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Abstract: Neuronal models of neurodegenerative diseases such as Parkinson’s Disease (PD) are
extensively studied in pathological and therapeutical research with neurite outgrowth being a core
feature. Screening of neurite outgrowth enables characterization of various stimuli and therapeutic
effects after lesion. In this study, we describe an autonomous computational assay for a high
throughput skeletonization approach allowing for quantification of neurite outgrowth in large data
sets from fluorescence microscopic imaging. Development and validation of the assay was conducted
with differentiated SH-SY5Y cells and primary mesencephalic dopaminergic neurons (MDN) treated
with the neurotoxic lesioning compound Rotenone. Results of manual annotation using NeuronJ
and automated data were shown to correlate strongly (R2-value 0.9077 for SH-SY5Y cells and R2-
value 0.9297 for MDN). Pooled linear regressions of results from SH-SY5Y cell image data could be
integrated into an equation formula (y = 0.5410 · x + 1792; y = 0.8789 · x + 0.09191 for normalized
results) with y depicting automated and x depicting manual data. This automated neurite length
algorithm constitutes a valuable tool for modelling of neurite outgrowth that can be easily applied
to evaluate therapeutic compounds with high throughput approaches.

Keywords: Parkinson’s Disease; neurodegeneration; neurotoxicity; neurite outgrowth; neuronal
morphology; high throughput screening; skeletonization

1. Introduction

Parkinson’s Disease (PD) is a neurodegenerative movement disorder that is char-
acterized by multifactorial cellular dysfunction of dopaminergic neurons [1]. Several
impairments in cellular processes involved in protein homeostasis and mitochondrial func-
tion contribute to PD pathogenesis [2,3]. Abnormalities in protein aggregation, intracellular
protein trafficking and protein disposal can result in α-Synuclein (aSYN) misfolding and
aggregation as found in Lewy Bodies and Lewy Neurites in the human brain [3,4]. Patho-
logical aSYN accumulation, impaired mitochondrial dynamics and high levels of reactive
oxygen species cause dysfunction of mitochondria resulting in higher oxidative stress,
which also contributes to neuronal death [2,5,6]. Neuroinflammation is another feature of
PD pathology with important implications on neuronal health. Activated microglia cause
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neuronal death via different pathways. Release of proinflammatory cytokines, such as
IL-1β, amplifies local inflammation and causes neuronal death [7–9]. By additional secre-
tion of tumor necrosis factor (TNF) and activation of complement astrocytes are converted
into neurotoxic phenotypes contributing to neuroinflammation [10–12]. Although there is
much new evidence in PD research, the exact pathogenesis remains still unclear.

Due to the multifactorial character of PD an effective treatment strategy would have to
target several pathological processes at a time. Therefore, approaches to prevent neuronal
death [13–15], to replace neuronal cells [16] or to modulate inflammation and targeting
aSYN have been followed [3,15]. While still no disease modifying approaches have shown
to be effective, details of PD pathogenesis and of putative new therapeutic avenues are
intensely studied.

To better analyze the multifactorial character of PD and other neurodegenerative dis-
eases cellular analysis systems can be employed. Characterization of pathological events
demands dissection of the complex PD pathogenesis into more simple molecular models
enabling precise manipulation of contributing factors and introduction of therapeutic
approaches. Differentiated dopaminergic cell models comprise immortalized cell lines
(SH-SY5Y, LUHMES, PC12), primary dopaminergic neurons and induced pluripotent stem
cells (iPSC) [17,18]. An advantage of the widely used SH-SY5Y cells is that they can be
differentiated into neuronal-like cells exhibiting dopaminergic but also cholinergic or nora-
drenergic phenotypes [19,20]. Simple culturing techniques and cell amplification enable
the generation of a large number of neuronal cells with dopaminergic phenotypes. These
can be subjected to several neurotoxin-based screening experiments for PD, which are
especially suitable for modelling effects of oxidative stress [19] using Rotenone, 1-methyl-4-
phenylpyridinium (MPP+), 6-hydroxydopamine (6-OHDA). Primary dopaminergic neu-
rons are usually prepared from the ventral mesencephalon of mouse or rat embryos. They
represent another model extensively studied in PD research and are often applied for
analysis of molecular pathomechanisms [18].

In our study, we applied the pesticide Rotenone in different concentrations to induce
neuronal damage to SH-SY5Y cells and MDN. Rotenone inhibits the complex I of the
mitochondrial respiratory chain and thereby elicits oxidative stress and can promote
the aggregation of alpha synuclein [21,22]. These induced molecular pathologies make
Rotenone a valid and commonly used toxin in and PD models.

