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A Brønsted acid-catalyzed domino ring-opening cyclization transformation of donor-
acceptor (D-A) cyclopropanes and 2-naphthols has been developed. This formal [3+2]
cyclization reaction provided novel and efficient access to the naphthalene-fused
cyclopentanes in the absence of any transition-metal catalysts or additives. This robust
procedure was completed smoothly on a gram-scale to afford the corresponding product
with comparable efficiency. Furthermore, the synthetic application of the prepared product
has been demonstrated by its transformation into a variety of synthetically useful
molecules.
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INTRODUCTION

The demands for effective assembly of diverse molecular scaffolds are continuously growing along
with the development of organic chemistry. Among various methods, domino ring-opening
cyclization has recently emerged as a powerful tool for the rapid build-up of molecular
complexity (Bhattacharyya et al., 2016; Lin et al., 2017; Sayyad et al., 2017; Yi et al., 2018; Wan
and Liu, 2019). As a versatile class of three-atom building blocks, donor-acceptor (D-A)
cyclopropanes have experienced an unexpected renaissance in the last 2 decades, which are
widely exploited in methodology as well as natural product synthesis (Cavitt et al., 2014;
Schneider et al., 2014; Grover et al., 2015; Novikov, 2015; Reiser, 2016; Ivanova and Trushkov,
2019; Werz and Biju, 2020). Due to their property of formation of 1,3-zwitterion intermediates with
the help of the ring strain, D-A cyclopropanes could enter multitudinous kinds of chemical
transformations with different counterparts in organic synthesis. Among the multiple reactions,
Lewis acid-catalyzed (3 + n) ring-opening cyclization of D-A cyclopropanes represent the most
convenient method to form the carbocycles and heterocycles, such as (3 + 2) cycloaddition with an
unsaturated C-C multiple bond (Augustin et al., 2018; Ding et al., 2019; Huang et al., 2019; Mondal
et al., 2019; Verma, et al., 2019; Xie et al., 2019), (3 + 3) cycloaddition with 1,3-dipoles (Dhote and
Ramana, 2019; Petzold et al., 2019), and (3 + 4) cycloaddition with conjugated dienes (Ivanova et al.,
2008; Garve et al., 2016; Wang et al., 2017; Zhang et al., 2017; Augustin et al., 2019a; Li et al., 2020)
(Scheme 1A). In addition, the basic transformation of D-A cyclopropanes usually focuses on
straightforward ring-opening reactions with nucleophiles, which allows ready access to 1,3-
bifunctionalized derivatives (Garve et al., 2017; Lücht et al., 2017; Wallbaum et al., 2017; Das
and DaniliucArmido, 2018; Augustin et al., 2019b; Lücht et al., 2019; Boichenko et al., 2020; Guin
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et al., 2020) (Scheme 1B). Moreover, the unexpected
rearrangement of D-A cyclopropanes could lead to partially
unsaturated five-membered heterocycles (Ivanova et al., 2018;
Ortega, 2018; Shim et al., 2018) (Scheme 1C).

Typically, all the catalytic systems of D-A cyclopropanes
employ high loadings of Lewis acidic catalysts, usually rare-

earth triflates, with the reactions typically operating at elevated
temperatures. Compared with those of Lewis acid-catalyzed
reactions, the Brønsted acid-catalyzed conversion of donor-
acceptor cyclopropanes has received only scant attention. In
2014, (3 + 2)-annulation of donor-acceptor cyclopropanes
with alkynes induced by both Lewis and Brønsted acids was

SCHEME 1 | Different types of reactions of D-A cyclopropanes.

SCHEME 2 | The Brønsted acid-catalyzed reactions of D-A cyclopropanes.
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reported by Budynina (Rakhmankulov et al., 2015) (Scheme 2A).
In 2018, Moran and co-workers presented an elegant nucleophilic
ring opening of D-A cyclopropanes with nucleophiles in the

presence of TfOH (Richmond et al., 2018) (Scheme 2B). Thus,
developing sustainable alternative to achieve Brønsted acid-
catalyzed reactions of donor-acceptor cyclopropanes is highly

SCHEME 3 | Scope of 2-naphthols.

TABLE 1 | Optimization of reaction conditionsa.

