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Abstract: Insulin resistance, which manifests as a reduction of insulin receptor signaling, is known
to correlate with pathological changes in peripheral tissues as well as in the brain. Central insulin
resistance has been associated with impaired cognitive performance, decreased neuronal health,
and reduced brain metabolism; however, the mechanisms underlying central insulin resistance and
its impact on brain regions outside of those associated with cognition remain unclear. Falls are a
leading cause of both fatal and non-fatal injuries in the older population. Despite this, there is a
paucity of work focused on age-dependent alterations in brain regions associated with ambulatory
control or potential therapeutic approaches to target these processes. Here, we discuss age-dependent
alterations in central modalities that may contribute to gait dysregulation, summarize current data
supporting the role of insulin signaling in the brain, and highlight key findings that suggest insulin
receptor sensitivity may be preserved in the aged brain. Finally, we present novel results showing
that administration of insulin to the somatosensory cortex of aged animals can alter neuronal com-
munication, cerebral blood flow, and the motivation to ambulate, emphasizing the need for further
investigations of intranasal insulin as a clinical management strategy in the older population.

Keywords: insulin resistance; gerontology; ambulatory function; signaling

1. Introduction

In the United States, falls are a leading cause of both fatal and nonfatal injuries in older
adults [1]. On average, 30–40% of people over the age of 65 and 50% of people over the age
of 80 will experience a fall each year [1–4]. Many of these events are associated with injury,
with one study reporting that in women >70 years old, 41% of falls resulted in minor injuries
while 6% resulted in major injuries (i.e., head trauma, fractures, or lacerations) [2,5,6]. Addi-
tionally, falls account for >60% of emergency room visits in patients who are 65 or older [5],
of which 5% conclude with hospitalization [6]. The likelihood of incurring a fall-related
injury depends on a variety of factors, such as the height and velocity of the event [7,8] and
the overall health of the individual [9,10]. Interestingly, sex also appears to play a role [11],
as older women are less likely to experience a fall [12,13] but more likely to sustain an
injury (either minor or major) compared to older men [1]. In addition to elevating the risk
of short-term injury, falls in older adults also lead to increased risk of morbidity, chronic
medical complications, and admission into long-term care facilities [14–17]. While death
from falls is much less common, long-term complications associated with fall events are
still a significant contributor to mortality in older populations [18]. In fact, approximately
2% of injurious falls in older adults result in death [19], and this statistic increases with
age. Further, fear and anxiety surrounding the outcome of these events seems to be more
prevalent in this particular population, with one study reporting that 80% of older women
would prefer death over an injurious fall and placement into a long-term care facility [20].

While the increase in falls with age is undisputed, central mechanisms responsible for
this have not been investigated thoroughly in animal models of aging. Recently, however,
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it has become clear that chronic conditions, including stroke, diabetes and dementia are
intrinsic risk factors that are not only critical when considering the etiology of falls with
aging, but importantly, may also represent therapeutic targets for reducing fall risk with
age. Evidence from a recent meta-analysis investigating over 14,000 patients identified a
significant increase in fall risk in patients with diabetes compared with healthy subjects [21],
further supporting prior evidence from the Longitudinal Ageing Study, that individuals
with diabetes exhibit more frequent falls compared to healthy adults [22]. The links between
peripheral metabolic dysregulation and falls have been reviewed recently with careful
attention to the potential involvement of sensorimotor dysregulation, musculoskeletal
dysfunction, and pharmacological complication. It seems clear that repeated hypoglycemic
events in patients with diabetes likely contribute to an increased risk of falls [23]. More
recently, polypharmacy use has been shown to weaken glycemic control, giving rise to
increases in dizziness and falls [24].

Clearly, characterizing the pathological changes and mechanisms that underlie age-
dependent gait impairments, including processes associated with metabolic dysfunction,
is a worthwhile endeavor, as these impairments significantly increase the risk of falling
in the older population. However, despite enormous advances in the identification of
peripheral mechanisms that contribute to altered ambulatory function and increased fall
risk in older individuals, there is still a paucity of information highlighting the potential
central components of ambulatory distress with age. Additionally, there is currently a lack
of effective therapeutic treatments designed to target these central processes. Here, we
discuss alterations in central modalities that may contribute to gait dysregulation with
age that are sensitive to insulin in the primary somatosensory cortex, and which clearly
participate in locomotor activity. We wish to raise awareness that these central functions
that control ambulation are a valuable therapeutic target for the prevention of falls with age.