When screening for cellular pathologic events or therapeutic responses, neurite out-
growth represents an important readout. Aberrant neurite morphology is strongly asso-
ciated with neurodegenerative disorders [23,24] and a critical determinant of neuronal
connectivity that influences the processing and distribution of information within neural
circuits [25]. Especially the morphological analysis of neuronal cultures and evaluation
of morphologic changes is time consuming and laborious. Furthermore, it is in part de-
pendent on subjective appreciation of neurite net features such as the detection of small
neurite branches in objects with low fluorescence intensity or from fragmented neurites.

Small-scale screenings are mostly conducted by manual or semi-automated quantifi-
cation of neurite outgrowth, for example using well-established tools such as NeuronJ [26].
It offers high accuracy but needs manually annotated start- and endpoints, which results
in a time-consuming process. Currently available openly accessible approaches for high
throughput screening utilize a variety of different approaches and platforms as summa-
rized in Table 1. Additional algorithms are able to evaluate cultures with higher complexity
like neuron-astrocyte cocultures [27] and whole neurospheres from iPSC [28–30]. This
allows for disease modelling focused on cell type interaction. However, most of the existing
approaches for now are limited to the analysis of single neurons or low-density neuron cul-
tures. Yet, for screening highly complex neurite structures in medium or high throughput,
new and more reliable approaches are required. Several studies [31–33] rely on commercial
image analysis packages such as Amira (Visage Imaging), HCA-Vision (CSIRO Biotech
Imaging), Imaris (Bitplane), Cellomics (Thermo Fisher Scientific), GE IN Cell Analyzer (GE
Healthcare) and Neurolucida (MBF Bioscience), yet these packages are ‘turnkey’ solutions
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that lack the adaptability to novel complex cell culture conditions, and typically defy
systematic validation and comparison [34].

At the same time, very recent novel approaches to morphological skeletonization [35,36]
have not yet been utilized and validated in the context of analyzing neuronal morphology.
Due to their rigorous algorithmic foundation and well-understood time complexity, it is a
natural goal of our present contribution to establish these propagated skeleton approaches
for analyzing the neurite structures in complex high-density neuron cultures.

We here present an approach using a skeletonization algorithm to evaluate neurite
outgrowth and additional morphologic features on image data of the SH-SY5Y neuronal
cell line and MDN. The presented approach allows for quantification of neurite outgrowth
in a fully automated and high throughput manner with no manual input required after
starting the pipeline. We demonstrate that this approach shows a strong correlation with
quantification obtained from the well-established semi-automated neurite tracing method
of NeuronJ. Furthermore, we were also able to extract other morphological features such
as number of nuclei, nuclei size, soma size and the number of branches.

Table 1. neurite quantification software for high throughput screening of 2D immunocytofluorescence image data.

Name Degree of Automation Morphology Measurements Platform

NeuronJ [26] semi-automatic neurite length ImageJ

Cell Profiler [37] semi-automatic neurite length Python

NeuriteTracer [38] automatic neurite length, soma number ImageJ

NeurophologyJ [39] automatic neurite length, soma number and size,
neurite attachment points, neurite ending points ImageJ

MorphoNeuroNet [40] automatic neurite length, soma number and size, nucleus number,
neurite attachment points, neurite ending points ImageJ

Omnisphero [28] automatic neurite area, neurite length, neurite branching points Matlab

presented approach automatic
neurite length, soma number and size,

nucleus number and size,
neurite ending points, neurite branching points

C++,
ImageJ

2. Materials and Methods
2.1. SH-SY5Y Cell Culture

The SH-SY5Y cell line was obtained from DSMZ (German Collection of Microorgan-
isms and Cell Cultures GmbH, Braunschweig, Germany) and cultured in DMEM/Nutrient
Mixture F-12 with GlutaMAX™ Supplement (DMEM/F-12, GlutaMAX™ Supplement;
31331028, Gibco®, Thermo Fisher Scientific Inc., Waltham, MA, USA) containing 10% heat-
inactivated fetal bovine serum (FBS Standard, South America origin; P30-3306, PAN-
biotech, Aidenbach, Germany) and 1% Penicillin-Streptomycin (Penicillin-Streptomycin
(10,000 U/mL); 15140122, Gibco®, Thermo Fisher Scientific Inc.). Cells were cultivated at
37 ◦C with 5% CO2 at saturated humidity. Morphology and behaviour were frequently
monitored to sustain high culture standards.

