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Simple Summary: PARP inhibitors (PARPi) are current treatment options for patients with ovarian,
breast, pancreatic or prostate cancer. Although PARPi have transformed the patient journey in these
disease settings, resistance eventually develops, leaving them with limited therapeutic opportunities.
In this review, we summarize the mechanisms of resistance to PARPi described in pre-clinical models,
focusing on the most clinically relevant and proposing ways to tackle them.

Abstract: Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are now a first-line maintenance
treatment in ovarian cancer and have been approved in other cancer types, including breast, pancreatic
and prostate. Despite their efficacy, and as is the case for other targeted therapies, resistance to PARPi
has been reported clinically and is generating a growing patient population of unmet clinical need.
Here, we discuss the mechanisms of resistance that have been described in pre-clinical models and
focus on those that have been already identified in the clinic, highlighting the key challenges to
fully characterise the clinical landscape of PARPi resistance and proposing ways of preventing and
overcoming it.

Keywords: PARP inhibitor (PARPi); resistance; homologous recombination repair (HRR); molecular
mechanisms; clinical relevance

1. Introduction

The discovery more than 15 years ago of a synthetic lethal (SL) relationship between
mutations in the breast cancer susceptibility, tumour-suppressor genes BRCA1 and BRCA2
and the inhibition of poly(ADP-ribose) polymerase (PARP) enzymes [1,2] spearheaded
the clinical development of PARP inhibitors (PARPi). Patients with germline mutations
in BRCA1 or BRCA2 (gBRCAm), when inherited in heterozygosity, have an increased risk
of developing cancer, usually of ovarian or breast origin [3]. Especially in the case of
gBRCA2m, this also extends to prostate and pancreatic cancer [4,5]. Tumours of these
patients almost universally lose both functional copies of the BRCA1 or BRCA2 gene, either
by loss of heterozygosity (LOH) of the wild-type allele or, more rarely, by the acquisition of a
somatic mutation in the wild-type locus [6]. This leads to the loss of function of homologous
recombination repair (HRR), the DNA repair pathway in which BRCA proteins play a key
role (reviewed in [7]) (Figure 1). An SL relationship between two genes is described when
the functional loss of both leads to cell death, while a mutation or defect in either of the
two does not greatly impact cell viability. Given that concomitant BRCA1 and PARP1 loss
showed a clear SL relationship in mouse models [8], it was long assumed that the efficacy of
PARPi in BRCAm settings was solely driven by them inactivating PARP enzymatic activity
(reviewed in [9]). The discovery that PARPi could also stabilise PARP enzymes on DNA (an
effect named “PARP trapping”), and that their efficacy as single agents in BRCAm cell lines
was linked not to their potency as enzymatic inhibitors but to their trapping ability [10],
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represented a turning point in our understanding of the mechanism of action of PARPi.
Importantly, all PARPi currently approved as monotherapies are efficacious PARP trappers,
although with different levels of potency (reviewed in [11]). Since the approval of the first
PARPi, olaparib, in ovarian cancer [12], PARPi have now been approved in all tumour
types where gBRCAm are prevalent (Table 1).
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Figure 1. Homologous recombination repair. Simplified schematic of homologous recombination
repair (HRR) of a DNA double-strand break (DSB) using the sister chromatid as repair template. Key
proteins involved are highlighted in the figure.

Given that BRCA proteins play key roles in HRR, it was proposed very early on in the
development of PARPi that they could also be efficacious in non-BRCAm, HRR-deficient
(HRD) backgrounds (Figure 1) [13]. Overcoming the limitations of genomic testing, several
genetic tests to measure the HRD status of tumours have been developed, with some being
approved as companion diagnostic tests for the clinical use of PARPi (Table 1) [14]. HRD
testing has identified a sub-population of HRD cancers that benefit from PARPi treatment
and cannot be explained by mutations in BRCA genes [15,16]. Although defects in other
key HRR proteins such as PALB2 account for some of these HRD-positive tumours, it
is also important to highlight that some HRR genes, in particular BRCA1 and RAD51C,
show high levels of promoter hypermethylation leading to gene silencing in breast and
ovarian cancer [17,18]. Thus, it is clear that the use of PARPi can be extended beyond
gBRCAm settings.
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Table 1. US Food and Drug Administration labels for different PARPi.