Entry Catalyst Solvent Temp (°C) Yieldb

1 TfOH Toluene 0 40
2 TfOH CH3CN 0 44
3 TfOH iPrOH 0 0
4 TfOH DCE 0 64
5 TfOH Hexane 0 50
6 TfOH DCM 0 77
7 TsOH DCM 0 40
8 MsOH DCM 0 26
9 (±)-CSAc DCM 0 0
10 TFA DCM 0 70
11 AcOH DCM 0 0
12 HCl DCM 0 0
13 H3PO4 DCM 0 0
14 TfOH DCM Rt 60
15 TfOH DCM 50 Mixture

aReaction conditions: Scheme 1A (0.20 mmol), Scheme 2A (0.3 mmol), catalyst (20 mol%), solvent (1 ml), N2, 0°C, 12 h.
bIsolated yields.
c(±)-CSA � (±)-Camphorsulfonic acid.

Frontiers in Chemistry | www.frontiersin.org July 2021 | Volume 9 | Article 7112573

Zhao et al. Transition-Metal-Free [3+2] Dehydration Cycloaddition

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


desirable. We notice that 2-naphthols commonly serve as
important aromatic feedstocks in organic chemistry (Zhuo and
You, 2013; Wang et al., 2015; Yang et al., 2015; Zheng et al., 2015;
Cheng et al., 2016; Shen et al., 2017; Tu et al., 2017; Fang et al., 2018;
Liu et al., 2018; Xia et al., 2019; Zhang et al., 2020), and Biju
disclosed a formal (3 + 2) cyclopentannulation of 2-naphthols and
D-A cyclopropanes catalyzed by Bi(OTf)3 and KPF6 (Kaicharla
et al., 2016). But in the case of a reaction involving D-A
cyclopropanes with vinyl as the only substrate, the cyclization
product is obtained in an unsatisfactory yield (42%), which
greatly inhibits the universality of the reaction. Given the
versatility of the vinyl, here we report the successful realization
of such a scenario, whereby TfOH acts as a highly active and general
catalyst for the (3 + 2) dehydration annulation of D-A
cyclopropanes and 2-naphthols (Scheme 2C). The salient
features of this transformation include: (a) the use of
nonmetallic, low-toxicity, and easily available TfOH as the
catalyst, (b) simple and benign reaction conditions in the
absence of additives, (c) a broad substrate scope with respect to
2-vinylcyclopropane-1,1-dicarboxylate in moderate to high yields,
beyond the yields and scope disclosed in the previous work, and (d)

the resulting product is easily transformed into synthetically useful
compounds.

RESULTS AND DISCUSSION

We commenced our investigation with 2-naphthol Scheme 1A
and diethyl 2-vinylcyclopropane-1,1-dicarboxylate Scheme 2A as
model substrates. To our delight, treatment of Scheme 1A and
Scheme 2A with 20 mol% of TfOH without other additives in
toluene at 0°C furnished the (3 + 2) annulation product Scheme
3A in a 40% yield (Table 1, entry 1). Encouraged by the initial
result, we then focused on solvent screening, and typical solvents
including CH3CN,

iPrOH, DCE, hexane, and DCM were tested
for the reaction (Table 1, entries 2–6). The results revealed that
the solvents have great influence on the reaction outcome.
Notably, DCM gave optimal results (77% yield, Table 1, entry
6) while others led to low yields of Scheme 3A. Next, the
evaluation of a series of Brønsted acids were conducted, such
as TsOH, MsOH, (±)-CSA, TFA, AcOH, HCl, H2SO4, and
H3PO4. However, only under the catalysis of TsOH, MsOH,

SCHEME 4 | Scope of donor-acceptor cyclopropanes.
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and TFA, the desired product was furnished at a 26–70% yield
(Table 1, entries 7, 8, 10). Furthermore, efforts in running the
reaction at room temperature proved to be unfruitful, as a slightly
decreased yield (60%) of Scheme 3Awas observed, and a complex
reaction system was obtained when elevating the reaction
temperature to 50°C (Table 1, entries 12–13).

With the optimized conditions determined, the generality of
substrates with respect to 2-naphthols was then explored. As
summarized in Scheme 3, an array of 2-naphthols underwent
successful cyclization with diethyl 2-vinylcyclopropane-1,1-
dicarboxylate Scheme 2A. First, 6-Br-2-naphthol was reacted
with Scheme 2A, and the corresponding product Scheme 3B
was obtained in an 83% yield. Whereas more electron-
withdrawing cyano substituent decreased the performance of
the reaction, providing almost no desirable product Scheme
3C. In addition, when the substrate with Br at the position of
C7 of 2-naphthol was subjected to this reaction, it afforded
Scheme 3D in a 76% yield. It is worth noting that when 2,7-
dinaphthol bearing two reactive sites was chosen as the substrate,
much to our surprise, monocyclic product Scheme 3E was
isolated in a 62% yield. We speculated that a two-fold

annulation product could be hampered by the unfavorable
steric effect. Additionally, 2-naphthol with stronger electron-
donating methoxy at the C7 position was also suitable for this
reaction. Reaction of various 2-naphthol substrates bearing
electron-donating or -withdrawing substituents at the phenyl
residue provided the desired cyclization products in moderate
to good yields (Schemes 3G–J, 60–72%). It is fascinating that the
phenoxyphenyl substituent was also suitable to this condition,
leading to a 65% yield of Scheme 3I. The structure of the Schemes
3A–J were characterized by 1H, 13C NMR, and HRMS (See
Supplementary Material).