2.2. SH-SY5Y Differentiation and Time Course of Experiments

The differentiation (as presented by [20] was carried out in 24-well plates with 12 mm
coverslips coated first with poly-D-lysine (poly-D-lysine homobromide; 27964-99-4, Merck
KGaA, Burlington, MA, USA) for minimum 24 h following a laminin coating (laminin
from Engelbreth-Holm-Swarm murine sarcoma basement membrane; 114956-81-9, Merck
KGaA) for at least 4 h. After incubation with 0.25% trypsin-EDTA (trypsin-EDTA (0.25%),
phenol red; 2520056, Gibco®, Thermo Fisher Scientific Inc.), cells were counted and the
number needed to achieve a density of 40,000 cells per well was added to the differentiation
medium 1. This medium was DMEM, high glucose, GlutaMAX™ Supplement (DMEM,
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high glucose, GlutaMAX™ Supplement; 61965026, Gibco®, Thermo Fisher Scientific Inc.)
with 5% heat-inactivated fetal bovine serum (FBS Standard; P30-3306, PAN-biotech),
1% Penicillin-Streptomycin (Penicillin-Streptomycin (10,000 U/mL); 15140122, Gibco®,
Thermo Fisher Scientific Inc.) and 10 µM all-trans-retinoic acid (retinoic acid; R2625, Merck
KGaA). The differentiation medium 2 contained Neurobasal™(Neurobasal™Medium;
21103049, Gibco®, Thermo Fisher Scientific Inc.) with additional 1% N-2 (N-2 Supple-
ment (100X); 17502048, Gibco®, Thermo Fisher Scientific Inc.), 1% Penicillin-Streptomycin
(Penicillin-Streptomycin (10,000 U/mL); 15140122, Gibco®, Thermo Fisher Scientific Inc.),
1% GlutaMAX™ (GlutaMAX™ Supplement; 35050061, Gibco®, Thermo Fisher Scientific
Inc.) and BDNF (Recombinant Human/Murine/Rat BDNF; 450-02, PeproTech®, Rocky
Hill, NJ, USA) to achieve a concentration of 10 µg/mL. After 3 days with differentiation
medium 2 cells were incubated for 24 h with Rotenone (Rotenone; 83-79-4, Merck KGaA)
diluted in dimethylsulfoxide (DMSO). Final Rotenone concentrations were 100 nM, 250 nM,
500 nM, 1000 nM, 2500 nM and 5000 nM.

2.3. In Vitro Assay of Primary Mesencephalig Dopaminergic Neurons MDN

For the preparation of MDN pregnant Sprague Dawley rats (Charles River Labo-
ratories, Wilmington, MA, USA) were sacrificed on embryonic day 14. After isolation
of embryonic midbrains, neuronal tissue was dissociated and neurons were seeded on
poly-D-lysine (poly-D-lysine homobromide; 27964-99-4, Merck KGaA) cover slips. Us-
ing Neurobasal™(Neurobasal™Medium; 21103049, Gibco®, Thermo Fisher Scientific Inc.)
with 1% B27 supplement (Life Technologies), 1% GlutaMAX™ (GlutaMAX™ Supplement;
35050061, Gibco®, Thermo Fisher Scientific Inc.), 1% Penicillin-Streptomycin (Penicillin-
Streptomycin (10,000 U/mL); 15140122, Gibco®, Thermo Fisher Scientific Inc.) and 0.1%
L-ascorbinacid 200 mM (Sigma-Aldrich, St. Louis, MO, USA) neurons were cultured for
5 days with half of the medium was changed on day 2. On day 3, cells were treated with
Rotenone at final concentrations of 10 nM, 20 nM, 40 nM or 100 nM for 48 h. As described
above, Rotenone was diluted in DMSO and for preperation in cell culture further diluted
with neurobasal medium.

2.4. Immunocytochemistry

For immunofluorescence imaging SH-SY5Y cells grown on coverslips were fixed for
10 min with 4% paraformaldehyde in phosphate buffered saline (PBS) at pH 7.4. After
washing with PBS with 0.1% triton (PBT 1) for 5 min three times, cells were blocked
with PBT 1 for 20 min at room temperature. Primary antibodies, anti-neurofilament (anti-
neurofilament 200 antibody produced in rabbit; N4142, Merck KGaA), were diluted in
PBT 1 and incubated with samples for 1 h at roomtemperature. Next, cells were washed
with in PBT 1 with bovine serum albumin (PBSA) for 5 min three times before being
incubated with the secondary antibodies, Alexa 448 (Goat anti-Rabbit IgG (H+L) Alexa
Flour 488; A-11008, Thermo Fisher Scientific Inc.), PBSA. Afterwards coverslips were
washed with PBS for three times and mounted with 4′, 6-diamidino-2-phenylindole (DAPI)
Flouromount (DAPI Flouromount-G®; 0100-20, SouthernBiotech, Birmingham, AL, USA).