PARP Inhibitor Olaparib (Lynparza)–AstraZeneca
Rucaparib

(Rubraca)—Clovis
Oncology

Niraparib
(Zejula)—GSK

Talazoparib
(Talzenna)—Pfizer

Cancer type Monotherapy Combination Monotherapy Monotherapy Monotherapy

Ovarian

Treatment
setting—patients

with recurrent
gBRCAm advanced

cancer who have
been treated with 3L+

of chemotherapy
Maintenance

setting—patients in
CR or PR to

platinum-based
chemotherapy

(recurrent disease)
and germline or
somatic BRCAm

advanced cancer (1L)

Maintenance
setting—with

bevacizumab (VEGFi)
in patients in CR or

PR to platinum-based
chemotherapy and

HRD-positive status

Treatment
setting—patients

with BRCAm
(germline and/or

somatic) cancer who
have been treated

with 2L+ of
chemotherapies

Maintenance
setting—patients

with recurrent cancer
who are in a CR or

PR to platinum-based
chemotherapy

Treatment
setting—patients

with advanced cancer
who have been

treated with 3L+ of
chemotherapy and

whose cancer is
associated with HRD

Maintenance
setting—patients

with advanced cancer
who are in a CR or

PR to 1L+
platinum-based
chemotherapy

N/A

Breast

Treatment
setting—patients
with gBRCAm,

HER2-negative mBC
who have been

treated with
chemotherapy

None N/A N/A

Treatment
setting—patients
with gBRCAm,
HER2-negative

locally advanced or
mBC

Pancreatic

Maintenance
setting—patients

with gBRCAm mPA
whose disease has

not progressed on at
least 16 weeks of 1L

platinum-based
chemotherapy

None N/A N/A N/A

Prostate

Treatment
setting—patients
with germline or

somatic HRR
gene-mutated

mCRPC who have
progressed following
prior treatment with

enzalutamide or
abiraterone

None

Treatment
setting—patients

with BRCAm
(germline and/or

somatic)-associated
mCRPC who have
been treated with
androgen receptor

therapy and a
taxane-based

chemotherapy

N/A N/A

Full label documents can be accessed here: Lynparza: https://www.accessdata.fda.gov/drugsatfda_docs/label/
2020/208558s014lbl.pdf (accessed on 4 October 2021); Zejula: https://www.accessdata.fda.gov/drugsatfda_
docs/label/2020/208447s015s017lbledt.pdf (accessed on 4 October 2021); Rubraca: https://www.accessdata.
fda.gov/drugsatfda_docs/label/2020/209115s004lbl.pdf (accessed on 4 October 2021); Talzenna: https://www.
accessdata.fda.gov/drugsatfda_docs/label/2018/211651s000lbl.pdf (accessed on 4 October 2021). Abbreviations
used: gBRCAm: deleterious or potentially deleterious germline mutation in the BRCA1 or BRCA2 gene; 1L, 2L+,
3L+: first-line, second-line or more, and third-line or more of any given treatment; CR: complete response; PR:
partial response; mBC: metastatic breast cancer; mPA: metastatic pancreatic adenocarcinoma; HRR: homologous
recombination repair; mCRPC: metastatic, castration-resistant prostate cancer; VEGFi: inhibitor of vascular
endothelial growth factor; HRD: homologous recombination deficient; N/A: not approved.

Late-phase clinical trials with PARPi have shown spectacular, practice-changing re-
sults, particularly in ovarian cancer [16,19]. However, as is the case for most targeted
therapies, resistance eventually arises, especially when exploring advanced disease set-
tings [20,21]. All mechanisms of resistance described to date can be divided into those
where the BRCA functionality (or HRR proficiency) status of the tumour cells plays a key
role in determining PARPi response (Figure 2) and those that operate independently of
such status. This classification already highlights that only mechanisms of resistance that

https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/208558s014lbl.pdf
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https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/209115s004lbl.pdf
https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/209115s004lbl.pdf
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modulate the BRCA/HRR status of the tumour have been consistently observed clinically
or in patient-derived xenograft (PDX) models in relevant disease settings (Figure 3), which
will be the main focus of this review.
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tumours; † also reported in one patient; $ identified in models derived from tumour types where
PARPi are not currently approved.

