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ABSTRACT
The long story of NK cells started about 50 y ago with the first demonstration of a natural cytotoxic activity 
within an undefined subset of circulating leukocytes, has involved an ever-growing number of research
ers, fascinated by the apparently easy-to-reach aim of getting a “universal anti-tumor immune tool”. In 
fact, in spite of the impressive progress obtained in the first decades, these cells proved far more complex 
than expected and, paradoxically, the accumulating findings have continuously moved forward the 
attainment of a complete control of their function for immunotherapy. The refined studies of these latter 
years have indicated that NK cells can epigenetically calibrate their functional potential, in response to 
specific environmental contexts, giving rise to extraordinarily variegated subpopulations, comprehensive 
of memory-like cells, tissue-resident cells, or cells in various differentiation stages, or distinct functional 
states. In addition, NK cells can adapt their activity in response to a complex body of signals, spanning 
from the interaction with either suppressive or stimulating cells (myeloid-derived suppressor cells or 
dendritic cells, respectively) to the engagement of various receptors (specific for immune checkpoints, 
cytokines, tumor/viral ligands, or mediating antibody-dependent cell-mediated cytotoxicity). According 
to this picture, the idea of an easy and generalized exploitation of NK cells is changing, and the way is 
opening toward new carefully designed, combined and personalized therapeutic strategies, also based on 
the use of genetically modified NK cells and stimuli capable of strengthening and redirecting their effector 
functions against cancer.
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Introduction

Different effector cells are involved in anti-tumor activity, 
including αβ and γδ T lymphocytes, natural killer (NK) cells, 
and M1-polarized macrophages. In addition, dendritic cells 
(DC) instruct T lymphocytes by presenting tumor peptides, 
while phagocytes may participate in eliminating apoptotic and 
necrotic tumor cells. Despite the potential effectiveness of all 
these cellular mechanisms, tumors can counteract and escape 
the immune response, primarily by creating a hostile environ
ment, both by directly impairing immune effector cells or by 
instructing different immune and nonimmune cells to become 
immunosuppressive.1 These effects lead to a suppressive tumor 
microenvironment (TME), which may subvert the potential 
anti-tumor effect. Among defensive cells, NK lymphocytes 
play a major role in anti-tumor activity. They were discovered 
in the mid ‘70s, but only in the late ‘80s, the inspiring “missing 
self hypothesis”2 led to the identification in the early ‘90s of the 
Human Leukocyte Antigen (HLA)-specific killer Ig-like recep
tors (KIRs), CD94/NKG2A, and of activating receptors.3–7 

These latter receptors allow the detection and killing of 
tumor cells, including the Natural Cytotoxicity Receptors 
(NCRs: NKp46, NKp44, NKp30), NKG2D, and DNAM-1.8–10

This contribution intends to briefly review the main inter
actions occurring between NK cells and tumor cells, the effect 
of suppressive activity of TME, and the immunotherapeutic 
approaches which may restore and/or potentiate the anti- 
tumor activity of NK cells. Some essential notions of NK cells 
and their receptors will be discussed to allow a deeper under
standing of the NK/tumor cell interactions.

NK cell receptors and subsets

NK cells contribute to a first line of innate defenses: they are 
naturally equipped with a lytic machinery which allows the 
killing of some pathological target cells, including tumor and 
virus-infected cells. While innate immunity can frequently stop 
infections at a subclinical level, in more severe cases, it can 
contain infection allowing the intervention of the more effi
cient and specific, adaptive immunity, which involves 
T lymphocytes and, subsequently, B-cell-derived antibodies.11

The molecular mechanisms which allow NK cells to discri
minate between healthy and abnormal cells remained 
a mystery for a long time. The main questions were as fol
lows: 1) which receptors do allow NK cells to selectively hit 
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tumor and virally infected cells? 2) what makes these target 
cells susceptible to NK cells? Capitalizing on the development 
of a sophisticated technique, allowing high cloning efficiency of 
T, and, subsequently, NK cells, Alessandro Moretta and cow
orkers discovered the prototypes and most important inhibi
tory receptors, i.e., KIRs.3 These receptors, recognizing groups 
of HLA class I (HLA-I) allotypes, inhibit NK cell functions, 
avoiding killing healthy self cells. The major families of inhi
bitory receptors for HLA-I are the KIRs and the CD94/NKG2A 
heterodimer. In particular, KIR2DL1 and KIR2DL2/3 recog
nize HLA-C molecules carrying lysine and asparagine at posi
tion 80, respectively. KIR3DL1 binds to HLA-B and -A 
allotypes sharing the Bw4 epitope, and KIR3DL2 recognizes 
HLA-A *03 and -A *11. Differently, CD94/NKG2A is specific 
to the non-classical HLA-E molecule. The discovery of KIRs 
attracted the attention of immunogenetics researchers to study 
the KIR gene family and allowed the identification of two 
different haplotypes (termed A and B) differing in gene content 
(i.e., number and type of KIR genes).12–14 The evidence of an 
“off” signal implies the existence of an “on” signal occurring 
when NK cells interact with abnormal target cells. This led 
to the discovery, by the same research group, of activating 
receptors involved in the recognition of abnormal cells and in 
the induction of the functional program of NK cells, i.e., 
cytotoxicity and cytokine production (primarily IFN-γ and 
TNF-α).8–10,15 Importantly, the molecular structures recog
nized by activating NK receptors on target cells are either 
absent or expressed at low levels on healthy cells, while they 
become overexpressed in “stressed” cells. While also healthy 
cells can express such ligands for activating NK receptors upon 
“stress” induced by cytokines and cell proliferation/activation, 
they do express normal, or even increased levels of HLA-I 
molecules. The latters, upon interaction with KIR or CD94/ 
NKG2A inhibitory receptors, inactivate NK cells, thus protect
ing them from NK-mediated attack. In contrast, tumor cells, as 
well as virally infected cells, may lose HLA expression or dis
play an altered structure of HLA-I.

Some basic concepts regarding NK cell development and 
subsets are mentioned below.