MDN were fixed on day 5 with 4% of paraformaldehyde for 10 min at room tem-
perature, washed three times with PBS, permeabilized with 0.1% triton (Sigma-Aldrich)
in PBS for 5 min and were then blocked with 10% normal goat serum (Biozol, Eching,
Germany) for 10 min at room temperature. Cells were incubated over night at 4 ◦C with
the primary antibody anti-tyrosine hydroxylase (1:1000, Merck Millipore, Burlington, MA,
USA). After washing cells with PBS for 5 min three times, cells were incubated with
secondary antibody, Alexa 448 (Goat anti-Rabbit IgG (H+L) Alexa Flour 488; A-11008,
Thermo Fisher Scientific Inc.), for 45 min at 37 ◦C. Afterwards coverslips were washed
with PBS for three times and mounted with DAPI Flouromount (DAPI Flouromount-G®;
0100-20, SouthernBiotech).

Images were acquired on a fluorescence microscope (Olympus BX51, Germany) using
a 20× objective (Olympus UPlanFl 20×, Japan) for SH-SY5Y cells and 40× objective (Olym-
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pus UPlanFl 40×, Japan) for MDN. Alexa 488 was excited with a 488 nm laser and detected
with a 520/535 nm bandpass filter. DAPI was excited with a 405 nm laser and detected
with a 450/50 nm bandpass filter. In experiments with SH-SY5Y cells 6 images were taken
per condition. For analysis of the MDN 8 images were aquired per condition (Figure 1a,b).
For development and validation of the algorithm a dataset consisting 528 images (288 from
the SH-SY5Y cell assay and 240 for the assay of MDN) with additional images of different
cell types used in development. Acquired images had the following properties: resolution
1376× 1038 px, file format 16 bit TIFF (tagged image file format). Further image processing
and analysis was carried out manually and automatically as described in the following.

merged binarized Alexa488 Skeleton merged + Skeletoni

a c e

b

g

d f h

Figure 1. Fully automated skeletonization of neurite outgrowth. (a) Shows a representative image of
a coverslip (not to scale) from which three images (b) (scale bar = 500 µm) are added to the image data
set. Each analyzed image spans 1376× 1038 px (representing 884.89 µm× 667.52 µm). For better
visualization a representative section is shown in the following (c,d). Scale bars = 50 µm. For analysis
of neurite outgrowth and morpholgy Alexa 488 channel (c) and DAPI channel (d) are seperated.
(e) shows the processed DAPI channel image as a binary image. In (f) the processed Alexa 488 channel
is depicted, showing the neurite and soma area as a binary image. The Alexa 488 channel image is
skeletonized. The full skeleton without soma substraction is shown in (h). For better visualization
the skeleton was morphologically dilated. For visual evaluation the skeleton with soma substraction,
the binarized Alexa 488 and DAPI channel image combined into one image (g). Representative
images of MDN as they were used in the validation of the presented approach are shown in (i).
First, the input image is depicted with a merged Alexa 488 and DAPI channel image. For both Alexa
488 images the binarized image and afterwards produced skeleton are shown. For better visualization
the skeleton was morphologically dilated. By combining the final skeleton and the input image the
effectiveness of the skeletonization can be evaluated.

2.5. Manual Ground Truth Measurement

Images were loaded in ImageJ and neurites were traced manually using the ImageJ-
Plug-In NeuronJ (Figure 2c). The accumulative neurite length from all cells and the cell
count of the image from the DAPI channel were used to calculate the relative neurite
length. In addition to DAPI channel cell count, the number of TH+-cells was determined
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for images of MDN. All values were normalized to positive control and DMSO-treated
solvent control (DMSO) for further evaluation.

b
CTRL

250 nM

1000 nM

5000 nM

CTRL

c
DMSO DMSO

100 nM 250 nM 250 nM

a

500 nM 1000 nM 1000 nM

2500 nM 5000 nM 5000 nM

Figure 2. Dose-dependet effect of different Rotenone concentrations (100 nM, 250 nM, 500 nM,
1000 nM, 2500 nM and 5000 nM) on differentiated SH-SY5Y cells: (a) Representative micrographs
of differentiated SH-SY5Y cells 24 h after treatment with Rotenone and control conditions. Stained
against Neurofilament (green). Cell nuclei were stained with DAPI (blue). Scale bar = 200 µm.
(b) Cell morphology of differentiated SH-SY5Y cells in higher magnification. Stained against Neuro-
filament (green). Cell nuclei were stained with DAPI (blue). Scale bar = 20 µm. (c) Exemplary annota-
tion of neurite outgrowth performed manually with the ImageJ-Plug-In NeuronJ. Scale bar = 20 µm.