2. Current Therapeutic Approaches

While it is undeniable that injurious falls significantly impact the quality of life of those
affected, these events also exert an immense financial burden on society. In fact, as of 2015,
the estimated cost of care associated with fall injuries in individuals ≥ 65 years old was
nearly $50 billion in the US [25]. The use of exercise interventions such as physical therapy,
yoga, and Tai Chi all appear to improve ambulatory performance in the older adult [26–28],
yet lack of accessibility to these programs as well as low patient compliance limits their
potential benefit. Additionally, there are currently very few effective therapeutic approaches
available to address fall risk in these individuals beyond recommending nutritional changes
and maintenance of optimal vitamin D status [29–34]. While rivastigmine has been shown
to reduce fall frequency by 45% in patients diagnosed with Parkinson’s disease (PD), these
results did not identify potential pathways or cellular targets mediating this effect [35], and
it appears that other cholinomimetics do not reliably improve imbalance-related falls [36,37].
Recently, the use of fampridine, a potassium channel blocker, in individuals with multiple
sclerosis appeared to be beneficial in improving gait speed [38], while memantine, an anti-
dementia drug, was able to improve gait variability in patients diagnosed with Alzheimer’s
disease (AD) [36]. However, it is not clear if any of these drugs could be beneficial to the
normal aging population, nor what central modalities they target. Finally, it is important
to note that the use of certain prescription medications (e.g., benzodiazepines, α- and
β-blockers) appears to correlate with, and often exacerbate, the fall risk in individuals
>70 years old [39,40]. This produces a significant complication with effectively treating
falls, as these medications are often prescribed for other age-associated dysregulations such
as insomnia, high blood pressure, and anxiety. Because of this, attempting to identify new
therapeutic avenues that more directly target the physiological processes underlying these
events without negatively impacting other factors of daily life is highly relevant.
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3. Contribution of Peripheral Systems and Special Senses to Gait Dysregulation

While there has been a large amount of work focused on extrinsic physical interactions
that can be modified to reduce fall risk in the older adult (i.e., type of shoes, mobility aids,
environmental changes, etc.), even more intrinsic factors have been identified; these include
peripheral alterations such as sarcopenia and metabolic disorders as well as impairments
in special senses, such as vestibular and visual systems, which ultimately reduce activities
of daily living.

3.1. Peripheral Systems

In cases where physical rehabilitation and balance training are used to improve gait
dysregulation in older individuals, it is not clear which physiological changes underlie the
benefits of these therapies. This is further complicated by the presence of comorbidities
associated with aging. For example, age-dependent musculoskeletal alterations have been
thoroughly implicated as a contributing factor to frailty and increased risk of falls [41].
Lower limb weakness resulting from sarcopenia (the deterioration of muscle tissue with
age) has also been shown to impede the ability to stand, reduce gait speed, and impair
balance [42]. Further, the link between the increased prevalence of falls and sarcopenia
in the older adult is clear, and this underlies many validated approaches for the man-
agement of falls in this population, particularly the strengthening of peripheral muscles
using physical training and exercises such as Tai Chi [43,44] and yoga [26,44]. However,
in addition to limiting lower limb function, sarcopenia is also associated with an elevated
risk of developing metabolic dysregulation [42], likely due to decreased peripheral glu-
cose uptake resulting from diminished muscle mass. Interestingly, gait impairments are
intensified by peripheral metabolic disorders such as Type-2 diabetes mellitus (T2DM) [45],
particularly in older women [46,47]. Studies in older adults have shown that T2DM is
also associated with an increased fear of falling and lower balance confidence [45,48,49].
Similarly, one meta-analysis of over 13,000 patients indicated that those with obesity and
diabetes had a higher risk of falling and worsened recovery outcomes compared to healthy
individuals [50], while another analysis of over 1 million patients reported that obesity
increased the likelihood of multiple falls in individuals over the age of 60 [48]. While
much has been learned regarding the role of physical exercise in treating these peripheral
alterations, other intrinsic factors, particularly changes in vestibular and visual senses, have
also been implicated in mediating poor stability outcomes with aging.