Traditionally, two main NK cell subsets have been distin
guished in peripheral blood (PB) based on the cell surface 
density of CD56 and CD16 molecules, termed 
CD56brightCD16dim/− and CD56dimCD16+, with the former 
believed to be less mature but capable of producing high levels 
of cytokines (e.g., IFN-γ and TNF-α) and the latter more 
mature and cytotoxic.16,17 Furthermore, CD56dim NK cells 
can mediate antibody-dependent cell-mediated cytotoxicity 
(ADCC) through the engagement of CD16, the low-affinity 
receptor for the Fc fragment of immunoglobulin 
G (FcγRIIIA, CD16A).18 PB CD56brightCD16− NK cells are 
uniformly positive for the HLA-E-specific inhibitory receptor 
CD94/NKG2A but lack KIRs. Differently, PB CD56dimCD16+ 

NK cells show variable expression of CD94/NKG2A and KIRs. 
Further distinctions were made within the CD56dimCD16+ NK 
cell subset which led to the description of a fully differentiated 
NK cell subset, characterized by the expression of CD57 and 
the absence of CD94/NKG2A, and a subset of mature NK cells, 
expressing the HLA-E-specific CD94/NKG2C activating recep
tor and displaying “adaptive” immune features in the context 

of CMV infection (called adaptive NK cells).19,20 Indeed, under 
certain conditions NK cells undergo antigen-specific clonal 
expansion and become long-lived memory cells, features con
sidered hallmarks of adaptive immunity lymphocytes.

Recent studies have also characterized NK cells in different 
tissues, each with distinct phenotypic and functional profiles. 
Indeed, the presence of tissue-resident NK cells has been shown 
in certain tissues, where they are retained thanks to the expres
sion of the CD103 (αE integrin) and CD49a (α1 integrin) tissue 
residency markers.17,21 In addition, the development of 
advanced single-cell technologies, such as scRNA-seq and 
CITE (Cellular Indexing of Transcriptomes and Epitopes)-seq, 
has accelerated the dissection of NK cell subset heterogeneity, 
revealing an intricate and nuanced NK cell landscape as well as 
different trajectories in their differentiation from hemopoietic 
precursors. Nevertheless, data based on these technologies still 
require a careful comparison with established markers and, more 
in general, with the proteins that are actually expressed. Another 
important concept related to NK cell maturation is the process of 
NK cell licensing or education, during which only NK cells 
expressing KIRs and/or CD94/NKG2A recognizing self HLA-I 
alleles become fully functional.22–24

Tumor escape mechanisms in the tumor 
microenvironment

To understand the potential efficacy of NK cell-mediated anti- 
tumor activity, the accessibility of NK cells into the tumor and 
the role of TME have to be taken into consideration 
Figure 1.25–28

NK chemokine receptors and tissue chemoattractants

NK cell migration into inflamed tissues is controlled by adhe
sion molecules, chemokine receptors, and chemokine gradi
ents. While CD56dim NK cells express CXCR1, CX3CR1, 
CXCR2, and low levels of CXCR3, CD56bright NK cells express 
L-selectin (CD62L), CCR7, CCR5, and CXCR3.29 Therefore, 
these two NK cell subsets show different migration capabilities. 
Chemokine receptor expression differences account for the 
differential migration of CD56dim cells and CD56bright NK 
cells into inflamed tissues and secondary lymphoid organs, 
respectively. However, so far, it is not known whether 
CD56bright and CD56dim NK cell subsets are differentially 
recruited to the tumor because of their diverse chemokine 
receptor repertoire.30,31 At least in some tumors, it has been 
described that the presence of high NK cell infiltration is 
related to a more favorable outcome.32 It is conceivable that 
NK cell recruitment into the tumor bed might be regulated by 
CXCR3 and CX3CR1 chemokine receptors. Experimental can
cer models have shown that gene therapy with CX3CL1/frac
talkine and CCL2 can stimulate tumor rejection by boosting 
NK cell infiltration and activation.33,34 In addition, it has been 
suggested that NK cells exposed to IL-15 and glucocorticoids 
express a high level of CXCR3, thereby increasing their poten
tial to infiltrate CXCL10-positive melanomas. Thus, in 
humans, CD56bright could be preferentially recruited to the 
tumor due to their surface expression of CXCR3.35,36 

Transforming Growth Factor beta (TGF-β) promotes the 
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deregulation of the CX3CL1–CX3CR1 axis thus inducing the 
recruitment of CD56bright NK cells at the expense of the 
CD56dim subset. On the same line, increased levels of CCL19, 
CXCL9, and CXCL10 and decreased levels of CXCL2 in lung 
tumors foster the recruitment of CD16− NK cells, to the detri
ment of the more cytotoxic CD16+ NK cells.37 Also, CD56dim 

NK cells have been found in human lung tumors, colorectal 
cancer, and lymph node melanoma metastases.38–40 In addi
tion to chemokines, other factors could boost the recruitment 
of NK cells in tumors. In a melanoma model, chemerin, an 
important chemoattractant, enhances the infiltration of 
immune cells expressing the chemerin receptor CMKLR1 
(i.e., NK cells, T cells, and DCs) into tumors.41 In addition, 
our group has demonstrated that NK cells, upon interaction 
with melanoma cells, can release a form of high mobility group 
box-1 protein able to chemoattract activated NK cells.42 

Moreover, NK cells can be recruited into the tumor DC capable 
of prime T cell-mediated immunity. In human cancers, intra
tumoral CCL5, XCL1, and XCL2 transcripts closely correlate 
with gene signatures of both NK cells and conventional type 1 
DC and are associated with increased overall patient survival in 
several cancer types.43 In addition, these NK cells, through 
secretion of FLT3L, control the abundance of intratumoral 
stimulatory DC and further the responsiveness of melanoma 
patients receiving anti-PD-1 therapy.44

On the other hand, it has been shown that tumor cells 
may also affect the ability of NK cells to enter a solid tumor 
site. In this context, it has been shown that neuroblastoma- 
derived TGF-β could skew the NK cell chemokine-receptor 
repertoire.45

Tumor-infiltrating cells

In the TME, different immune and stromal cells are present, as 
well as a heterogeneous array of soluble factors endowed with 
an immune suppressive activity.46,47 Several tumor-infiltrating 
cell types can shape the TME and affect NK cell functions 
through different mechanisms. In the TME, the major cellular 
components are represented by myeloid cells, namely tumor- 
associated macrophages (TAM), myeloid-derived suppressor 
cells (MDSC), and tumor-associated neutrophils (TAN) 
(Figure 1).48–50 In particular, the subset of MDSC of polymor
phonuclear lineage (PMN-MDSC) has recently been found not 
only in TME but also in PB in tumor patients. Importantly, 
their frequency in PB directly correlated with the severity and 
the prognosis of lung carcinoma patients. Notably, NK cells in 
these patients were significantly impaired in their functional 
activities.51 Thus, it is conceivable that targeting or inactivating 
PMN-MDSC may represent a promising therapeutic tool. In 
mouse, it has been described that TAN can impair the cyto
toxicity and infiltration capability of NK cells by CCR1 down
regulation. Moreover, neutrophils can decrease the 
responsiveness of the NKp46 and NKG2D activating receptors. 
Enhanced expression of PD-L1 on neutrophils and of PD-1 on 
NK cells, and subsequent PD-L1/PD-1 interactions were the 
main mechanisms determining the neutrophil-mediated sup
pression of NK cell immunity.52 Other cells can contribute to 
the development and maintenance of an immune suppressive 
microenvironment, such as regulatory T lymphocytes (Tregs), 
frequently expanded in tumor patients and found both in PB 
and at the tumor site. Their presence in tumor infiltrates 