2.6. Automated Image Processing

The algorithms and implementations in this work are designed to be run autonomously
in a high throughput fashion. Practically, this means starting the pipeline once will evaluate
a number of designated experiments with immunoflourescence image data successively
without manual input or interruptions. The program will allocate resources dynamically
and save results at runtime.

Figure Figure 1 shows a general overview of the workflow. This section will de-
scribe the algorithms and image processing for every image acquired (see Section 2.4).
These images are acquired and then split into their respective fluorescent color image
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channels (DAPI and Alexa488) each. Depending on the channel, the following algorithms
are applied:

General Preprocessing. A number of image processing steps are taken to reduce noise
and streamline image quality. In our assay, this translates to identifying several parameters
that account for variations in staining artifacts and variations in light exposure levels. As
such, brightness is dynamically reduced where necessary. The grayscale channel images
are binarized using Phansalkar [41] local thresholding. To reduce noise, morphological closing
is applied to the images and structures not matching a plausibility criterion (≤82.71 µm2)
are removed.

DAPI Channel. The binary image mask obtained from this channel is used to deter-
mine nuclei area and count. Clumped or overexposed nuclei can be difficult to segment
manually. This is often the case, when analyzing MDN. Thus, the Watershed algorithm [42]
is used to separate clustered nuclei. The number and size of nuclei can be derived by
separating isolated foreground contours using [43].

Alexa488 Channel. Depending on the compound and preprocessing, neurite growth
can result in arborized structures that are too thin to be processed by the skeletonization.
Yet these structures are vital to trace. Thus, to improve segmentation and skeletonization,
the binary Alexa 488 channel image is scaled up by a factor of 3. To extract morphological
features such as neurite length and number of branches, the skeletonization algorithm
of Durix et al. (see Section 2.7) is applied. The precision parameter ε was set to 10 px,
corresponding to 6.43 µm.

Combination of imaging channels. Our approach implemented the detection of a
neuron’s soma and prevents skeletonization in soma areas. First off, by overlapping the
nuclei masks and neurite masks, intersecting nuclei contours can be identified as neurons.

In a feedback process, every neurite contour not intersecting with a neuron is removed
from the respective mask. This is done to remove false positives and staining artifacts.
Another feedback process takes place during pruning (see Section 2.7). There, candidate
skeleton branches are automatically disregarded if they overlap with the neuron mask.
This is done to realistically reflect annotations and measure neurite lengths. Afterwards,
statistics such as neurite length and branching points can be derived from the skeleton. By
subtracting the neuron mask from the neurite mask, the neurite area is calculated.

2.7. Skeletonization and Pruning

The skeleton (or medial axis) of a shape is defined as the set of points that lie inside the
shape and have more than one closest point on the boundary. Skeletonization has many ap-
plications in for example object recognition, image analysis and shape decomposition [44].
It is an important tool in biomedical imaging studies and often used for the morphological
analysis of elongated structures such as vessels, pollen tubes and neurons [28,44–46].

Skeletons are known to be sensitive to noise in the boundary of an object, which
results in spurious, uninformative branches. As this is a problem that often occurs in digital
images, skeletonization methods include so-called pruning procedures, which remove
the uninformative branches. Depending on the utilized pruning approach, the resulting
skeletons may differ considerably. Thus, the choice of skeletonization method is important
for the quality of results.

For the experiments, we utilized the algorithm of Durix et al. [35], which was specifi-
cally designed for discrete shapes. The skeleton is computed by propagating through the
shape. Their pruning approach avoids propagating in directions of noise and therefore the
creation of uninformative branches. This is determined by a precision parameter ε, which
corresponds to the distance (in px, measured as Hausdorff distance) between the original
shape and the approximated shape as represented by the skeleton. Small protrusions
(smaller than 2× ε) are considered as uninformative and no branch is created.

During skeletonization the parameter ε affects the efficacy of automated neurite anno-
tation. In this work, the key parameter ε of the propagated skeleton approach is set to 10 px
(corresponding to 6.43 µm) resulting in a robust detection of neurites without excessive
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branching. Selection of ε depends on the morphological character of the respective cell
type in particular on the neurite width.

