting that any neuroplas-
ticity conferred by increased stimulation may be therapeutically
relevant.

Only a very few studies have examined the efficacy of EE
in ameliorating sensory deficits after TBI, with only one study
(Johnson et al., 2013) reporting that EE exposure completely
recovers TBI-induced sensory neglect, a condition where there is
a reduction in responsiveness to sensorimotor stimuli (Kim et al.,
1999). Conversely, in a unilateral cortical lesion model of brain
injury, Rose et al. (1987) found that EE did not facilitate recov-
ery from sensory neglect post-lesion. These contradictory results
may be explained by differences in the nature of injury, or even
the timing of EE exposure: in the Johnson et al. (2013) study, 15
days of EE exposure occurred immediately prior to TBI, whilst
Rose et al. (1987) examined the effects of 6 weeks of EE exposure
commencing 10–12 days post-lesion. We will demonstrate below
that the timing of the application of EE is absolutely critical for
ameliorating TBI-induced behavior deficits.

In most of these studies, the type of EE applied has been what
we have termed “generic” EE. Whether fortuitous or planned, this
form of EE, which must engage a range of sensory, motor, cog-
nitive and social behaviors, appears to greatly improve recovery
post-TBI. Thus, Hoffman et al. (2008) indicate that EE-induced
functional recovery may depend on task-specific experience:

post-TBI, animals show enhanced recovery of motor function
(e.g., beam traversing and balancing) and spatial learning and
memory (decreased latency to locate a platform in the MWM),
when exposed to both EE and task-specific training for the motor
and cognitive tests. They also suggest that the enhanced motor,
social and cognitive stimulation provided by housing in EE con-
ditions could, in themselves, contribute to the improved motor
and cognitive they observed. It is possible that exposure to gen-
eral EE vs. specific EE dictates the level of functionality that is
conferred; although it is true that often studies using specific
EE focus on tasks related to the aspect of EE that they enhance.
Considering the ambiguity that remains concerning this issue,
further investigations are required to determine whether expo-
sure to task-specific experience or specific EE can improve overall
functionality in a range of tasks.

It has been suggested that improved sensorimotor function
after brain injury may actually be attributed to behavioral com-
pensation rather than functional recovery; improvements on
multi-sensory tasks, such as a MWM test, could be due to the
use of cues from alternate (presumably undamaged) modalities
(Finger, 1978; Rose et al., 1987, 1993; Kolb et al., 1996). This
view receives support from studies that show that EE has much
more limited or negligible benefit in tasks involving a single sen-
sory modality (Rose et al., 1987, 1988). However, there is also no
reason why the two effects could not o-exist and in keeping with
this possibility, studies have shown a degree of EE-induced func-
tional recovery after cortical injury, accompanied by an observed
difference in the movements of the animals during task perfor-
mance such as skilled reaching post-injury (Whishaw et al., 1991;
Rowntree and Kolb, 1997; Kolb, 1999), suggesting that perhaps
both recovery and compensation may account for improved func-
tional outcomes after injury, possibly through the recruitment of
uninjured cortical circuits (Kolb, 1999). We therefore turn now
to a consideration of the potential mechanisms whereby EE could
improve outcomes after TBI.

MECHANISMS PROMOTING IMPROVED BEHAVIORAL AND
PATHOLOGICAL RECOVERY
To understand how EE could promote recovery after TBI, it is nec-
essary to understand some of the mechanisms underlying TBI.
This is not a simple endeavor since neurodegeneration caused
by TBI occurs as a result of a number of complex and dynamic
inter-related mechanisms (Smith et al., 1991; Hicks et al., 1993;
Pierce et al., 1998; Hall and Lifshitz, 2010; McNamara et al., 2010).
Only a few studies have examined how EE impacts on these com-
plex molecular and anatomical factors affected in TBI or any
other form of brain injury. Thus, ideas of how EE might pro-
duce improvements in sensorimotor and cognitive behavior after
TBI or any brain injury are often based on extrapolations of the
known actions of EE in the normal brain.