Next, we moved our attention to explore the scope of donor-
acceptor cyclopropanes under the optimized conditions
(Scheme 4). A series of 2-vinylcyclopropane-1,1-dicarboxylate
(2, R � methyl, isopropyl, n-butyl) were compatible with the
reaction conditions, leading to the corresponding dehydration
annulation products in 77–87% yields. Unfortunately, D-A
cyclopropane with tert-butyl shut down the desired
transformation, presumably because the tert-butyl was readily
hydrolyzed under strong acidic conditions. Similarly, when
diisopropyl 2-vinylcyclopropane-1,1-dicarboxylate was reacted

SCHEME 6 | Transformation of 3k.

SCHEME 5 | Gram-scale reaction and allylation reaction of phenol and 2-naphthol.
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with substituted 2-naphthols, the desired products were isolated
in 55–82% yields (Schemes 3O–3R). In addition, aromatic
donors such as phenyl residues in this protocol were also
successful, and an electron-donating substituent attached to
the aromatic backbone worked in a moderate yield (Scheme
3T, 70% yield). Whereas more electron-withdrawing groups (F,
Cl, Br) were also tolerated (Schemes 3U–W). Replacement of the
benzene ring with a furan moiety in the substrate proved to be
fine for the transformation (see Scheme 3X). The structure of the
Schemes 3K–X were characterized by 1H, 13C NMR, and HRMS
(See Supplementary Material).

Encouraged by the high efficiency of the domino ring-opening
cyclization reaction of donor-acceptor cyclopropanes with 2-
naphthols, this TfOH-catalyzed reaction was completed
smoothly on a gram-scale to afford the corresponding
naphthalene-fused cyclopentane Scheme 3O with comparable
efficiency (75% yield, Scheme 5). Interestingly, an extraordinary
ring-opening reaction initiated at the end of the double bond of
D-A cyclopropane Scheme 2A could be accessed when phenol
was used as the substrate, uncyclized product Scheme 5 was
afforded in a 52% yield, which suggested that ring-opening
occurred via an SN2′-like mechanistic pathway. The structure
of the Scheme 5 was characterized in the Supplementary
Material.

To illustrate the application of this protocol, the
transformation reactions with respect to product Scheme 3K
were investigated (Scheme 6). First, efforts were focused on the
versatile vinyl functional group, and the epoxidation of Scheme
3Kwithm-CPBA gave Scheme 6A in a 78% yield. In the presence
of 9-BBN, Scheme 3K underwent hydroboration-oxidation to
deliver primary alcohol Scheme 6B (93% yield). Furthermore, the

treatment of Scheme 3K with LiCl in DMSO and H2O (9:1)
furnished the selective decarboxylic product Scheme 6C in a 70%
yield. Finally, the hydrolysis/decarboxylation reaction of Scheme
3K under an alkaline condition led to monocarboxyl product
Scheme 6D in a 45% yield. The structure of the Schemes 6A–D
were characterized by 1H, 13C NMR, and HRMS (See
Supplementary Material).

Based on the previous report, we proposed a plausible
mechanism of this Brønsted acid-catalyzed reaction
(Scheme 7). Initial protonation of the “acceptor-motif”
of cyclopropane Scheme 2A by TfOH possibly generates
the intermediate A, in which the polarization of C−C
bond increases. Ring-opening reaction of Scheme 1A to
A generates the intermediate B. The subsequent
intermolecular aldol reaction generates the cyclopentane
intermediate C, which eliminates a molecule of water, and
then forms the final product Scheme 3A, along with the
regeneration of the TfOH catalyst which enters the next
catalytic cycle.

CONCLUSION

In summary, we have developed a robust strategy involving a
Brønsted acid-facilitated domino ring-opening cyclization
reaction, which provides efficient access to ubiquitous
cyclopenta (a)naphthalene in moderate to good yields with
high regioselectivity. Most importantly, this transformation
avoids the use of metal-catalysts and external additives.
Notably, a useful gram-scale reaction was completed smoothly
via this protocol. Further applications involving Brønsted acid as

SCHEME 7 | The proposed reaction mechanism.
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a catalyst are under investigation in our laboratory and will be
reported in due course.
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