2.8. Statistical Analysis and Validation

Statistical analyses were performed using GraphPad Prism version 8 (La Jolla, Cal-
ifornia). Dose-response curves for neurite toxicity, cell number, nucleus area, soma area
and branching of SH-SY5Y cells were obtained from three, respectively, five independent
experiments with six technical replicates per condition. The same values were evalu-
ated on MDN with eight technical replicates per condition. Raw values from manual or
automated analysis were first normalized either to cell count or to the number of TH+-
cells obtained either by manual nucleus counting with ImageJ [47] or output data of the
algorithm. Subsequently normalized values from each experiment were normalized to
each positive control (CTRL) and DMSO-treated solvent control (DMSO). Data were fur-
ther analyzed as percentage of solvent control and presented as percentage of solvent
control ± standard error of the mean (SEM) if not described otherwise. Resulting mean
values are averaged among all examined experiments. Significant differences within a
dose–response relationship were analyzed using the analysis of variance (ANOVA) with an
Ordinary one-way ANOVA (p < 0.05). For dose–response curves LD50 were determined by
using a sigmoidal dose–response fit (variable slope) fit with values normalized to DMSO-
treated solvent control and values for solvent control as upper constraint. Differences
between both methods were analyzed with multiple t testing. Analysis was conducted on
results of every image, which was manually and automatically annotated with a paired
t test assuming consistent standard deviations to determine if values were statistically dif-
ferent (p < 0.05). For further comparison of intermethodological differences we performed
simple linear regression with y depicting automated and x depicting manual data.

2.9. Implementation and Hardware

The pipeline proposed in this work is designed to run automatically and performs
image analysis algorithms on fluorescence microscopy image batches of arbitrary size and
count in a high throughput manner. The software is implemented in C++ version 14 for
Linux and is using image analysis algorithms provided by OpenCV [48] and ImageJ. Since
many evaluations are independent from each other, the pipeline is able to run evaluations
concurrently. The pipeline also runs inside a Docker [49] version 19.03.13 image, making
it more robust to running on different systems and computational environments. All
evaluations were performed on a server, running Ubuntu 18.05.5 LTS with a 112 core CPU
and 754 GB RAM.

3. Results
3.1. Manual Analysis of Rotenone-Induced Alterations of Neurite Outgrowth

We established an Rotenone lesioning model in order to generate different levels of
impaired neurite outgrowth. Differentiated SH-SY5Y cells were treated with Rotenone
concentrations ranging from 100 nM to 5000 nM, respectively, 5 µM. Cells in both control
conditions positive (CTRL) and DMSO-treated solvent control (DMSO) developed a high-
density neurite network. They distributed evenly and interconnected via these arborized
neurites resulting in a high neurite density per cell (Figure 2a,b). Manual quantification
of neurite length was first carried out with the ImageJ-Plug-In NeuronJ. We detected
neurites in CTRL that had a length up to 345.6 µm while in DMSO they reached up to
333.4 µm in length. Rotenone treatment induced in a concentration-dependent effect on
neurite outgrowth indicated by a decline in mean neurite length per cell. For better inter
experiment comparison results were normalized to the DMSO-treated solvent control
(DMSO) (Figure 3a). Rotenone treatment with concentrations of 100 nM and 250 nM
obtained a moderate lesion of 33.2%± 7.1% and 41.4%± 8.4%. 500 nM Rotenone reduced
the neurite length per cell to 50.2%± 7.1% (absolute: 64.4 µm

cell ) compared to DMSO-treated
solvent control (absolute: 127.3 µm

cell ). The highest Rotenone concentration (5000 nM) lead to
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a decrease in neurite length by 70.7%± 5.8%. We also determined a mean LD50 value at
624.0 nM.
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Figure 3. Comparison of results from automated and manual analysis. (a) Neurotoxic effect
of Rotenone on the neurite network quantified with manual analysis: Mean neurite length per
cell normalized to DMSO-treated solvent control (DMSO). (b) showing the neurotoxic effect of
Rotenone on the neurite network quantified with automatically with our approach. Summed
neurite length per image obtained from the output data was first normalized to cell count and
afterwards normalized to DMSO. (c) showing results from automated analysis with two addi-
tional experiments. Data are shown as mean ± SM. * Significantly different (p < 0.05) between
mean of solvent control (DMSO) and mean of according Rotenone treatment condition. Respec-
tively ** with p < 0.01, *** with p < 0.001 and **** with p < 0.0001. (d) Linear regression per-
formed on results of summed neurite per image quantified with automated and manual analysis.
(y = 0.5410 · x + 1792; R2 = 0.9077) (e) Linear regression performed on results of neurite length nor-
malized to cell count and afterwards to positive control (CTRL) (y = 0.8789 · x+ 0.09191; R2 = 0.8841).
(f) Mean values from automated analysis compared to mean values obtained from manual analysis.
(n.s. with p > 0.05).