3.2. Special Senses

In addition to peripheral dysregulations, special sense impairments, such as vestibular
and vision loss, are also associated with falls and poor gait in older individuals [49,51].
Vestibular signals contribute to balance and walking, where the otolith organs and semi-
circular canal (SCC) output converge to guide the control of balance and posture during
ambulation. In the older adult, decreases in SCC function result in longer stride length and
stance time, in addition to slower cadence [52]. While vestibular hypofunction in advanced
ages can lead to dizziness, postural instability, and unsteady gait [53,54], previous studies
show that over 30% of people living at home and over 50% in assisted living facilities
experience at least one fall per year, without experiencing dizziness [55–58], suggesting
only a partial contribution of vestibular function to gait dysregulation with aging.

The vestibular system communicates regularly with the visual system to maintain
stability through reflexes, such as the vestibulo-ocular reflex, which helps to stabilize gaze.
Much research has also investigated the impact of vision loss in age-dependent gait alter-
ations, as it plays a large role in coordination and planning of movement in addition to
balance. One study recently showed that patients with age-related macular degeneration
had significantly slower walking speeds and stride velocities [59], while another reported
that reduced contrast sensitivity, but not visual acuity, with age is associated with decreased
stride lengths [60]. Further, slower gait and cadence, shortened stride length, and length-
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ened double support time are all exacerbated in extreme or changing lighting conditions,
and is not shown to be dependent on fear of falling [61].

Currently, a large amount of work has highlighted several central and peripheral
intrinsic factors associated with comorbidities of aging that are tied to ambulatory distress,
including hypertension, muscle weakness and fatigue, poor visual acuity, loss of vestibular
function, weak tendons and/or joints, and reduced sensory modalities. However, while
this work has given rise to a rich body of associative clinical studies, few, if any, have
directly investigated the role of less-characterized brain regions that are associated with
motor and sensory ambulatory control, such as the basal ganglia or the primary motor and
somatosensory cortices (see Figure 1).
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Figure 1. Aging-related structural and functional changes in key brain regions that control gait.

4. Neuroanatomical Changes in Gait Processing Centers

The field of brain aging has often focused on cognitive- and memory-associated
functions, and most investigations were conducted in the hippocampus and associated
cortices [62]. However, accumulating evidence shows that superficial layers in the primary
somatosensory cortex receive inputs from the thalamus and cortical areas [63–65] associated
with limb movement and sensory encoding [66]. Other critical regions include the dorsal
basal ganglia and the motor thalamus [67,68]. Given that age is positively correlated with
the number of falls an individual experiences [69–71], that dysregulation in hippocampal,
cortical, and thalamic pathways (all of which are part of the gait processing network)
predicts cognitive decline in AD [72,73], and that cognitive status and falls share common
mechanisms, it becomes difficult to ignore central aspects of motor/sensory function
in aging.
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4.1. Basal Ganglia

The basal ganglia, including the caudate nucleus and putamen, are heavily involved
in the tuning of voluntary motor output from the motor cortex. Specifically, these regions
act in unison to determine the most appropriate motor behavior, including learned be-
havior (i.e., walking, running, etc.). Interestingly, in these areas, four decades of research
have shown age-dependent reductions in dopamine levels as well as reduced D1 and D2
receptor expression [74–78]. However, while changes in dopaminergic signaling in the
basal ganglia with age have been well-described, few studies have investigated the role
of these biomolecular changes on gait function. In older subjects, smaller caudate nucleus
volumes have been correlated with slower walking speed [79]. Additionally, age-related
neurological diseases that are associated with altered ambulatory function, such as AD,
have also been tied to dysregulations in the basal ganglia, where changes in gait speed are
associated with AD pathology, particularly in the posterior putamen [80]. Still, while it is
well-known that the basal ganglia contribute to the tuning of motor behavior and that aging
can alter basal ganglia function, their impact on gait in the context of normal aging is not
well characterized, and it is clear that other neuroanatomical gait centers are at play [81,82].