Figure 1. Inhibition of NK cell-mediated anti-tumor response by tumor microenvironment. The tumor microenvironment inhibits NK cell activation and functions 
through various mechanisms: a) Production of soluble factors (cytokines, chemokines, and tumor metabolites); b) Generation of hypoxic conditions; c) Increment of IC/ 
IC-ligand interactions; d) Release of soluble activating receptors by metalloproteases; e) Release of soluble ligands for activating NK receptors. Abbreviations: CAF, 
cancer-associated fibroblasts; IC, immune checkpoint; iKIR, inhibitory killer Ig-like receptors; MDSC, myeloid-derived suppressor cells; NK, natural killer cells; TAM, tumor- 
associated macrophages; Tregs, regulatory T cells. Figure contains modified images from Servier Medical Art (https://smart.servier.com) licensed by the Creative 
Commons Attribution CC BY 4.0 International License (https://creativecommons.org/licenses/by/4.0/).
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correlates with impaired immune function and bad prognosis. 
In Gastrointestinal Stromal Tumor (GIST) and Hepatocellular 
Carcinoma (HCC) patients, low NK cell functional capabilities 
correlate with high numbers of Tregs. Along this line, Tregs 
isolated from GIST patients inhibit NK cells through mem
brane-bound TGF-β.53 In addition, since Treg cells express the 
high-affinity IL-2 receptor alpha (CD25, IL-2 rα), they could 
also interfere with NK cell activation by competing for IL-2 
availability.

Interestingly, the presence of tumor-associated adaptive NK 
cells with tissue-resident traits has recently been evaluated in 
some solid tumors, but the available data are still few and 
partially conflicting. In particular, tumor-associated NKG2C+ 

inhibitory self-KIR+ NK cells, expressing the tissue residency 
marker CD94a, have been described to be present in lung 
cancer patients but only in CD56bright CD16− NK cells and 
not in CD56dim CD16+ NK cells as occurring in PB. In addi
tion, these cells were hyperresponsive toward K562 cells in 
terms of both cytokine release and CD107a degranulation.54 

On the other hand, CD56dim FCεRγ− adaptive NK cells have 
been detected with increased frequencies in HCMV+ HBV- 
associated hepatocellular carcinoma patients. These cells 
exhibited low expression of tissue-resident markers (including 
CD49a, CXCR6, and CD69) and limited anti-tumoral activity 
toward liver cancer cells, suggesting that TME can influence 
their anti-tumor capabilities.55

Among tumor-associated stromal cells, activated fibro
blasts, often termed cancer-associated fibroblasts (CAF), are 
considered to play a role in mediating suppressive activity 
toward NK cells in the TME.25 CAF have been shown to dis
play distinct phenotypes and features with respect to fibro
blasts residing in healthy tissues.56,57 For example, CAF 
derived from melanoma, HCC, and colorectal carcinomas 
were shown to inhibit NK cell activity through cell-to-cell 
contact and through secretion of Prostaglandin E2 (PGE2), 
which could abrogate IL-2-induced upregulation of NKp44, 
DNAM-1, and NKp30 activating receptors.58–60 In addition, 
in acute myeloid leukemias (AML), aberrant bone marrow 
(BM) mesenchymal stromal cells (α-SMA+ MSC) and hypoxia 
may contribute to generate a pro-tumoral BM niche that can 
affect NK cell differentiation and lead to an impairment of NK 
cell cytolytic activity against neoplastic cells.61

Suppressive soluble factors at TME

Tumor-associated cells in the TME and tumor cells themselves 
can inhibit NK cell anti-tumor effector functions both by 
establishing cell-to-cell contacts and through the release of 
several cytokines, inflammatory mediators, reactive oxygen 
species, and other soluble molecules (Figure 1).

Among soluble factors, TGF-β plays a pivotal role in tumor- 
mediated immune suppression. It is produced by different cell 
types in the TME, including tumor cells themselves, and is 
exposed on the surface of regulatory immune cells; it can also 
be delivered to extracellular vesicles or stored as an inactive 
component inside the extracellular matrix and released 
through the action of some metalloproteases.62,63 Products of 
tumor cell metabolism can also be released. For example, both 

in solid tumors and in leukemias, enhanced tryptophan cata
bolism leads to an immunosuppressive environment. Thus, 
overexpression of the indoleamine 2,3-dioxygenase (IDO) 
enzyme catalyzes tryptophan degradation by producing 
l-kynurenine, which can directly affect NK cells. Our group 
showed that melanoma-derived IDO and/or PGE2 could inhi
bit NK cell surface expression of NKp30, NKp44, and NKG2D 
that are required for target cell recognition and killing.64 

Besides TGF-β, also IL-4, macrophage migration inhibitory 
factor (MIF), MUC-16, and adenosine can affect NK cell 
function.65 In particular, it has been described that TGF-β is 
able to down-regulate NKG2D and NKp30 activating receptor 
expression, while IL-4 alters the capability of NK cells to 
produce cytokines.66,67 Ovarian tumor cells can release/express 
both MIF and MUC-16 glycoprotein: MIF can down-regulate 
NKG2D expression, while MUC-16 can interfere with the 
formation of immunological synapses between NK and 
tumor cells.68,69