Cells 2021, 10, 931 10 of 17

3.2. Automated Neurite Outgrowth Analysis of Rotenone Treated SH-SY5Y Cells

For the evaluation and comparison with manually generated neurite outgrowth
quantification we developed a novel image processing pipeline. After initial histogram
adjustment and executing a local threshold, binarized pictures were processed for better
skeletonization efficacy. Skeletonization was executed using an algorithm proposed by
Durix et al. [36]. We were able to automatically create masks representing the soma area of
a cell with the module distance transformation. After subtracting somata from the skeleton,
neurite length was calculated. The quantification of nuclei was carried out using distance
transformation followed by a Watershed algorithm. The number of nuclei was derived by
separating isolated foreground contours. Using the summed neurite length per image and
matching cell count from the output data, the neurite length per cell was calculated and
subsequently normalized to the DMSO control. As shown in Figure 3a a dose–response
relationship was also detected when employing our approach. Because the complex
arborization of neurites is challenging for the correct detection by the algorithm, we
optimized preprocessing the skeletonization of neurites by applying histogram adjustment
and noise reduction with morphological closing and therefore were able to maintain a high
number of neurites after binarization.

Comparing the neurite length per cell from both manual and automated readouts,
the initial automated results were 28.0% less than manual calculations. Mean neurite length
per cell from automated analysis was found to be 107.0 µm

cell for CTRL and 93.9 µm
cell for

DMSO. The skeletonization algorithm (Figure 1) showed reduced neurite measurements
when analyzing binarized images because small neurites with low fluorescence intensity
were not detected after preprocessing. However, with an increased the number of addi-
tional automatically analyzed datasets, the comparability to the manually annotated results
improved (Figure 3c). Treatment with 100 nM and 250 nM Rotenone led to reduction in
neurite length of 34.1%± 7.3% or 48.2%± 2.1%, respectively. In total, 500 nM Rotenone
reduced the neurite length by a half to 50.1%± 4.8% compared to DMSO control. Un-
der treatment of 5000 nM Rotenone, neurite length was decreased by 66.4%± 3.2%. In
comparison, the manual analysis resulted in the following neurite length: 33.2%± 7.1%
(100 nM), 41.4%± 8.4% (250 nM), 50.2%± 7.1% (500 nM) and 70.7%± 5.8% (5000 nM).
LD50 from automated analysis yielded a value of 584.0 nM compared to LD50 of 624.0 nM
from manual analysis as mentioned above (see Section 3.1).

3.3. Comparison of Automated and Manual Analysis Shows High Correlation

To validate the results generated by automated neurite length analysis, we performed
a set of different tests. First, we compared results generated automatically and manually
with linear regression applied on values from both readouts. The values of summed
neurite length per image were compared to assess the efficacy of our skeletonization
algorithm. When plotting results of all three experiments which were analyzed with both
methods, a mean R2-value of 0.9077 was calculated. The pooled linear regression results
in the following equation: y = 0.5410 · x + 1792 (y = automated; x = manual analysis)
(Figure 3d).

Normalized linear regression with results pooled from all three experiments analyzed
both with NeuronJ and the algorithm resulted in a R2-value of 0.8841 and the following
equation: y = 0.8789 · x + 0.09191 (Figure 3e). No significant difference could be detected
between both methods (Figure 3f).

The ability for high throughput screening using the presented approach is confirmed
by a mean runtime of 2.72± 1.1 min per image (mean runtime for SH-SY5Y cell image data
with 1.68± 0.4 min and mean runtime for MDN image data with 3.75± 2.2 min).

3.4. Enhancement with In Vitro Detail Parameters from Automated Neuronal Analysis

Automated image analysis allows for quantification of additional parameters such
as cell count based on DAPI nuclei signal. The binarization of DAPI-channel enables the
calculation of total nucleus area or differentiation of apoptotic from healthy nuclei due
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to their morphological features. Cell somata of SH-SY5Y cells can be subtracted from
the skeleton as a mask generated by a distance transformation. The total mask area can
be quantified as total soma area and then be normalized to the cell count. Furthermore,
the number of neurite branches can be determined.