In uninjured animals, EE enhances neurogenesis, improves
neuronal survival, and decreases apoptotic cell death
(Kempermann et al., 1997; Van Praag et al., 2000; Lu et al.,
2003; Bruel-Jungerman et al., 2005), all of which have been
linked to improved behavioral recovery after TBI (Passineau
et al., 2001; Gaulke et al., 2005; Sozda et al., 2010; Monaco
et al., 2013). Additionally, Miller et al. (2013) have also recently
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demonstrated a decrease in hippocampal volume loss in TBI
patients, with increased engagement with cognitively, physically
and socially demanding activities, supporting the role of EE in
directly preventing neuronal death.

Post-injury EE housing has been shown to decrease injury-
induced lesion volume, increase synaptic density, increase post-
synaptic density (PSD) thickness, increase dendritic spine density
and dendritic branching in supragranular and infragranular lay-
ers of injured cortex (Biernaskie and Corbett, 2001; Ip et al., 2002;
Johansson and Belichenko, 2002; Xu et al., 2009a,b). Such struc-
tural changes may lead to EE-enabled compensation and recovery
of function after injury (Rose et al., 1987; Kolb and Gibb, 1991;
Whishaw et al., 1991; Passineau et al., 2001; Will et al., 2004).
Under uninjured conditions, EE-induced structural changes are
thought to occur due to upregulation of trophic factors such as
VEGF and BDNF which promote cell survival and plasticity, and
an increase in activation of transcription factors of proteins medi-
ating plasticity (Young et al., 1999; Rampon et al., 2000; Keyvani
et al., 2004; Will et al., 2004; Gaulke et al., 2005; Hoffman et al.,
2008; Sozda et al., 2010; Monaco et al., 2013; Ortuzar et al., 2013).
Interestingly, studies have reported an increase in BDNF expres-
sion after TBI (Hicks et al., 1997; Chen et al., 2005), with no
further increase following exposure to EE (Chen et al., 2005) sug-
gesting that EE-induced benefits for recovery after TBI may not
depend on increasing the levels of trophic factors.

The effects of TBI may also be exerted through inflammatory
processes: as we have noted previously (Alwis et al., 2013), acti-
vation of inflammatory cascades as part of the normal cellular
response to injury can cause further injury to the already dam-
aged brain (Menge et al., 2001; Morganti-Kossmann et al., 2002).
The inflammatory response in TBI involves production of pro-
inflammatory cytokines like interleukin-1 (IL-1), IL-6 and tumor
necrosis factor (TNF-a), and anti-inflammatory cytokines such
as IL-10 and IL-12, all of which are seen in the cerebrospinal
fluid of TBI patients within a few hours of the primary injury.
Inflammatory cytokines IL-1a, IL-1b, and IL-18 are also increased
after TBI (Menge et al., 2001; Morganti-Kossmann et al., 2002).
Interestingly, EE is able to decrease levels of pro-inflammatory
molecules such as tumor necrosis factor alpha (TNF-α) and
interleukin 1b (IL-1b; Briones et al., 2013) in the cortex and
hippocampus post-injury. Given the up-regulation of these fac-
tors by TBI, the EE effect may attenuate secondary-injury related
damage.

EE also induces an increase in neurotransmitter levels such as
noradrenaline and dopamine, NMDA receptor expression, and
brain metabolic activity, all of which are altered in TBI and have
been implicated in impairment of motor and cognitive function;
thus, exposure to EE could possibly regulate TBI-induced changes
in these factors (Brenner et al., 1983; Boyeson and Feeney, 1990;
Liljequist et al., 1993; Dietrich et al., 1994; Hamm et al., 1996).