4.2. Primary Motor Cortex (M1)

The M1 is responsible for the execution of movement and is the last cortical area
involved in the process of motor output. This area sends long projections to lower CNS
structures, including lower motor neurons in the spinal cord that control leg movements.
As with the basal ganglia, the M1 is sensitive to aging, and changes in this region have been
shown to correlate with impaired gait. For example, decreased M1 dopamine transport and
receptor density is seen with aging [83,84], along with reduced M1 volume, which is associ-
ated with shorter stride length, longer double support time, and slower gait speed [79,85].
Further, several studies have reported M1 hypoexcitability with age, including increases in
intracortical inhibition and decreases in intracortical facilitation [86,87], suggesting reduc-
tions in motor output. Interestingly, studies have shown that during the performance of
motor tasks, there is an age-associated increase in the recruitment of accessory processing
areas [88,89], such as the somatosensory cortex.

4.3. Primary Somatosensory Cortex (S1)

The S1 a series of functions including proprioception, pain, heat, and vibration sensa-
tion, as well as tactile discrimination. Although an increase in gait variability along with
a reduction in volume in brain regions such as the parietal and sensorimotor cortices has
been shown with age, no changes in S1 gray matter volume have been reported. However,
it is interesting to note that in S1 slice recordings from aged rats, thalamocortical activation
showed increased cellular excitability, as well as increased receptive field size and suppres-
sion of responses, compared to adult animals [90,91]. Other animal studies have also shown
age-associated increases in S1 neuronal excitability that may be mediated by changes in
GABAergic innervation [90–92]. Similarly, in the clinic, a significant correlation between
increased S1 excitability and impaired tactile acuity in older individuals was reported [93].

It is clear that aging is associated with a decline in both tactile and motor function; how-
ever, recent evidence suggests that distinct aging-sensitive mechanisms may underlie the
changes reported in these brain regions [94]. Thus, future investigations targeting region-
specific processes and pathways that are associated with age-dependent gait dysfunction
are warranted. Furthermore, such work would also begin a thorough characterization of
the different modalities that are sensitive to insulin. Recently, the administration of insulin
was shown to increase the motivation to ambulate both in the clinic and in animal mod-
els [95–98], suggesting that this may be a novel, clinically relevant approach for targeting
age-related gait impairments, perhaps by impacting network excitability changes in S1
(Figure 1).
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5. The Insulin Receptor as a Potential Novel Therapeutic Target of Gait Dysregulation
5.1. Insulin Receptors in the Brain

The insulin receptor (IR) is widely found throughout the brain, and both IR function
and expression are known to be reduced with age [99–103]. Interestingly, all of the regions
outlined above show at least some degree of IR binding and/or mRNA expression. Au-
toradiographic measures obtained in rat brain slices using 125I-insulin showed a moderate
amount of binding in the caudate putamen of the basal ganglia [104], and more recent
evidence indicated that IR activity is involved with dopaminergic signalling in both the
dorsal (caudate nucleus and putamen) and ventral (nucleus accumbens) striatum [105].
Further, in mice, loss of astrocytic IRs (AAV knockout) within the dorsal striatum has
been shown to be associated with depressive-like behaviors as well as impaired dopamine
release in brain slices [106].

Moderate insulin binding has also been detected in the frontal and parietal lobes,
which include M1 and S1 [104]. These findings are supported by more recent work that
reported a similar amount of IR mRNA expression within the cerebral cortex as found
in the hippocampus [107], as well two other studies which showed that central insulin
administration was associated with a significant increase in IR signaling in the cortex of
an AD mouse model [108] and in a rat model of aging [109]. Similarly, in a mouse model
of autism, the S1 was shown to be insulin-sensitive, as application of insulin to thalamo-
cortical slices increased inhibitory post-synaptic potentials (IPSPs) while pioglitazone, an
anti-diabetic drug, restored the balance between excitatory and inhibitory post-synaptic
potentials [110]. Interestingly, central delivery of insulin in a mouse model of PD was
associated with reduced dopaminergic cell death as well as improved performance on both
the apomorphine-induced rotational test and the horizontal ladder test [111], supporting
the role of IRs in the maintenance of motor function.