2. BRCA/HRR-Independent Mechanisms of PARPi Resistance
2.1. Epithelial–Mesenchymal Transition

Epithelial–mesenchymal transition (EMT) is characterised by the loss of cell–cell inter-
actions and apical–basal polarity and has often been associated with resistance to various
therapies [22]. In a study exploring olaparib resistance in a breast BRCA2m genetically
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engineered mouse model (GEMM), EMT was proposed as the most frequently occurring
mechanism of resistance, detected using well validated gene expression changes [23]. In
another study using a breast BRCA2m GEMM, a mesenchymal-like tumour subtype was
described as less sensitive to PARPi compared to more epithelial tumours [24]. It has also
been reported that an EMT gene expression signature is associated with PARPi resistance in
small-cell lung cancer (SCLC) PDX models and cell lines. These results must be considered
carefully, however, as PARPi are not currently approved in SCLC and the determinants
of PARPi responses could vary between different disease settings [25]. Despite these cor-
relative observations, both the mechanism driving EMT-related PARPi resistance and its
clinical significance remain unclear.

2.2. SLFN11 Loss

Loss of expression of the Schlafen 11 (SLFN11) gene is a common feature of human
cancer cell lines and provides resistance to DNA-damaging agents, including PARPi [26].
SLFN11 acts in response to DNA damage by halting DNA replication independently of the
canonical DNA damage response (DDR) pathway, hence inhibiting cell proliferation [27].
Recent findings linked SLFN11 deficiency with PARPi resistance in SCLC PDX models,
although the correlation seemed to depend not only on the SLFN11 status of the models
but also on other genetic determinants of response, such as mutations in the DDR kinase
ATM [25]. Nevertheless, such a correlation between SLFN11 expression and PARPi re-
sponse could not be established in breast cancer PDX models [28]. Interestingly, SLFN11
downregulation has been recently reported in PARPi progression in two ovarian cancer
patients [29]. This highlights the potential differences between disease settings that will be
important to be considered when further exploring the relevance of the SLFN11 gene status
as a predictive biomarker of PARPi responses.

2.3. P-Glycoprotein Overexpression

Overexpression of the mouse ATP-binding cassette (ABC) drug efflux transporter P-
glycoprotein ABCB1, also known as MDR1 in humans, was one of the earlier mechanisms
of PARPi resistance to be described in a BRCA1m breast cancer GEMM [30]. Many drugs,
including some PARPi, are ABC drug efflux substrates. Upregulation of MDR1 has been
found in small numbers of chemotherapy-resistant and/or PARPi-resistant high-grade
serous ovarian cancer patient tumours [29,31]. In the case of PARPi-resistant tumours,
MDR1 overexpression was accompanied by other alterations linked to resistance, suggest-
ing a more complex scenario [29]. These results open the possibility of MDR1 upregulation
being a clinically relevant resistance event, particularly in patients heavily pre-treated with
chemotherapy before receiving PARPi.

2.4. PARG Loss

While PARP proteins catalyse poly(ADP)-ribosylation (PARylation) of their target
proteins, a counteracting enzymatic activity is carried out by the poly(ADP-ribose) gly-
cohydrolase, PARG [32]. PARG loss has been associated with PARPi resistance in mouse
mammary tumour cell lines and GEMMs of BRCA deficiency. Mechanistically, it has been
shown that loss of PARG expression allows for some PARylation to occur even in the
presence of PARPi. This includes PARP1 auto-PARylation, which is an important event to
allow PARP1 release from DNA. Consequently, PARG deficiency led to reduced PARP1
trapping and DNA damage accumulation [33]. It will be important to determine whether
this mechanism of resistance also operates in human tumour samples.