We noted above that some work indicates that EE in animal
models of epilepsy attenuates onset of seizures, a functional con-
sequence of aberrant neuronal excitability after TBI (Pitkanen
and McIntosh, 2006; Hunt et al., 2013; Shultz et al., 2013).
While the exact mechanisms underlying this protective effect are
unknown, it is thought to occur through an EE-induced enhance-
ment of trophic support, changes in receptor expression and

enhanced neurogenesis (as previously described; Liu et al., 1993;
Cheng et al., 1995; Young et al., 1999; Reibel et al., 2000; Korbey
et al., 2008).

This review shows that overall, there are insufficient data avail-
able to decide if EE effects on all of the TBI-induced molecular
events noted above are all (or any of them) involved in the benefi-
cial effects of EE in TBI. Given the limited amount of knowledge
of the effects of EE specifically in TBI, it is worth also consider-
ing how EE acts therapeutically in other neurological disorders.
The general trend of how EE has benefits in other brain disor-
ders is summarized in Table 1, where it can be seen that EE acts
to increase neurogenesis, dendritic branching and spine density,
and increase the expression of growth factors (Johansson and
Ohlsson, 1996; Young et al., 1999; Jadavji et al., 2006; Pereira
et al., 2007; Gelfo et al., 2011; Valero et al., 2011). Similarly, recent
work by Koopmans et al. (2012) has also demonstrated increased
spinal cord progenitor cell differentiation and increased seroton-
ergic innervation after experimental SCI, while others have shown
increased dendritic spine density in the motor cortex (Kim et al.,
2008) and increased BDNF levels (Berrocal et al., 2007). These
studies, as well as those focussing on TBI, show that EE appears
to be a promising post-injury treatment to improve sensorimotor
and cognitive function in brain injury, most likely due to simi-
lar underlying structural and molecular mechanisms. Due to the
wide and inter-connected nature of the effects of EE, it is likely
that a combination of both molecular and morphological changes
needs to occur in order to see improvements in neuronal function
and behavior.

TIMING OF THE USE OF EE AS A THERAPY AFTER TBI
Some clues as to the potential mechanism by which EE could res-
cue brain function in TBI comes from the finding that the timing
and duration of EE are important factors governing motor and
cognitive recovery post-TBI (Figure 2; Hoffman et al., 2008; De
Witt et al., 2011; Matter et al., 2011; Cheng et al., 2012). Thus,
Hoffman et al. (2008) reported that recovery of motor and cog-
nitive function, such as beam-walking and spatial learning and
memory, depended on an optimal time and length of EE exposure
relative to time after injury. After mixed focal-diffuse TBI, even a
short period of EE exposure (6 h) was sufficient to improve motor
and cognitive behavior to a level comparable to the enhanced per-
formance seen after much longer (3 weeks), continuous exposure
to EE (Hoffman et al., 2008; De Witt et al., 2011; Matter et al.,
2011). The benefits of EE were not dose-dependent, however, as
task performance in animals exposed to shorter periods of EE (2
and 4 h) did not differ significantly from those of injured animals
housed in standard conditions, suggesting a minimal threshold of
EE exposure is needed for beneficial effects (De Witt et al., 2011).
EE-induced plasticity has persisting effects such that even lim-
ited exposure (3 weeks) to EE post-TBI can result in long-term
protection from memory deficits, as assessed by the MWM task,
for up to 6 months after animals are withdrawn from EE condi-
tions (Cheng et al., 2012), making it an ideal candidate for therapy
post-TBI.

Recent studies have also demonstrated that even pre-injury
exposure to EE is neuroprotective (Kozlowski et al., 2004; Johnson
et al., 2013). Kozlowski et al. (2004) showed that brief (15d) EE
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Table 1 | Behavioral, morphological, and molecular effects of EE in various neurological disease conditions.