5.2. Central Insulin Administration as a Therapeutic Approach

Intranasal insulin (INI) is a safe, reliable, and effective method of increasing IR
signaling in the CNS without impacting peripheral insulin levels [112–118]. Animal
studies indicate that INI can reduce markers of Ca2+ dysregulation (i.e., the afterhyper-
polarization [AHP]) [119] and neuroinflammation [114,120–122], increase hippocampal
metabolism and neuronal survival [114,122–124], and improve aspects of learning and
memory [108,114,119,124–128]. Similarly, in the clinic, administration of INI is associated
with enhanced memory and cognitive function in individuals with AD and mild cognitive
impairment (MCI) [129–133], as well as cognitively normal adults [112,134–136].

Interestingly, recent evidence suggests that central insulin administration may also be
able to target other modalities associated with sensorimotor and/or motivational function.
Indeed, clinical administration of INI was recently shown to increase the motivation to
move [96,98], further supporting the role of IR in processes associated with ambulatory
behavior. Similarly, we recently found significant interactions between INI delivery and
motivation in the Fisher 344 (F344) rat model of aging (Figure 2). In this study, non-food-
motivated aged animals fed an ad libitum diet took significantly less time to complete an
ambulatory task following acute INI administration compared to aged, non-motivated
animals treated with intranasal saline (INS). Together, these results suggest that INI may im-
pact reward/ motivational pathways; however, despite findings of INI-mediated changes
in aspects of ambulatory behavior, there is still a lack of work directly focused on investi-
gating the role of insulin and IR activity specifically in M1 or S1. Given the importance of
these regions in the control of ambulation, it is clear that investigating the impact of insulin
signaling in these areas as a potential therapeutic target for the treatment of age-related
gait dysregulation is needed.
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While INI has been shown to impact aspects of age-dependent cognitive function and
motivational status in both animal models as well as in the clinic, the exact mechanisms
and pathways underlying these effects are still not clear. One potential process that has
been suggested is insulin’s impact on cerebral blood flow (CBF). However, in the clinic,
the role of INI in mediating CBF currently remains unclear. An early pilot study showed
no impact of INI (160 IU) on CBF in the visual cortex of adult (18–34 years old), lean
subjects [138], yet several others have shown significant changes in blood flow under similar
conditions. For example, one group showed that acute delivery of INI (40 IU) can increase
measures of CBF in the insular cortex of healthy young men (~24 years old) 35–60 min after
administration [139], while another reported that acute INI significantly increased middle
frontal gyrus CBF in young (~25 years old) lean participants, but decreased CBF in the
hypothalamus of these same individuals [140]. Interestingly, this same study also presented
evidence of increased CBF in the middle frontal gyrus, albeit only in overweight/obese
subjects, arguing against the presence of central insulin resistance in overweight/obese
individuals. Yet, in a more recent study, administration of 160 IU of INI decreased, rather
than increased, CBF in several brain regions, including the hippocampus, insula, putamen,
parahippocampal gyrus, and fusiform gyrus in overweight, young (~26 years old) males,
but not in normal weight individuals [141]. Interestingly, in this study, the same level
of peripheral insulin sensitivity was reported across groups, suggesting that changes in
central IR activity can occur independently of changes in the periphery. In patients with
T2DM, INI appears to increase perfusion in the insular cortex to a greater extent than in
non-diabetic control subjects [142]. Furthermore, it also appears central insulin-sensitivity
may also be preserved in aging, as another study showed that INI significantly increased
perfusion in the occipital gray matter and thalamus of older individuals but not in younger
subjects [143].

What is clear, is that depending on the brain region investigated and the health status
or sex of the individual, insulin can have differential effects on CBF. Whether this means
that brain regions have different levels of insulin-sensitivity or insulin receptor density,
more research clarifying the role of insulin’s effects on CBF is needed. While current
clinical evidence supports some role for insulin in the control of CBF, work measuring INI’s
impact on CBF in animal models is relatively limited. Recently, we reported that chronic
(9 day) administration of INI in an animal model of aging (F344 rats) was able to offset the
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age-dependent decrease in CBF [109]. Similarly, another study showed that in diabetic rats
(STZ-treated), chronic administration of INI (2 IU/day for 14 days) significantly increased
CBF compared to saline while also improving MWM performance, cholinergic function,
and brain metabolism [124]. However, this study was performed only in adult rats, and
thus did not investigate the impact of age. Given that some evidence has suggested that
central insulin sensitivity may be preserved in the aged brain, this is an important element
to consider, particularly when studying the direct impact of insulin on the brain, thus
bypassing other factors that may contribute to reduced IR signaling with age.