2.5. PARP1 Mutations

A clear indication that the primary mechanism of action driving the efficacy of PARPi
is their ability to trap PARP1 on DNA came by the identification of PARP1 loss as the
strongest determinant of PARPi resistance in mouse embryonic stem cells [34]. This was
further confirmed by more recent in vitro studies showing that PARP1 mutant proteins
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that have lost their ability to bind DNA also confer resistance to PARPi [35,36]. In order to
understand the potential clinical relevance of this resistance mechanism, it will be important
to determine how compatible this type of PARP1 mutation is with BRCA deficiency given
the SL relationship between these genes. Interestingly, a PARP1 mutation predicted to
cause loss of DNA-binding ability has been identified in an archival ovarian tumour sample
from a patient that did not respond to olaparib. However, it is important to mention that
the tumour was platinum resistant and did not harbour gBRCAm (or mutations in other
DDR genes) [35], which could be the main reason driving olaparib resistance in this case,
regardless of PARP1 status.

3. BRCA/HRR-Dependent Mechanisms of PARPi Resistance
3.1. Dynamic Biomarkers of HRD

Although genetic testing to characterise gBRCAm and the genomic detection of HRD
have proven very useful methods to identify patients that could benefit from PARPi, it is
important to highlight that both methodologies rely on the detection of genetic mutations
or the assessment of genomic instability (also referred as genomic scars) that are a historical
account of the BRCA/HRD status of the tumour. That is, they identify that a tumour was
HRD at some point in its evolution, but they do not provide a dynamic measure of such
status at the time of treatment. This static nature of genetic and genomic testing could
be less relevant in early disease settings or in ovarian cancer, where repeated response to
platinum treatment can be used as surrogate biomarker for HRD, but could be problematic
when applying these methodologies in late-stage disease [14].

In order to overcome these limitations, there are current efforts to develop functional
dynamic biomarkers of HRD. Quantification in formalin-fixed, paraffin-embedded (FFPE)
tumour samples of the accumulation of the RAD51 protein in discrete, sub-nuclear struc-
tures termed “foci” by immunofluorescence (IF) techniques is one of the most advanced
methods [37]. RAD51 is a key mediator of HRR and its recruitment to DNA damage sites
by the complex formed by BRCA1–PALB2–BRCA2 proteins is essential for successful DNA
repair (Figure 1). This recruitment can be measured by IF using RAD51-specific antibodies
and works as a biomarker of HRR proficiency (reviewed in [38]). It has been shown that
this method can be used to measure HRD on FFPE sections at baseline without the need to
apply exogenous DNA damage to the samples [37], which greatly simplifies its application
in clinical material. Interestingly, use of this RAD51 foci assay has highlighted that the
great majority of responses to PARPi in PDX and clinical samples analysed to date can be
explained by the dynamic HRR status of the tumour in a more accurate way than gBRCAm
status or HRD scores, with cases with low RAD51 foci counts predicting a better response
to treatment than those with high RAD51 foci counts [37,39,40]. Although most of these
analyses were carried out in tumours of breast cancer origin, emerging data suggest that the
same could be applied to tumours of prostate [41] or ovarian origin [42]. Whether restora-
tion of RAD51 foci formation is a key mechanism of acquired PARPi resistance in the clinic
still remains to be addressed and is challenging due to limited post-PARPi tumour biopsies.
However, there have been reports of the restoration of RAD51 foci in breast cancer tumours
collected on PARPi progression (in 4/4 patients on PARPi progression, 6/7 patients on
PARPi or platinum progression) [43]. In this section describing the mechanisms of PARPi
resistance linked to the BRCAm/HRRm status of the tumour, we will highlight whether
the discussed mechanism has the potential to restore RAD51 foci formation.