Neurological

disorder

Behavioral effects Morphological effects Molecular effects References

Stroke/hypoxia-
ischemia

Improved motor function
(reaching, beam-walk, rotating
pole)
Improved declarative memory
(Novel object recognition test)
Improved spatial learning and
memory (Morris water maze,
Radial arm maze)

Increased dendritic length and
branching in cortex
Preserved dendritic spine density
loss/increased spine density in
hippocampus, cortex
Decreased cortical infarct volume
Enhances cell proliferation

Increased growth factor
expression

Ohlsson and Johansson, 1995;
Johansson and Ohlsson, 1996;
Biernaskie and Corbett, 2001;
Johansson and Belichenko, 2002;
Risedal et al., 2002; Dahlqvist et al.,
2004; Gobbo and O’Mara, 2004;
Komitova et al., 2006; Buchhold
et al., 2007; Pereira et al., 2007;
Rojas et al., 2013

Lesions Improved motor function
(posture, ladder climb)
Improved spatial learning and
memory (Morris water maze)

Increased dendritic length in
cerebellum
Increased dendritic branching and
spine density in hippocampus,
cortex

Increased growth factor
expression

Kelche and Will, 1982; Held et al.,
1985; Kolb and Gibb, 1991; Bindu
et al., 2007; Frechette et al., 2009;
De Bartolo et al., 2011; Gelfo et al.,
2011

Epilepsy Increased seizure resistance
Increased exploratory activity
(Open field)
Improved spatial learning (Morris
water maze)

Decreased hippocampal cell death
Increased neurogenesis

Increased growth factor
expression
Enhanced expression of
neuronal and synaptic
plasticity mediators

Young et al., 1999; Auvergne et al.,
2002; Faverjon et al., 2002; Rutten
et al., 2002; Koh et al., 2007; Korbey
et al., 2008

Huntington’s
disease

Delayed onset of motor deficits
Improved spatial memory
(Barnes maze, Morris water
maze)

Delays degenerative loss of
cerebral volume
Attenuates deficits in hippocampal
neurogenesis
Reduced aggregation of huntingtin
protein fragments

Increased growth factor
expression
Increased synaptic protein
expression

Van Dellen et al., 2000; Hockly et al.,
2002; Spires et al., 2004; Lazic et al.,
2006; Nithianantharajah et al., 2008;
Wood et al., 2010

Alzheimer’s
disease

Improved spatial learning and
memory (Morris water maze,
Barnes maze)
Improved working memory
(Radial arm water maze)

Increased/decreased Aβ and
amyloid deposition
Increased neuronal progenitor cell
proliferation
Increased/decreased neurogenesis
Decreased progenitor cell survival

Increased growth factor
expression
Increased synaptophysin
expression

Jankowsky et al., 2003, 2005; Levi
et al., 2003; Arendash et al., 2004;
Wen et al., 2004; Lazarov et al.,
2005; Berardi et al., 2007;
Cracchiolo et al., 2007; Levi and
Michaelson, 2007; Valero et al., 2011

Parkinson’s
disease

Improved motor function (skilled
reaching task)

Decreased dopaminergic neuron
and transporter loss
Decreased cell death

Increased growth factor
expression

Bezard et al., 2003; Faherty et al.,
2005; Jadavji et al., 2006

Summary of findings from studies that have investigated the effects of EE after various neurological conditions.

exposure in immature rats at p21, prior to TBI in adulthood
(approximately 3 months old), results in a paradoxical increase
in cortical lesion volume, but coupled with faster recovery of
forelimb function, assessed by foot fault and asymmetry tests.
Similarly, exposure to 15 days of EE immediately pre-TBI atten-
uates spatial and long-term memory deficits in the MWM task,
in a manner similar to that seen after post-injury EE exposure
(Johnson et al., 2013). However, the relevance of such a model
in a clinical setting is limited. It is however, likely that, in accord
with the Hebbian theory of plasticity, pre-injury exposure to EE
acts mainly to strengthen existing connections in the uninjured
brain, which may carry forward post-injury. This is likely to occur
through the upregulation of trophic factors such as BDNF, which
are shown to increase after exposure to motor enrichment before
and after injury (Kleim et al., 2003). In contrast, post-injury EE

exposure acts mainly to develop and strengthen new/previously
silent/remaining connections to compensate for the damage in
existing pathways (Taub et al., 2002), while elevated growth fac-
tor expression acts to limit the spread of damage (Kleim et al.,
2003). This would suggest that although pre- and post-injury EE-
exposure is beneficial for protection and/or recovery from injury,
the underlying mechanisms may be different.