6. Insulin Sensitivity in the Brain: Contradictory Evidence

At least three recognized factors may be responsible for mediating a reduction in
insulin signaling in the brain, including (1) reduced receptor number, (2) reduced IR
sensitivity, or (3) reduced transport of the ligand from the periphery. However, despite
evidence supporting the presence of all three of these factors, most studies measuring
traditional intracellular IR signaling (i.e., IRS-1, pAKT/AKT, etc.) are studying a symptom
of one of the factors listed above, as it is not just reduced receptor sensitivity that can lead
to diminished downstream insulin signaling, but also decreased IR density and ligand
availability, albeit in different ways. Below, we examine prior work reporting reduced brain
IR signaling, and also present important findings that suggest other factors (e.g., reduced
ligand transport) should also be considered when discussing the development of central
insulin resistance.

6.1. Evidence Supporting Brain Insulin Resistance in Aging and AD

The hypothesis of brain insulin resistance has historically been characterized by an
overall reduction in insulin binding and downstream IR signaling, decreased brain insulin
levels, and diminished insulin-mediated processes [144,145]. Prior literature strongly
supports this hypothesis during normal aging as well as across numerous disease states,
such as MCI, AD, and diabetes [100,146–150]. For example, a recent study reported that
hyperinsulinemia in aging was associated with reduced IR signaling along with impaired
neuronal function and metabolism [151]. Another study also reported that the AD brain
shows significant reductions in several downstream IR signaling molecules, such as IRS-
1 and PI3K [152]. Interestingly, however, this study also reported that insulin (ex vivo
delivery) was able to bind and activate the IR in hippocampal formation slices of patients
diagnosed with AD, suggesting these receptors were still sensitive to the ligand.

Similar findings have also been reported in animal models. In a study of APP/PS1
mice, aged animals had significant elevations in serine-phosphorylated IRS-1, which is
known to be associated with poor cognitive performance and impaired IR signaling, along
with reduced expression of downstream IR signaling transcripts [153]. Dineley and col-
leagues also reported alterations in several aspects of canonical IR signaling pathways in
two different animal models of amyloidosis (Tg2576 and 3xTg mice) [154]. While evidence
is provided for reduced insulin signaling in some IR downstream effectors in this study,
surprisingly, several molecules showed increased expression in older (16 mo) 3xTg mice
compared to young, including IRS-1, pAKT, and GSK3β. Of note, both of these studies
report on the presence of central insulin resistance in the absence of peripheral insulin
resistance, suggesting that these two processes may be independent. Similarly, another
study in aged APP/PS1 mice reported that direct delivery of insulin to the hippocampus
(reverse microdialysis) significantly elevated insulin levels and IR signaling (pAKT/AKT),
suggesting that the AD brain is still responsive to the ligand [155].

Finally, a study investigating central insulin resistance in clinical AD samples as
well as in two different animal models of AD similarly revealed significant elevations in
hippocampal pSer IRS-1, further supporting the presence of reduced insulin signaling [156].
Taken together, it is clear that aging and AD are both associated with impaired elements
that are downstream from the IR. However, measures of these effectors provide only a
partial characterization of insulin resistance in the brain, as they represent latter events
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resulting from alterations in other upstream insulin-related processes (i.e., reduced IR
density, decreased ligand availability, etc.) that could occur during the development of this
phenotype. Below, we present evidence that IR sensitivity may be preserved across age and
AD, suggesting that other initiating events could underlie changes in downstream insulin
signaling in the brain.

6.2. Evidence Supporting Preserved Insulin Sensitivity with Aging

The very fact that INI appears to be an effective approach to elevate central IR sig-
naling and alter mood, appetite, and cognition across the aging spectrum, as well as in
individuals with significant amyloid pathology and/or AD and MCI-associated cognitive
impairment, suggests that the traditional premise of central insulin resistance as defined
by the inability of the IR to respond to the ligand may not be as prevalent as previously
thought. In fact, pioneering clinical work revealed significant beneficial effects of central
insulin administration on declarative memory in patients diagnosed with MCI or early
AD pathology [157]. More recent work mirrored these early findings, showing that INI
improved both verbal word-list recall and verbal story recall in patients diagnosed with
MCI/AD, albeit only those that were ApoE ε4 negative [132,158]. This suggests that while
advanced amyloid pathology (ApoE ε4 positive) may be associated with reduced central
insulin activity, older individuals with less pronounced neuropathological changes may
still respond to elevated levels of the ligand. However, while it is well-known that aging is
the most prominent risk factor for the development of AD, evidence suggests that these
two processes are different from one another, implying that insulin resistance in AD may
be more pronounced than that seen during aging. In fact, there is a paucity of work directly
measuring the impact of insulin on aged tissue.