The chronic exposure to soluble factors and cell-to-cell 
contacts in the TME can deeply modify NK cells, inducing an 
“exhausted” phenotype. Exhausted tumor-associated (TA)-NK 
cells exhibit upregulation of inhibitory receptors such as PD-1, 
TIM-3, TIGIT (T cell immunoreceptor with Ig, and 
Immunoreceptor tyrosine-based inhibition Motif (ITIM) 
domains), LAG-3, and NKG2A, while they display 
a decreased expression of activating receptors (such as 
NKG2D)70,71 and of Eomesodermin and T-bet transcription 
factors.72,73 Exhausted TA-NK cells exhibit lower ability to 
proliferate, degranulate, and produce cytokines. In the TME, 
several metabolic stressed conditions such as nutrient deple
tion, low oxygen, and low pH can also impair NK cell func
tions, thus favoring exhaustion.74 It has been shown that NK 
cell activity, proliferation, and survival rely on either oxidative 
phosphorylation (at steady-state) or glycolysis (upon 
activation).75 Along this line, it has been described that during 
lung cancer progression, the presence of TGF-β in TME- 
induced inhibition of glycolysis results in a decreased cytotoxi
city and viability of NK cells.76 Altogether, these features 
explain the reduced anti-tumor effector functions frequently 
displayed by NK cells in the TME.77–84 Although exhausted NK 
cells do not necessarily display alterations in the content of 
cytotoxic molecules, the impairment of NK cytotoxic function 
can also occur through the modulation of the effector mole
cules normally stored inside lytic granules. In different solid 
and hematologic tumors, patients’ NK cells have been shown to 
display alterations in perforin and/or granzyme B expression, 
mainly mediated by TGF-β.85 In addition, perforin and gran
zyme expression can be modulated by microRNA (miRNA) 
carried to NK cells via tumor-derived exosomes. Interestingly, 
tumor-derived exosomes can deliver several miRNAs with 
immune-modulating effects, such as miR-544, inhibiting 
NKp46 expression or miR-146a, down-regulating IFN-γ and 
TNF-α.86,87

Tumor-NK cell interactions

As described above, tumor cell recognition takes place through 
multiple NK receptor–ligand interactions dictating whether 
target cells will be spared or killed by NK cells. Tumor escape 
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mechanisms targeting these interactions represent an effective 
strategy to limit tumor cell recognition and subsequent cyto
toxic activity by NK cells. On the NK cell side, the expression of 
the main activating NK receptors responsible for tumor cell 
killing can be reduced by different factors found in the TME. 
NCRs, NKG2D, and DNAM-1 surface expression can be vari
ably affected by TGF-β, PGE2 or L-kynurenine produced by 
the IDO enzyme64,66,88,89 In addition, hypoxia, which often 
characterizes the tumor and its microenvironment, can be 
responsible for the modulation of activating NK receptors 
(Figure 1).90–92 Interestingly, tumor cells undergoing epithe
lial–mesenchymal transition (EMT), a process favored by 
hypoxia and other factors present in TME, display an increased 
ability to induce the down modulation of activating receptors 
on NK cells.93 NK receptor modulation can also occur follow
ing persistent stimulation of NK cells with ligands expressed by 
cancer cells; in this case, receptor engagement by the corre
sponding ligand(s) induces receptor endocytosis, resulting in 
a decreased ability of NK cells to recognize and kill tumor 
cells.94,95 Receptor modulation has been demonstrated for 
NCRs, NKG2D, and DNAM-1.96–100 An additional mechanism 
by which activating NK receptors can be down-regulated 
involves the activity of metalloproteases, which mediate the 
shedding of the receptor from the cell surface through proteo
lytic cleavage. In particular, enzymes belonging to the matrix 
metalloproteinases (MMP) and ADAM (a disintegrin with 
metallopeptidase domain) families have been implicated in 
this process, for example, in the case of CD16 and DNAM-1 
receptors (Figure 1).101–106 In this context, the use of MMP 
and/or ADAM inhibitors could improve the ADCC function 
and increase the efficacy of therapeutic monoclonal antibodies 
(mAbs).107,108 On the other hand, it has also been reported that 
the cleavage of CD16 mediated by ADAM17 could increase the 
efficiency of NK cell response, since CD16 shedding favors NK 
cell detachment from the target cell, which in turn improves 
serial killing.109

Regardless the mechanisms involved, it is of note that NK 
cells displaying a decreased surface expression of activating 
receptors have been detected in patients affected by different 
types of both solid and hematological cancers.39,96,110–112

Dysregulation of tumor-NK cell interactions can also be 
achieved through the upregulation of receptors delivering 
inhibitory signals, i.e., receptors for immune checkpoints 
(IC), including PD-1, TIM3, TIGIT, and CD96 
(Figure 1).113 Indeed, several studies demonstrated that in 
cancer patients these receptors can be upregulated in both 
PB-derived and tumor-infiltrating NK cells.78–83 In addition, 
NK cells express a still unknown receptor able to recognize 
B7-H3, a member of the B7 family behaving as an immune 
checkpoint, given its broad expression in different tumor 
types and its ability to inhibit NK cell function following 
receptor ligation.114 It has also to be considered that cancer 
cells can frequently display high levels of classical and non- 
classical HLA class I molecules, as a result of IFN-γ stimula
tion, further favoring the inhibitory signals conveyed to NK 
cells through inhibitory KIRs and CD94/NKG2A upon ligand 
engagement.115,116 In addition, IFN-γ is also responsible for 
the upregulation of PD-L1/-L2 expression on tumor cells via 
the JAK/STAT pathway.117

Indeed, focusing on target cells, the alteration of ligands 
expressed on tumor cells is an effective strategy to limit recog
nition and killing by NK cells. Regarding this issue, ligands for 
NKG2D receptor represent a good paradigm, as their modula
tion from tumor cell surface can occur via different mechan
isms. NKG2D ligands, namely MICA/B and ULPBs, are 
generally overexpressed or de novo expressed upon cellular 
stress, neoplastic transformation or viral infection.104,118,119 

Their expression can be diminished following the release of 
soluble ligands in exosomes, as a result of proteolytic shedding 
or translation of alternatively spliced transcripts. Interestingly, 
the inhibition of MICA/B cleavage can be obtained with a mAb 
that binds MICA/B in the α3 domain including the site of 
proteolytic shedding. This mAb has been shown to inhibit 
tumor growth in multiple fully immunocompetent mouse 
models and reduce human melanoma metastases in 
a humanized mouse model.120 In addition, a Phase 1 dose- 
escalation clinical trial is showing promising results with 
a humanized anti-MICA/B mAb (cln-619), both as monother
apy and in combination with pembrolizumab in patients with 
solid tumors (NCT05117476). Alternatively, the disappearance 
of NKG2D ligands from the cell surface can be due to intra
cellular retention or to internalization and subsequent protea
somal degradation (Figure 1).121–125 Ligand expression can also 
be regulated at the transcriptional level; for example, tumor 
cells can overexpress several miRNAs targeting MICA.126–130 