3.2. Reversion Mutations

Different to most currently approved precision medicine cancer therapies, PARPi do
not target an oncogenic driver event but rather the loss of function of a tumour-suppressor
gene. It is thus conceivable to propose that the restoration of the function of the tumour
suppressor could provide resistance to PARPi. This was described very early on in the
development of PARPi, where secondary mutations in the BRCA genes acquired after treat-
ment with platinum or PARPi were identified in vitro and in ovarian cancer patients [44–46].
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These secondary mutations had the potential to restore the gene’s open reading frame
and as such they are referred to as reversion mutations, or simply reversions. Since those
first descriptions, BRCA reversions have been identified in many tumours from patients
progressing on PARPi treatment in all disease settings where PARPi are approved, making
them the only clinically validated mechanism of resistance to PARPi described so far [47,48].
Given that ovarian cancer is where PARPi have been approved for longer, it is not sur-
prising that the majority of reversions have been identified in that disease setting, where
they account for approximately 25% of the cases of progression after platinum or PARPi
treatment [48]. The nature of gBRCAm, which are mostly missense or nonsense mutations
or small insertions–deletions leading to frameshifts and premature STOP codons, may
explain the prevalence of reversion mutations as a mechanism of resistance. All of them
either delete or revert the original mutation and would be predicted to either partially
or fully restore BRCA function. Accordingly, reversion mutations have been shown to
restore RAD51 foci formation [43]. Importantly, it was recently described that patients
harbouring BRCAm involving structural variants such as homozygous deletion of the
entire locus, which are inherently resistant to reversion events, are enriched in long-term
response groups to PARPi [49].

Reversions have not only been detected in tumours with BRCAm but also in tu-
mours with mutations in other HRR genes such as PALB2 [50], RAD51C and RAD51D [51]
(Figure 1), which reinforces the notion that mutations outside of BRCA genes that impact
HRR are valid selection biomarkers for PARPi therapy. As more patients are treated with
PARPi outside of ovarian cancer settings, it will be critical to confirm the frequency of
reversion mutations driving resistance also in breast, pancreatic and prostate cancer. It is
important to emphasize that reversion mutations are often found at low allelic frequencies
in all disease settings, highlighting that the improvement of DNA sequencing quality and
depth in non-invasive methods to follow cancer progression, such as liquid biopsies, will
be key to understanding the true prevalence of BRCA reversions [52].

3.3. Restored BRCA/HRR Gene Expression

As BRCA1 or RAD51C gene silencing through promoter methylation has been detected
in ovarian and breast tumours [53] and has been associated with HRD cases [54], a potential
mechanism of resistance to PARPi in these tumours would involve gene re-expression.
Accordingly, analyses of paired biopsies pre- and post-platinum progression of ovarian
tumours have shown that the de-silencing of BRCA1 is linked to platinum resistance [31].
No such correlation has yet been established in post-PARPi clinical progressions, but it has
been identified in several cases of acquired PARPi resistance in PDX models of breast [39,55]
and ovarian [56] origin. As expected, restored BRCA1 expression has been correlated with
the re-gained ability of the tumour to form RAD51 foci [39]. Interestingly, and in addition
to the more trivial mechanistic explanation of de-methylation of the promoter as the
cause of re-expression of these genes, de novo gene fusions that place BRCA1 under the
transcriptional control of a heterologous promoter, resulting in its re-expression and the
acquisition of therapy resistance, have also been reported [55].

3.4. BRCA Hypomorphic Proteins

A hypomorph is a gene or protein variant with similar but weaker effect than the
corresponding wild-type version. As mentioned above, reversion mutations in BRCA genes
leave a genetic trace on the genome that can be used to identify such cases of therapy
resistance. As, by definition, reversions are identified in tumours progressing on treatment,
it is generally assumed that revertants do not behave as hypomorphic versions of BRCA
proteins, at least in fulfilling their function in providing therapy resistance. However, other,
mostly non-genetic mechanisms driving BRCA protein re-expression have been described,
particularly in the case of BRCA1, and they do involve the generation of hypomorphic
variants where entire protein domains can be missing (Figure 4) [57–61]. Although initially
these hypomorphs were only described in vitro, there are now several reports of their
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identification in PARPi-resistant PDX models, where they are a prevalent event linked to
the restoration of RAD51 foci formation [37,39]. There are fewer reports on the existence of
BRCA2 hypomorphs, and studies linking them to resistance are scarce and only in in vitro
settings [62]. It will be important to develop relevant pre-clinical models to test the levels
of PARPi resistance that can be achieved in vivo by expressing these hypomorphs, and
to develop the ability to detect the presence of BRCA-hypomorphic proteins in tumour
samples to assess the prevalence of this resistance mechanism in the clinic.
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3.5. DDR Rewiring