Recently, our lab and several others have suggested the broadening of the definition of
brain insulin resistance and have even questioned its manifestation in the aging brain [100].
For example, using applications of insulin both directly (ex vivo in the slice) as well as
indirectly (in vivo INI), we showed, for the first time, that the Ca2+-dependent AHP, a
potential that can prevent neuronal firing, is sensitive to insulin [119,159]. Importantly,
in these studies, the insulin-mediated reduction in this potential was greater in slices
from the aged animal compared to those from the young, highlighting preserved insulin
sensitivity in these animals. More recently, we also showed that administration of chronic
INI (equivalent to 10 IU/day for 9 days) in F344 rats significantly increased CBF compared
to intranasal saline, but only in the aged animal [109]. Early work in animal models supports
the presence of preserved insulin activity during aging, as no reduction in insulin binding
was detected across multiple brain regions in aged rats compared to young [101]. Further,
work from another group has shown that while endogenous IR activity was reduced in the
aged mouse, application of intracerebroventricular insulin was associated with a significant
increase in downstream IR signaling molecules that were comparable to levels measured
in the young animal [160]. This, in combination with regional-specific elevations in IR
signaling (pAKT/AKT) in these same animals after acute INI administration, suggests
that central insulin sensitivity may indeed be preserved during aging, provided there was
adequate availability of the ligand.

One potential process that could explain reports of reduced IR activity concurrent with
preserved receptor sensitivity following exogenous insulin administration is reduced levels
of circulating insulin in the brain. While early investigations of IRs in the brain suggested
that insulin may be locally produced, this hypothesis remains controversial [145], with the
bulk of evidence strongly supporting the transport of the ligand from the periphery across
the blood–brain barrier (BBB) through a saturable system [161,162]. Studies of IR binding
using quantitative autoradiography suggests that the majority of insulin transport occurs
at the choroid plexus, capillary beds, and the olfactory bulbs [161], coinciding with this
region’s high density of IR expression [163,164]. A reduction in this transport has been
suggested to underlie central insulin resistance in aging and AD [162]. Interestingly, insulin
transport has also been shown to be altered by the presence of peripheral insulin resistance
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(T2DM), as highlighted by work in animal models showing that hyperinsulinemia is associ-
ated with reduced BBB IR density [165] and compromised BBB integrity and function [166].
Taken together, it may be that the greatest hurdle limiting central IR signaling in the aged
brain is not the inability of the IR to respond to the ligand, but instead is the inability of
insulin to enter the brain, as suggested by Sartorius and Heni [160,167].

6.3. Could INI Be a Therapeutic Approach for Gait Dysfunction?

Recently, exciting results have shown that insulin may target new domains outside of
those associated with learning and memory processes (i.e., the hippocampus), and may
be able to modify functions such as aspects of sleep [168], appetite [135], mood [169,170],
and perhaps even ambulation [95–98]. We are currently investigating the potential use of
INI as a therapeutic approach to ameliorate gait dysfunction. In a series of experiments
imaging S1 neuronal Ca2+ networks in aged F344 rats using a two-photon (2P) microscope
platform during tactile activation, we were able to detect changes in network variables
following acute INI delivery (Figure 3). Briefly, following AAV delivery of a Ca2+ sen-
sor (AAV.CamKII.GCaMP6s.WPRE.SV40; Addgene #107790) to S1, animals were imaged
during tactile stimulation (5 s, 3 Hz) of both the hind- and forepaw. Extraction of the
Ca2+ signals was accomplished using an in-house MATLAB code in combination with a
Morse continuous wavelet transform approach, allowing us to detect the power of the
signal across multiple frequencies (0.06–13 Hz). Outcome measures included network
synchronicity, connection lengths, and connectivity. We showed that within 15 min, INI
was able to significantly increase Ca2+ network synchronicity in S1 neurons compared to
intranasal saline (Figure 3).
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Figure 3. Analysis of the S1 neuronal Ca2+ network in response to intranasal saline (INS) or INI
in aged F344 animals. Measures of synchronicity were derived from a correlation matrix across
~1000 neurons in each group. Main effects of both time following intranasal delivery (2-way ANOVA;
F(1.36,12.25) = 9.90, p = 0.01) and INI (F(1,9) = 7.43, p = 0.02) were detected. Data represent means ± SEM.
Asterisks indicate main effects of time (t*) or drug (d*) at p < 0.05. Cent symbols (¢) denote Bonferroni
post hoc significance (p < 0.05) between INS and INI at the timepoints indicated. Figure reproduced
from Lin et al., 2022 [137].