The fact that even pre-injury exposure to EE can ameliorate
the effects of TBI may be taken to indicate that the benefits of
EE are independent of the TBI-induced molecular and struc-
tural changes that cause deficits to brain and behavior. However,
this is, as yet, an unsafe assumption for the reasons that brain
processes are so highly inter-linked and often use common path-
ways. For example, as noted above, TBI increases inflammatory
cascades while EE reduces many of the same cascades; thus
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FIGURE 2 | Behavioral benefits conferred by the timing/duration of EE

relative to creation of TBI. The efficacy of EE treatment when
administered pre/post-injury is represented by green full-line arrows which

indicate EE timing conditions that ameliorated behaviors, while white
dashed arrows indicate EE timing conditions that failed to ameliorate
behaviors.

down-regulation of these cascades by pre-exposure to EE may
reduce subsequent TBI-induced activation of the inflamma-
tory mechanisms and thereby reduce secondary injury processes,
producing neuroprotection.

BEYOND THE BENCH
The current body of literature on the effects of EE in neurolog-
ical disease indicates that EE represents significant therapeutic
potential, on its own and in combination with pharmacolog-
ical treatments (Kline et al., 2007, 2010, 2012), by inducing
neuroprotective mechanisms involving molecular, structural, and
functional processes to improve histopathologies and behavioral
outcomes. Considering the many positive effects of EE demon-
strated after experimental brain injury, it would be logical to try
to aid recovery by applying EE in a clinical setting. Certainly, intel-
lectually, physically and socially active lifestyles (that are akin to
EE) have been linked to improved cognitive function and lower
incidences of cognitive impairment, particularly in older, unin-
jured adults (Seeman et al., 2001; Scarmeas and Stern, 2003;
Wilson et al., 2003; Newson and Kemps, 2005; Fujiwara et al.,
2009; Voss et al., 2011). Similarly, cognitive enrichment early in
life has also been linked to improved cognitive abilities in later
life (Milgram et al., 2006), while Kramer et al. (2004) have sug-
gested that enhanced cognitive enrichment results in improved
crystallized intelligence.

Indeed, the use of EE as a rehabilitative treatment for humans
post-TBI has been suggested to be effective in positively influenc-
ing long-term outcomes. However, the concept of EE for humans
is more complex to define than what constitutes as EE for animals,
as factors such as engagement and motivation play a role in clas-
sifying the level of enrichment an individual receives. In a clinical
setting, EE can be broadly classified as a paradigm that specifi-
cally enhances and promotes engagement with cognitive, social
and physical stimulation. An important caveat to the discussion
about the role of EE in the treatment of TBI is that post-TBI
rehabilitation programs are widely considered to be comparable

to enriched environments, in that these programs often com-
prise of multiple components that are considered hallmarks of EE,
which include physical and cognitive therapy, multi-modal stimu-
lation, novelty, duration, functional relevance, and social integra-
tion. It has to be noted, however, that specific skill rehabilitation
paradigms often do not result in improved general performance
in the post-discharge environment, and instead act to improve
task-specific performance (Sohlberg et al., 2000; Park and Ingles,
2001). It has instead been suggested that a more generalized treat-
ment would be beneficial in improving overall function (Toglia,
1991; Toglia et al., 2010). Rehabilitation paradigms treating brain
injury are often implemented in the acute stages post-injury, in
an in-patient hospital setting. Rehabilitation based on EE princi-
ples in TBI patients results in better general functional outcomes,
such as improved cognitive and motor skills (Willer et al., 1999;
Powell et al., 2002; Cifu et al., 2003; Boman et al., 2004; Hayden
et al., 2013), and better community integration (Zhu et al., 2001;
Cicerone et al., 2004). A number of studies have also shown that
increasing the duration and intensity of exposure to rehabilita-
tive therapy results in improved recovery times (Blackerby, 1990;
Spivack et al., 1992; Shiel et al., 2001; Zhu et al., 2001, 2007; Slade
et al., 2002; Cifu et al., 2003; Cicerone et al., 2004).