HRR proficiency as measured by high basal levels of RAD51 foci could be explained
by the acquisition of BRCA reversions, re-expression of HRR genes or BRCA-hypomorph
activity, all of which have been identified and account for the majority of cases in PDX
cohorts [37,39]. However, alternative ways of re-gaining HRR proficiency specifically in
BRCA1m cancer cells have been described that do not affect the BRCA1m status of the
cell. The best studied mechanism involves the inactivation of the TP53BP1 gene encoding
the 53BP1 protein. The genetic interaction between BRCA1 and TP53BP1 operates beyond
PARPi resistance settings, and was initially described following the observation that 53BP1
loss rescues the early embryonic lethality caused by BRCA1m in mice [63]. This is due to
the suppression of genomic instability caused by BRCA1 loss in the absence of 53BP1, a
scenario that extends to the genomic instability caused by PARPi in BRCA1m cells [64,65].
Subsequent work by many different research groups has highlighted that 53BP1 does not
operate in isolation with regard to generating resistance to PARPi in BRCA1m settings,
and seems to act as the central component of a protein complex known as 53BP1–Shieldin
(Figure 2; reviewed in [66]). Loss of 53BP1–Shieldin complex components results in the
restoration of RAD51 foci formation and a re-gained ability to perform HRR in the absence
of BRCA1. This seems to be mostly due to 53BP1–Shieldin blocking the alternative, BRCA1-
independent pathway of recruitment of PALB2–BRCA2–RAD51, but also by preventing the
nucleolytic processing of DNA ends (a phenomenon called DNA-end resection), which is
an essential upstream event in HRR [67–69] (Figure 1). Importantly, mutations in 53BP1
have been identified in PDX models on progression on PARPi treatment and linked to
restored RAD51 foci formation [37], and also in one paired clinical sample on PARPi
progression [43]. As all of these examples have been identified in breast cancer, it will
be important to understand their prevalence in other disease settings and the clinical
relevance of mutations in components of the 53BP1–Shieldin complex other than 53BP1
itself. Moreover, it will be interesting to explore whether DDR rewiring can also occur in
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other HRD tumours, as 53BP1–Shieldin mutations specifically confer resistance to PARPi in
BRCA1m settings [69].

3.6. Restoration of Replication Fork Protection

In addition to their canonical roles in HRR (Figure 1), BRCA proteins are also key
players in a form of DNA replication fork protection (RFP) that prevents stalled and
regressed replication forks from being degraded by the action of DNA nucleases [70,71].
As such, deficiency in the recruitment of these nucleases to stalled replication forks or the
defective remodelling of the forks that is required for their processing have been shown
to cause a moderate level of PARPi resistance in BRCAm cell lines (reviewed in [72]). The
relevance of the restoration of RFP as a driver of PARPi resistance, however, is disputed by
the fact that (i) the separation of function mutations in BRCA1 [73] or BRCA2 [70] that affect
their RFP function but leave their HRR role intact do not confer sensitivity to PARPi, and
(ii) loss of 53BP1, which causes PARPi resistance in BRCA1m settings, restores RAD51 foci
formation and HRR but not RFP [74]. Accordingly, this potential mechanism of resistance
has only been described in vitro, and further accumulation of in vivo data will be required
to assess its importance in clinically relevant settings.

4. Preventing and Tackling PARPi Resistance

Although tumours may eventually develop PARPi resistance, the current data sug-
gest that, as is the case with many other therapies, earlier intervention results in more
durable responses regardless of the tissue of origin. The generally positive safety profile
of PARPi allows their use in the maintenance setting, where they have provided the most
extraordinary results. In ovarian cancer, for example, first-line maintenance treatment trials
with olaparib showed an estimated median progression-free survival of more than 3 years,
compared to 19.1 months in the second line setting [19,75]. Increased benefit through earlier
intervention has also been observed in breast cancer [76,77] and there are ongoing trials to
assess this in prostate cancer [21,78].