Regarding DNAM-1 ligands, soluble poliovirus receptor (PVR 
or CD155) can be obtained by alternative splicing, while post- 
translational modifications affecting PVR or Nectin-2 (CD112) 
may induce intracellular retention and protein 
degradation.106,131–133 Although the knowledge of NCR ligands 
is still incomplete, several tumor escape strategies targeting 
molecules recognized by NCRs have been described so far. In 
particular, NKp30 ligands, represented by B7-H6 transmem
brane molecule and by BAT3/BAG6 nuclear protein,134,135 can 
be released in soluble form or through exosomes;136–138 in 
addition, B7-H6 can undergo proteolytic cleavage by ADAM- 
10 and -17 proteases.139 On the other hand, NKp44-mediated 
NK cell activation can be impaired by tumor cells, thanks to the 
overexpression of proliferating cell nuclear antigen, delivering 
an inhibitory signal upon NKp44 recognition or through the 
release of Nidogen-1, an extracellular matrix protein most 
likely acting as a decoy ligand.140,141 Remarkably, soluble 
forms of different NK receptor ligands are under investigation 
as predictive biomarkers, since they can be detected in sera of 
tumor patients, and their levels are frequently associated with 
disease progression and poor prognosis.136,139,142–144

A peculiar, and still poorly explored, mechanism by which 
the tumor can become more resistant to NK-mediated lysis 
involves cytoskeletal changes within cancer cells, deeply affect
ing the formation of the lytic immunological synapse. In this 
context, tumor escape from NK-mediated cytotoxicity driven 
by actin cytoskeleton remodeling has been clearly demon
strated in breast cancer.145

Other tumor-associated intrinsic and extrinsic factors can 
induce an increased resistance to NK cells. For instance, it has 
been shown that NK cells can promote EMT in tumor cells, 
while EMT can favor the escape from NK cell attack.93 In 
particular, lung cancer cells undergoing an intermediate EMT 

ONCOIMMUNOLOGY 5



state have been recently shown to avoid NK cell attacks by both 
reducing chemokine production and inhibiting NK cell cyto
toxic response.146 In the case of pancreatic adenocarcinoma 
(PA), it has been demonstrated that PA cell lines deriving from 
primary or metastatic tumors display a different susceptibility 
to NK cells, with metastatic ones displaying EMT-related gene 
expression and phenotype and an increased resistance to NK 
cell-mediated lysis.147

Therapeutic approaches exploiting NK cells

In spite of the many tumor-related mechanisms of immune 
suppression and escape, the generation of NK-based immu
notherapeutic tools remains a fascinating and promising 
option for the research of new, more effective, treatments of 
malignancies.148 However, the grade of NK cell infiltration into 
solid tumors is crucial when considering the use of NK cells for 
cancer immunotherapy, as NK cells generally have a low ability 
to infiltrate. Poor NK cell infiltration into the TME may be 
attributed to the interference with NK chemotactic signaling 
and activation, and to properties of the tumor bed (i.e., vascu
lature density and ECM structure).73 Strategies to increase NK 
homing and infiltration into tumors would be essential to 
improve NK anti-tumor efficacy and prevent resistance and 
relapse. In these latter years, several groups have been con
ducting preclinical and clinical studies trying to optimize the 
anti-tumor effectiveness of NK cells over the barriers of the 
KIR/HLA-I and NKG2A/HLA-E inhibitory interactions, the 
suppressive and poorly accessible TME, and the limited persis
tency of NK cells after transfer. To overcome these limitations, 
several strategies are under study, including the evaluation of 
enhancers of NK cell activity (e.g., cytokines, IC blockers, and 
specific NK cell engagers), the generation of NK cells engi
neered to express specific chimeric activating receptors (i.e. 
CAR-NK cells), and the study of the most effective NK cell 
subset in hemopoietic stem cell transplantation (HSCT).

Cytokine-activated NK cells and CIML NK cells

Several cytokines have been evaluated to expand in vitro NK 
cells with enhanced anti-tumor properties and to sustain per
sistency and activation of adoptively transferred NK cells.149

The first cytokine used was IL-2, which, however, has shown 
negative side effects at the bed side. Specifically, the induction 
of Tregs, the activation-induced cell death on NK cells, and the 
possible contribution of IL-2 to the vascular leak syndrome,150– 

152 represented important issues. Moreover, the adoptive trans
fer of Lymphokine Activated Killer cells (LAK) (induced 
in vitro by IL-2 stimulation) showed limited efficacy.153,154 

Therefore, the use of IL-2 in therapy required careful revision 
of doses and protocols, and stimulated the search for new 
activating means. In this context, engineered IL-2 molecules 
(superkines) have been developed to selectively enhance the 
therapeutic effects of IL-2. IL-2 superkines induced prolonged 
and intense NK cell activation, expansion of cytotoxic T cells, 
rather than Tregs, and improved anti-tumor responses in 
mouse models.155–158 Another option to stimulate NK cells in 
therapeutic settings is represented by IL-15, which shares two 
of its receptor subunits with the IL-2 receptor complex, 

showing similar NK cell activation properties. At variance 
with IL-2, however, IL-15 does not stimulate Tregs and, for 
this reason, it has been considered a promising alternative to 
IL-2.159 As this cytokine shows optimal effect when it is asso
ciated with the IL-15 Rα and trans-presented by IL-15 Rα+ 

cells,160,161 a super-agonistic molecular complex comprising 
the trans-presenting IL-15 Rα sushi domain and IgG1-Fc has 
been generated (N-803/ALT-803) and demonstrated to be 
effective in animal models and well tolerated in patients.162– 

164 On the other hand, it has also been recently discussed how 
IL-15 or N-803 could be less effective than IL-2 in supporting 
the persistence of transferred allogeneic NK cells in AML 
patients, due to its propensity to activate host cytotoxic 
T lymphocytes (CTLs) and CTL-mediated rejection of trans
ferred cells.165,166 It is also important to consider that long- 
term exposure to IL-15 can lead to NK cell dysfunction 
through metabolic and epigenetic reprogramming.167,168

Another interesting cytokine for NK cells is represented by 
IL-18, but the anti-tumor activity of this cytokine is limited by 
IL-18BP, a high-affinity IL-18 decoy receptor frequently upre
gulated in diverse human and mouse tumors. To maintain the 
signaling potential of IL-18, an IL-18 variant (‘decoy-resistant’ 
IL-18, DR-18) resistant to the inhibition mediated by IL-18BP 
has been developed. DR-18 has been shown to exert potent 
anti-tumor effects in mouse tumor models by enhancing the 
activity and maturation of NK cells, which can be exploited to 
effectively treat tumors that are resistant to anti-PD-1 therapy 
and have lost surface expression of MHC class I molecules.169