It has also been suggested that a lack or an absence of EE is
linked to cognitive decline post-injury (Till et al., 2008; Frasca
et al., 2013), demonstrating the importance of continued expo-
sure to EE in the post-discharge stages after brain injury. In
that sense, a number of factors could contribute to the pro-
vision of an appropriate level of enrichment once a patient
has left an intensive rehabilitative environment. These factors
include ease of access to activities and resources that are cog-
nitively, physically and socially stimulating, as well as support
that encourages participation and integration with these environ-
ments (Frasca et al., 2013). Frasca et al. (2013) have also suggested
that although patients eventually return to an environment that
could be considered enriched post-TBI, interactions with these
environments may be restricted due to limitations in cognitive
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and/or physical deficits. This is especially relevant during the
transition from the in-patient rehabilitation environment, to
post-discharge home environments, where complexity of, and
engagement with environments may reduce. A reduction in
enrichment in the post-acute period could be detrimental to
recovery as studies have shown that functions gained during
stimulation of neural pathways (such as during rehabilitation)
can be lost through under-use (Rubinov et al., 2009; Warraich
and Kleim, 2010; Frasca et al., 2013). Post-discharge, the major
forms of therapy mapped onto EE principles include community-
based and home-based rehabilitation, with the aim that these
programs would aid in improving behaviors and skills required
for everyday functioning, improving community integration, and
preventing cognitive decline (Fryer and Haffey, 1987; Frasca et al.,
2013). Studies have shown that continued enrichment in the
form of cognitive rehabilitation in the post-discharge setting (i.e.,
domestic or vocational environments) increases neuropsycholog-
ical function, learning and memory (Willer et al., 1999; Boman
et al., 2004).

Given the complexity and ethics of manipulations of the envi-
ronment in humans recovering from TBI, in addition to the
difficulties in accurately comparing the effectiveness of various
rehabilitation paradigms, questions of the correlation between
these effects and EE-induced functional changes remain. Injury
heterogeneity also raises challenges in defining exactly what level
of enrichment is optimal and beneficial. However, the findings
presented in this section strongly suggest that EE or EE-based
therapy tailored to the patient’s needs could significantly improve
outcomes when applied in both the in-patient, acute and post-
discharge, chronic settings.

CONCLUSION
The studies described here well support the use of EE as a ther-
apeutic paradigm in the treatment of TBI. However, while the
results of these studies all show promise in improving TBI-
induced histopathologies and sensorimotor and cognitive deficits,
there is still much work to be done to clarify our understanding
of how EE exerts its effects in disease conditions. Paramount to
the understanding of how EE improves behavioral outcomes after
injury is the investigation of how EE changes neuronal function
post-TBI, of which we know nothing. Only once these effects are
unveiled will we be able to implement EE as a treatment option
post-injury at its maximum potential.

It is also worth adding the caution that while EE holds promise
in its application as a therapeutic tool after brain injury in
humans, the complex nature of utilizing EE in a clinical setting
makes it difficult to standardize treatment and compare out-
comes. It is also true that EE as an experimental paradigm in
animal studies has yet to be standardized, with housing condi-
tions, environmental stimuli, number of animals per cage, age of
animals at onset of enrichment, as well as the duration of enrich-
ment, varying markedly between studies. The extent of contri-
bution of these factors is particularly relevant when considering
the demonstrated neuroprotective effects of EE in neurological
disease states, where little is known about how improved func-
tional outcomes relate to changes in neuronal function. Using
experimental models that are easily controlled and manipulated,

however, would provide us with valuable insight into the thera-
peutic potential of EE, both in laboratory and clinical settings.
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