As PARPi are approved in first-line maintenance settings, efforts should not only
be directed towards tackling resistance once it arises but also to prevent it appearing in
the first place. Any approach that would enhance the efficacy of PARPi while sparing
the healthy tissue will help in this regard. Pre-clinical work suggested that combinations
of PARPi with immune-oncology agents should be considered owing to the superior
efficacy observed for PARPi in immune-competent mice [79–81], something that is currently
being tested clinically in many different disease settings (reviewed in [82]). It was also
reported that inhibition of the vascular endothelial growth factor (VEGF) causes a certain
level of HRD that could be further exploited by PARPi, but results from the Phase III
PAOLA-1 trial showed the benefit of the combination of olaparib and the VEGF inhibitor
bevacizumab only in the HRD population [15]. Similarly, inhibition of the phosphoinositide
3-kinase (PI3K) pathway has been shown to impact the expression of HRR genes, thus
highlighting the potential value of PI3K pathway inhibition combined with PARPi in non-
HRD tumours [83,84]. Moreover, a cross-talk between PARP1 and androgen receptor (AR)
function has been proposed as the basis of the benefit of the combination of PARPi with
AR inhibitors regardless of the HRD status of the tumour [85–87]. Clinical trials exploring
these combinations in unselected populations are already under way and will shed light
into the validity of the approach [78,88,89]. Given the success of antibody–drug conjugates
(ADCs; reviewed in [90]) harbouring a DNA topoisomerase I (TOP1) inhibitor warhead
in breast cancer [91], and the known synergistic interaction between TOP1 inhibitors and
PARPi [92], combinations of TOP1i-ADCs with PARPi should also be considered. More
recently, an SL interaction between BRCAm and loss of the key microhomology-mediated
end joining (MMEJ) DNA repair factor DNA polymerase theta (also known as POLQ) has
been described [93,94]. As the first POLQ inhibitors [95] are entering the clinic, it will be
interesting to assess their activity when combined with PARPi.



Cancers 2022, 14, 44 10 of 17

In all cases, however, patient relapse after PARPi treatment will usually leave them
with few established therapeutic options other than platinum re-challenge followed by
repeated PARPi maintenance, a regime that has shown limited benefit in ovarian cancer [96].
As described above, the most obvious differentiation between resistance mechanisms is
whether tumours restore HRR or remain HRD. Accordingly, the potential therapeutic
options that we discuss below can also be linked to the HRD status of the tumour at the
time of treatment (Figure 5).
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4.1. Non-HRD Tumours

This represents the best clinically described group, as it includes tumours with re-
version mutations or with loss of HRR gene promoter methylation. These cases will be,
in general, also resistant to platinum treatment (Figure 5). As such, therapeutic options
will have to rely on attacking alternative vulnerabilities already present in the primary
tumour or acquired on PARPi progression. It has been proposed that PARPi-resistant
tumours accumulate high levels of replication stress, a cell status defined by sub-optimal
conditions for DNA replication (reviewed in [97]). The acquisition of amplifications in
the CCNE1 gene, encoding the cyclin E protein, in ovarian tumours resistant to PARPi
point towards that direction [29]. Cells rely on a signal transduction pathway termed
the replication stress response (RSR) to deal with high levels of replication stress, and
drugs inhibiting its key effector kinases ATR, CHK1 and WEE1 are already in clinical trials
(reviewed in [98]). It has been shown in PDX and xenograft models that combinations of
PARPi with ATR or WEE1 inhibitors can be effective treatment options in PARPi-resistant
models [99,100], something already being tested in clinical trials with encouraging reported
efficacy [101–103] (and NCT04197713). These combinations could also be a good option
to consider even in PARPi-naïve settings, as a way to increase efficacy and reduce the
chances of residual disease accumulation, but tolerability margins should be carefully
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managed [100]. In general, patient selection strategies to identify PARPi-resistant tumours
with high levels of replication stress will be key for the success of these approaches.

As discussed before, the synergistic interaction between TOP1i and PARPi provides
rationale for the combination of TOP1i-ADCs and PARPi as a way to increase efficacy in
earlier lines of treatment, independently of the HRD status of the tumour. This should
also be considered in post-PARPi settings, and will be of particular importance in sce-
narios where tumours have regained HRR proficiency, as is the case here. Key to the
success of this approach will be the identification of relevant antigens to target in the
post-PARPi populations.