The use of the IL-12/15/18 cytokine cocktail was initially 
studied, more than 10 y ago, for its ability to activate NK cells 
that could persist in vivo and recall the initial stimulus.170,171 

Such, so-called cytokine-induced memory-like (CIML) NK 
cells have been extensively analyzed for their epigenetic signa
ture and functional characteristics, and their potential thera
peutic properties are under investigation for both hematologic 
and solid tumors.172–175 In particular, in two recent studies, PB 
NK cells from haploidentical donors have been exposed for 12– 
16 h to the IL-12/15/18 cytokine cocktail and then transferred 
to AML patients directly after lymphodepletion or as suppor
tive immunotherapy after donor-hematopoietic cell transplan
tation. In both cases, transferred cells have been demonstrated 
to proliferate and differentiate to memory-like phenotype in 
the patients and support anti-tumor activity.176,177

CAR-NK cells

Chimeric antigen receptor-engineered T cell (CAR-T) therapy 
has revolutionized the treatment of several types of cancer.178 

Despite this success, there are still major limitations and obsta
cles to the broad application of this therapy, including manu
facturing complexity, high cost, and treatment-associated 
toxicities.179 Furthermore, CAR-T cell therapy has good suc
cess in the treatment of hematological malignancies, but 
response rates are much lower in patients with solid tumors.180

CAR-NK cell therapy is emerging as a promising alternative 
to modified T cells and can represent a simpler and cheaper 
“off-the-shelf” treatment compared to CAR-T cells. In addi
tion, unlike CAR-T cells, CAR-NK cells do not cause cytokine 
release syndrome, immune effector cell-associated 
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neurotoxicity syndrome and graft-versus-host disease (GvHD). 
They do not require HLA compatibility, are associated with 
minimal side-effects, can be produced on a large scale from 
several sources, can be applied in an allogeneic setting, and, 
different from what should be required for CAR-T, do not need 
gene editing to avoid TCR engagement. CAR-NK cell admin
istration has been shown to be safe and effective for patients 
with multiple myeloma, AML, and CD19+ lymphoid tumors, 
thus supporting further investigation in a wide range of 
tumors.181,182

Many of the initial studies used NK cell lines, instead of NK 
cells, due to their superior proliferative capacity. Nevertheless, 
NK cell lines have significant limitations in their clinical 
applications.183,184 Indeed, since NK cell lines derive from lym
phomas, they must be irradiated or inactivated before the infu
sion into the patient, thus limiting their in vivo persistence and 
the effectiveness of the therapy.185 Thus, recent interesting alter
native sources are represented by NK cells isolated from PB or 
differentiated from cord/PB CD34+ stem cells, CIML-NK cells, 
or induced pluripotent stem cell-derived NK cells.186–191 

Furthermore, several preclinical studies have been conducted 
to increase the clinical efficacy of CAR-NK cells through differ
ent approaches: i) prolonging the in vivo persistence by modify
ing CAR-NK cells to ectopically express cytokines such as IL-15; 
ii) promoting homing and trafficking to the tumor site (crucial 
point for the efficacy of cell therapy against solid tumors) by 
engineering cells to express peculiar chemokine receptors; iii) 
overcoming the immunosuppressive action of TGF-β in the 
TME (e.g., by deleting the TGF-β receptor) thanks to the use 
of inducible promoters, which become active upon recognition 
of a tumor-associated antigen, metabolite, or drug; and finally 
iv) metabolically optimizing NK cells. However, the long-term 
persistence of CAR-NK cells may not be necessary for a long- 
lasting anti-tumor response. Indeed, a standardized CAR-NK 
therapy that uses multiple infusions could be hypothesized to 
maintain enough circulating cells for the control of the ongoing 
disease.182 Moreover, CAR-NK cells, in addition to CAR- 
mediated antigen recognition, take advantage of their innate 
killing capabilities and the possibility to trigger ADCC without 
further manipulation.149,181

NK cells in the context of hematopoietic stem cell 
transplantation

The capability of NK cells to recognize and eliminate trans
formed cells led to the investigation of the anti-tumor activity 
of these lymphocytes in the setting of HSCT. To take advantage 
of donor NK anti-leukemic effect (graft versus leukemia, GvL), 
the knowledge of the interactions between NK receptors and 
ligands expressed on tumor cells is crucial. The interaction 
between leukemic blasts and NK cells occurs in both directions. 
Indeed, malignant cells may impair their NK-mediated recog
nition by producing soluble ligands of NK activating receptors 
(e.g., MICA) or expressing ligands of inhibitory checkpoints, 
leading to NK cell exhaustion, as well as by modifying patient 
NK cell cytolytic capabilities by decreasing the expression 
levels of activating receptors (i.e., NCRs, NKG2D, and 
DNAM-1)96,111,192–196 or increasing the expression of ICs 
(namely, TIGIT, PD-1, TIM3, and LAG3)149,197,198 The 

relevance of NK/leukemic cell interactions is well documented 
in AML patients, in whom the anti-leukemic NKmediated 
activity was suppressed at diagnosis and relapse but restored 
when they achieved complete remission.199 Moreover, many 
studies have demonstrated that early NK cell reconstitution 
following HSCT and higher NK cell numbers in the stem cell 
graft resulted in improved patient outcome by increasing the 
overall survival and reducing the incidence of relapse, GvHD, 
and viral post-transplant infections.200

Being donor-derived NK cells significant effectors of anti- 
tumor and anti-infective responses in the recipients, the rele
vance of both NK receptor and ligand polymorphisms was 
investigated to design donor selection algorithms and stratify 
patients with worse post-transplant complications. One of the 
mechanisms involved in the GvL NK-mediated effect is driven 
by inhibitory KIRs. The impact of KIR/KIR-ligand mismatch 
was first examined in a cohort of adult AML patients receiving 
haploidentical HSCT (haplo-HSCT) with grafts composed of 
megadoses of highly purified CD34pos hematopoietic precur
sors. In this pioneering study, the authors reported a better 
outcome in the patients receiving a transplant from a donor 
characterized by an “alloreactive” NK subset.201 NK alloreac
tivity occurs when the donor NK cells express only an inhibi
tory KIR recognizing a self-KIR ligand (thus allowing NK cell 
education), which is lacking in the patient (thus providing NK- 
mediated allorecognition).202–204 Moreover, the alloreactive 
NK subset decreases the incidence of GvHD by reducing 
patient antigen-presenting cells and prevents graft rejection 
by eliminating host T cells.201 More recently, novel methods 
of graft manipulations, based on ex vivo or in vivo T cell 
depletion (i.e., T cell-depleted and T cell-repleted graft, respec
tively) were developed, and the effects of KIR/KIR-ligand mis
match have been examined in different HSCT settings. ,205–208