In the same animals, INI was also able to decrease the time taken to ambulate down
a corridor during a gait behavioral task [137] perhaps indicating that the changes in
ambulation were reflected by alterations in network communication. Further, in this same
model, we also found that INI was able to significantly alter measures of CBF (Figure 4).
Following retro-orbital injections of 5% rhodamine dextran (500 kDa), medium-sized vessels
in S1 were imaged on the 2P microscope prior to and during tactile stimulation (5 s, 3 Hz).
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To monitor red blood cell movements across vascular beds, we used a MATLAB code to
extract proxies of CBF (radon transform to extract the angle with the greatest contrast).
Vessel diameter over time was derived via line scans perpendicular to the vessel axis, while
red blood cell velocity was determined using repeated line scans through the lumen of the
vessel [171,172]. While no major aging effect was identified on measures of change in red
cell velocity (∆velocity) during tactile activation, a significant interaction term was present
(2-way repeated measure [RM] ANOVA; F(2,7) = 4.43; p = 0.05), whereby aged animals
responded with an increase in CBF following INI, as previously reported [109], while young
animals responded with a decrease (Figure 4, Right). Once again, these findings further
emphasize that irrespective of age, insulin is capable of altering key central processes.
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Figure 4. Measures of S1 CBF at rest and in response to tactile stimulation following INI delivery.
(Left) Compared to young (n = 3) F344 animals, aged (n = 3) animals showed a trend (#) for reduced
absolute red blood cell velocity in S1 (Student’s t-Test; p = 0.09). (Middle) No change in vessel
diameter was detected (Student’s t-Test; p > 0.05). (Right) Measures of ∆velocity during tactile
activation was measured across age and in response to INI administration. A significant interaction
(i*) was noted, with young animals responding to INI with reduced ∆velocity while aged animals
responded with an increase (2-way RM ANOVA; F(2,17) = 4.43; p = 0.05) [173].

7. Summary and Conclusions

It is abundantly clear that one of the most direct tests for the presence of insulin
resistance within a target tissue must include the application of insulin to the system, as
this addresses at least two factors that may underlie the development of this pathology
(i.e., decreased sensitivity or IR density). Of course, the third factor in this triad of potential
pathways must also be addressed via studies focused on BBB transport of the ligand. Thus,
we propose that in order to develop new testing paradigms, and better characterize the
mechanisms underlying age-related insulin resistance and gait dysfunction, emerging
technologies to investigate these changes must be used not only in young adult animals,
but in aged animals as well.

Here, we provided an overview of underlying structural and functional changes of
key brain regions associated with locomotor stability, discussed current findings associated
with age-dependent insulin resistance in the brain, and also emphasized that these domains
could represent novel targets of INI. These topics are particularly relevant, given that falls
are a leading cause of injuries in older individuals, that aging is associated with central
insulin resistance, and that INI is a safe and effective approach to increase IR signalling.
Further, we also presented new results using 2P imaging approaches to address neuronal
Ca2+ network communication and neurovascular unit coupling in response to both age
and insulin. Ongoing studies in our lab are currently investigating S1 Ca2+ networks in
head-restrained, ambulating mice to test the hypothesis that INI can offset gait impairments
and increase ambulatory motivation by enhancing network synchronicity. We believe this
work will help to broaden the definition of insulin resistance in the brain by asking whether
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this process is mediated by reduced IR sensitivity, decreased receptor density, and/or
impaired BBB insulin transport.
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