To increase the durability of the treatment, combinations with therapies that could pre-
vent the acquisition of these resistance mechanisms are also attractive. Sequence analyses
of reversion events identified in the clinic have highlighted the role that error-prone DNA
repair pathways, such as non-homologous end joining (NHEJ) and MMEJ, play in generat-
ing them [47,48]. Given that NHEJ and MMEJ inhibitors are entering the clinic [95,104,105],
their potential combination with PARPi to prevent the acquisition of reversion mutations
should be considered. In addition, there is little mechanistic understanding of the pathways
driving the loss of BRCA1 or RAD51C promoter methylation. Identifying the responsible
de-methylase(s) will unveil interesting new target opportunities.

4.2. BRCAm, HRR-Proficient Tumours

This group mainly represents resistance driven by BRCA-hypomorph expression
or DDR rewiring events (Figure 5). The clinical development of a dynamic biomarker
of HRD, such as RAD51 foci quantification, will greatly increase our understanding of
the level of HRD remaining in tumours re-gaining HRR without losing their BRCAm
status. Pre-clinical work has shown that mutations in 53BP1–Shieldin, while causing PARPi
resistance, do not result in acquired resistance to platinum treatment [106,107] (although
other reports suggest otherwise [65]), highlighting an already available treatment option.
Mutations in 53BP1–Shieldin have also been shown to result in an SL interaction with
the key MMEJ factor POLQ, offering an acquired therapeutic vulnerability that could be
exploited [95]. Furthermore, it has been shown that the restored HRR functionality caused
by 53BP1–Shieldin loss in BRCA1m settings relies on sustained signalling through the ATR
kinase [68,108], providing support for the idea that combining PARPi and ATR inhibitors
could be beneficial in a range of scenarios.

Although BRCA1 hypomorphs have been shown to provide resistance to PARPi in
PDX models, it will be important to determine their prevalence in clinical samples, an effort
that will probably require the clinical development of non-genetic detection methods [37].
In addition, BRCA hypomorphs have been shown to provide resistance to PARPi in vitro,
but it is not entirely clear if the extent of PARPi resistance they provide matches that caused
by reversion mutations, and whether they also fully restore platinum resistance. It is also
important to highlight that BRCA1 hypomorphs lack entire protein domains that could be
important for other BRCA1 functions, such as RFP, which could potentially be exploited
with RSR inhibitors. Further pre-clinical investigation of the functions and vulnerabilities
of BRCA hypomorphs is required to advance our understanding of how to tackle this
resistance mechanism.

4.3. HRD Tumours

Although this group encompasses mechanisms that in general will also result in
platinum resistance, the fact that the tumours would remain HRD opens the possibility of
exploiting other SL interactions that have been described for BRCAm/HRD, with POLQ
inhibitors being the most clinically advanced option (Figure 5) (reviewed in [109]). Platinum
re-challenge would remain an option in the case of mutations affecting PARP metabolism
and, in the specific case of SLFN11 deficiency, the opportunity of combining RSR inhibitors
with standard chemotherapies has already shown promising results [28]. Further pre-
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clinical work is required to better understand the SL landscape in BRCAm cell lines that
have restored their RFP capability without impacting HRR.

5. Conclusions

Although a wide range of PARPi resistance mechanisms has been described in pre-
clinical models, actual clinical data are scarce and mostly confirm the prevalence of rever-
sion mutations as a primary driver of PARPi failure. This lack of clinical data highlights
the need to evaluate PARPi resistance in post-PARPi tumour biopsies. One way to do this
would be by increasing the number of clinical trials in the post-PARPi patient population
with mandatory biopsies on enrolment, as it will be key to have a dynamic measure of the
tumour HRD status at the time of treatment to provide the best therapeutic options going
forward. In addition, this will also reveal the true diversity of resistance mechanisms in
patients. Access to such samples, together with improvements in the sensitivity of new
technologies, such as DNA sequencing in both solid and liquid biopsies, and non-genetic
methods of detection of resistance, such as protein biomarkers or promoter methylation
status, will enable the focusing of pre-clinical and drug development efforts on the most
relevant PARPi resistance mechanisms.
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