Evidence supporting the preferential selection of donors 
characterized by KIR B/x genotypes was produced for patients 
with AML or myeloid malignancies when unrelated donors are 
the stem cell source, leading to the KIR B content scoring 
model.209–212 This algorithm stratifies the different KIR geno
types by analyzing the number of centromeric and telomeric 
regions containing B haplotype-defining genes. A positive 
effect of donor KIR haplotype B was also observed in pediatric 
haplo-HSCT.207 More recently, the evaluation of donor KIR 
genotype in a cohort of transplanted children with high-risk 
acute lymphoblastic leukemia suggested that a different cen
tromeric presence and telomeric absence of KIR B motifs were 
associated with reduced relapse risk.213

Thus, several studies indicate that the donor KIR gene 
repertoire analysis may influence patient outcome, although 
with variable impacts among diverse HSCT platforms, suggest
ing that it should be introduced in donor selection searches 
when alternative donors are available. Many groups have 
attempted to apply an algorithm to quantify the complex 
interactions of activating and/or inhibitory KIR in the context 
of their ligands. Despite this, currently, there is no algorithm 
that can be applied to select the best donors in all haploiden
tical transplant platforms.214 This lack is probably due to dif
ferences among transplantation settings, including graft 
manipulation approaches, conditioning regimens, and post- 
transplant immunosuppressive therapies. Nevertheless, KIR 
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repertoire analysis and assignment of the presence of A and/or 
B haplotypes based on KIR gene content has been recently 
included in the British Society for Histocompatibility and 
Immunogenetics guideline among the donor selection in 
HSCT, especially for C2/C2 group recipients having worse 
outcome in all HSCT settings.215

The post-transplant infusion of donor NK cells may result 
in an improved GvL effect. This advantage was demonstrated 
in the haplo-HSCT with post-transplant cyclophosphamide 
platform, in which the administration of high doses of 
in vitro expanded donor NK cells in early post-transplant 
time decreased the relapse rate, improving patient survival 
without any increase of GvHD.216

Biologicals triggering NK cell-mediated tumor 
recognition

Tumor recognition by NK cells can be triggered through the 
use of mAbs targeting IC–IC ligand interactions or by engagers 
bridging NK cell receptors to tumor-expressed surface 
proteins.

Immunotherapy with blocking monoclonal antibodies

As mentioned above, NK cells express IC which may compro
mise their anti-tumor activity upon interaction with their 
ligands on tumor cells. Although studies have been primarily 
focused on IC+ T lymphocytes, also IC+ NK cells are frequently 
present in the TME, and may be drastically impaired in their 
anti-tumor activity.

A promising therapeutic approach to treat HLA-I+ solid 
tumors is represented by the use of monoclonal antibodies 
(mAbs) capable of disrupting the interactions between the 
HLA-specific inhibitory receptors (expressed on NK cells) 
and their ligands (expressed on tumor cells). In this context, 
the use of monalizumab, a first-in-class immune checkpoint 
inhibitor (ICI) targeting NKG2A and blocking the interaction 
between NKG2A and HLA-E, is achieving encouraging results 
in clinical studies in solid tumors, especially when combined 
with other checkpoint inhibitors, such as durvalumab (anti-PD 
-L1) in a variety of solid tumors (NCT02671435), or when used 
together with mAbs inducing ADCC, such as cetuximab (an 
EGFR-targeting antibody) in recurrent or metastatic head and 
neck squamous cell carcinoma (NCT04590963), and trastuzu
mab for HER2-positive breast cancer (NCT04307329). In non- 
small cell lung cancer (NSCLC), durvalumab plus monalizu
mab treatment has been associated with enhanced effector 
immune infiltration of tumors, interferon responses and mar
kers of tertiary lymphoid structure formation, and systemic 
functional immune cell activation, as compared to durvalumab 
alone.217

However, the recovery of NK cell function appears crucial, 
particularly in tumors that have lost (e.g., neuroblastoma) or 
express low levels of HLA-I molecules (e.g., melanoma). These 
tumors are “invisible” to classical αβ T cells, while they may be 
susceptible to NK cells. For this reason, we felt important to 
briefly discuss therapies based on the use of ICI.

In recent years, molecules that block the PD-1/PD-L1 path
way have been developed to re-activate the immune system’s 

response to cancer cells. This breakthrough led to the creation 
of several mAbs targeting PD-1 (like pembrolizumab and 
nivolumab) and PD-L1 (such as atezolizumab, avelumab, and 
durvalumab). These drugs have become foundational to con
temporary cancer immunotherapy, serving as primary treat
ments for various tumor types and frequently outperforming 
traditional chemotherapy (Figure 2).218 Identifying patients 
most likely to benefit from anti-PD-1/PD-L1 therapies is chal
lenging, as many patients exhibit no response to these treat
ments. This has spurred efforts to develop predictive 
biomarkers, with PD-L1 expression emerging as the most 
commonly employed indicator.219,220 PD-L1 expression, 
detected via immunohistochemistry on tumor or immune 
cells, is critical for therapy selection. The advent of various 
assays for measuring PD-L1 expression, each using distinct 
antibodies, has introduced complexity and inconsistencies in 
treatment eligibility determinations.221

The FDA has designated several assays as companion diag
nostics for the safe and effective application of their correspond
ing drugs. These include assays for atezolizumab in urothelial 
carcinoma and NSCLC, as well as for nivolumab in NSCLC and 
pembrolizumab across a range of solid tumors. Other assays are 
categorized as complementary diagnostics, helpful but not man
datory for drug administration.222 The commercial availability of 
diverse assays for clinical decision-making highlights a significant 

Figure 2. PD-L1 immunohistochemical expression in lung adenocarcinoma and 
contribution of NK cells in the anti-tumor response against HLA-Ineg tumor cells. a) 
In the presence of low PD-L1 expression (around 2%) on tumor cells, NK cells can 
kill HLA-Ineg tumor cells without any mAb-mediated blockade; b) In the presence 
of high PD-L1 expression (around 80%) on tumor cells, NK cells can kill HLA-Ineg 

tumor cells only upon mAb-mediated blockade of the PD-1/PD-L1 interaction. 
Figure contains modified images from Servier Medical Art (https://smart.servier. 
com) licensed by a Creative Commons Attribution CC BY 4.0 International License 
(https://creativecommons.org/licenses/by/4.0)
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challenge: integrating comprehensive testing into routine clinical 
practice. Efforts to harmonize results from different antibodies 
have shown some analytical performance similarity among cer
tain assays, suggesting potential interchangeability.223 However, 
discrepancies persist, particularly in identifying positive cases at 
clinically relevant cutoffs, emphasizing the complexity of PD-L1 
testing and accurate biomarker assessment.224,225

To overcome resistance to immune checkpoint inhibitors 
(ICI), numerous trials are exploring combination treatment 
approaches, following the initial success of nivolumab and 
ipilimumab in melanoma and renal cell carcinoma.226 Novel 
combination strategies are rapidly developing, with promising 
results from dual-checkpoint inhibition of PD-L1 and LAG-3 
or TIGIT.227 The potential for digital pathology and artificial 
intelligence to enhance patient selection for immunotherapy is 
promising.228 These technologies could offer a more detailed 
evaluation of the immune context, potentially leading to robust 
predictive models. However, integrating such advanced meth
odologies into clinical practice requires substantial infrastruc
ture updates and rigorous validation efforts.

NK cell engagers

The NK cell engagers are represented by engineered multi
valent soluble molecules. Bi- or tri-specific killer engagers 
(BiKE or TriKE) consist of two associated single-chain frag
ment variables, targeting, respectively, a given tumor-specific 
antigen, and an activating NK receptor (usually CD16), and (in 
the case of TriKEs) an additional domain generally engaging 
cytokine receptors on NK cells. This field of research has 
received great impulse in these last years, and different plat
forms have been set up to generate ever more sophisticated 
molecules. These molecules, identified with different acro
nyms, depending on the originating lab and platform, are 
being evaluated in preclinical and clinical studies.229,230 Thus, 
for example, TriKEs combining IL-15 and anti-CD16 fragment 
and targeting HER2 or mesothelin have been recently tested 
against ovarian and lung cancer cells, respectively, and an anti- 
B7-H3 TriKE has been evaluated against different tumor cell 
types.231 In this latter case, as B7-H3 is an inhibitory ligand for 
NK cells, theoretically, this engager has the double effect of 
targeting tumor cells and unleashing NK cell activity by the 
impairment of an inhibitory interaction. Other engagers, pre
sently under study in phase I/II clinical trials, have been set up 
to simultaneously trigger two different activating receptors 
such as CD16 and NKp46, or CD16 and NKG2D, and targeting 
given tumor-associated antigens.230,232–234

Conclusions

There is no doubt that tumor immunotherapy has made major 
progress during the past 10 y. Two game-changing approaches 
have been the use of ICI and CAR-engineered immune effector 
cells (CAR-T and CAR-NK cells). However, there are still many 
unanswered questions for which we have major expectations of 
substantial improvements. For example, why can disruptive PD- 
1/PD-L1 interactions lead to a significant restoration of anti- 
tumor responses despite the presence of other mechanisms of 
immune evasion? An explanation might be the existence of still 

poorly explored connections among different inhibitory 
mechanisms operating at the tumor site. A better understanding 
of the prevalent mechanisms in a given tumor and their con
nections may lead to the design of combined strategies to 
improve responses to ICI. In spite of more recent development, 
CAR-NK cells may offer advantages over CAR-T, especially 
considering the additional difficulties in supporting effective 
anti-tumor activity in solid tumors. As discussed above, the 
tumor microenvironment may result hostile to any effector 
cells. First, tumor-specific surface antigens are extremely rare. 
Second, the homing of CAR-T cells to tumor tissues requires 
the release of appropriate chemotactic factors which attract 
effector cells at the tumor site. In addition, engineering and 
expanding autologous T cells (which may also be compromised) 
from individual patients is time-consuming, particularly expen
sive, and uncertain in terms of cell numbers obtained in each 
procedure. Therefore, it is not possible to establish reliable and 
consistent protocols. Importantly, NK cells do not cause GvHD 
and, thereby, can be obtained from allogeneic healthy donors 
and stored in large numbers. Thus, they represent ideal off-the- 
shelf products, immediately available for treating tumor 
patients. Indeed, major expectations are also based on CAR- 
NK cells because of their strong cytolytic activity and homing 
ability. Thus, obtaining good expansions of cytotoxic NK cells 
under good manufacturing practice conditions is an important 
issue to improve the use of NK cells in clinical practice, both as 
unmodified and genetically modified cells.

On the whole, the recent advances in the knowledge of NK 
cell biology and their manipulation are unveiling the consider
able previously unknown therapeutic potential of these cells, 
which, we do believe, will be crucial for a future breakthrough 
in the fight against cancer.

Abbreviations

ADCC Antibody-Dependent Cell-mediated Cytotoxicity
AML Acute Myeloid Leukemias
BiKE Bi-specific Killer Engagers
BM Bone Marrow
CAF Cancer-Associated Fibroblasts
CAR Chimeric Activating Receptor
CIML Cytokine-Induced Memory-Like
DC Dendritic Cells
EMT Epithelial-Mesenchymal Transition
FDA Food and Drug Administration
GIST Gastrointestinal Stromal Tumor
GvHD Graft versus Host Disease
GvL Graft versus Leukemia
haplo-HSCT Haploidentical HSCT
HCC Hepatocellular Carcinoma
HLA Human Leukocyte Antigen
HLA-I HLA class I
HSCT Hemopoietic Stem Cell Transplantation
IC Immune Checkpoints
ICI IC Inhibitors
IDO Indoleamine 2,3-Dioxygenase
KIR Killer Ig-like Receptor
MMP Matrix Metalloproteinases
MIF Migration Inhibitory Factor
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miRNA microRNA
MDSC Myeloid-Derived Suppressor Cells
NCRs Natural Cytotoxicity Receptors
NID1 Nidogen-1
NSCLC Non-Small Cell Lung Cancer
NK Natural Killer
PA Pancreatic Adenocarcinoma
PB Peripheral Blood
PGE2 Prostaglandin E2
PVR Poliovirus Receptor
TAM Tumor-Associated Macrophages
TAN Tumor-Associated Neutrophils
TGF-β Transforming Growth Factor beta
TME Tumor Microenvironment
Tregs Regulatory T lymphocytes
TriKE Tri-specific Killer Engagers
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