In the analysis of the SH-SY5Y cell cultures, cell counts were not altered with different
Rotenone dosages (Figure 4b). Quantification of the nucleus area or the cell body area

also showed no dose dependent effect (mean nucleus are of 977.14± 14.51 µm2

cell and mean

soma area of 1357.41± 19.51 µm2

cell ) for all conditions. No difference between DMSO-treated

solvent control (DMSO) (mean nucleus area of 930.01± 43.56 µm2

cell and mean soma area

of 1286.54± 42.54 µm2

cell ) and 5000 nM Rotenone (mean nucleus area of 924.35± 62.02 µm2

cell

and mean soma area of 1277.26± 53.17 µm2

cell ) could be detected (Figure 4c,d). Furthermore,
we extracted the number of neurite branches with our algorithm method. In contrast to
neurite length, the number of branches per cell is more sensitive to Rotenone induced
toxicity. Exposure to 100 nM Rotenone resulted in a reduction of 41.0± 2.4 in the number of
branches. With 250 nM and 500 nM the number of branches was decreased even stronger by
46.0± 9.4% and 49.5± 5.3%, respectively. The highest concentration of Rotenone (5000 nM)
leads to a more pronounced decrease (63.8± 6.1%) (Figure 4e).
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Figure 4. Additional morphological endpoints analyzed by our approach. (a) Linear regression performed on results
automated and manual cell count. (y = 0.9511 · x + 0.3678; R2 = 0.9430) The following endpoints were quantified: (b) cell
number, (c) nucleus area, (d) cell body area and (e) neurite arborization. For interpretation results from quantification of
cell number and neurite arborization were normalized to solvent control (DMSO). Values of nucleus and cell body area
were first normalized to cell count and afterwards normalized to solvent control (DMSO). Data are shown as mean ± SM.
* Significantly different (p < 0.05) between mean of solvent control (DMSO) and mean of according Rotenone treatment
condition. Respectively ** with p < 0.01, *** with p < 0.001 and **** with p < 0.0001.

3.5. Automated Neurite Outgrowth Quantification of Rotenone Treated MDN

Further validation of the presented neurite outgrowth quantification assay was con-
ducted using MDN as primary neuronal cells. These neurons grow much longer neurites
and develop a higher neurite arborization. To establish different levels of neurite lesioning,
we applied Rotenone concentrations ranging from 10 nM to 100 nM. Again, Rotenone treat-
ment resulted in a concentration-dependent effect indicated by a decline in mean neurite
length per cell (Figure 5d). Applications of 10 nM and 20 nM resulted in a reduction of
neurite length per cell by 21.5± 11.5%, respectively, 38.1± 2.0%. In total, 40 nM and 100 nM
obtained a strong lesion of 48.2± 5.1% and 51.9± 5.7%. These results were confirmed using
the automated approach (10 nM: 22.4± 12.0%; 20 nM: 41.7± 3.7%; 40 nM: 48.2± 6.6%;
100 nM: 56.9± 6.4%) (Figure 5f). Conducting linear regression on values of summed neurite
length per image shows strong correlation between results from the manual and automated
evaluation methods (y = 0.3403 · x + 2109; R2 = 0.9297) (Figure 5a). Linear regression with
values normalized to the number of TH+-cells shows even better comparability leading to
the following equation: y = 0.9605 · x + 0.1517 (R2 = 0.8296) (Figure 5c). Normalization to
DAPI+-nuclei also yields high correlation (y = 0.8460 · x + 0.2482; R2 = 0.7959) (Figure 5e).
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Figure 5. Further validation with MDN. (a) Linear regression performed on results of summed neurite length per im-
age quantified with the presented approach and manual analysis using NeuronJ. (y = 0.3403 · x + 2109; R2 = 0.9297)
(b) Representative micrographs showing a selection of experimental conditions (positive control (CTRL) and 10 nM and
40 nM Rotenone). Stained against TH (green). Cell nuclei were stained with DAPI (blue). Scale bar = 100 µm. (c) Linear
regression performed on results of neurite length normalized to the number of TH+-cells and afterwards to positive control.
(y = 0.9605 · x + 0.1517; R2 = 0.8296) (d) Neurotoxic effects of Rotenone on the neurite network of MDN quantified with
manual analysis. Mean neurite length per cell normalized to TH+-cells. (e) Linear regression performed on results of neurite
length normalized to cell count and afterwards to positive control. (y = 0.8460 · x + 0.2482; R2 = 0.7959) (f) showing the
neurotoxic effects of Rotenone quantified using the presented neurite outgrowth quantification assay. Mean neurite length
per cell normalized to TH+-cells. Data are shown as mean± SM. * Significantly different (p < 0.05) between mean of solvent
control (DMSO) and mean of according Rotenone treatment condition. Respectively ** with p < 0.01, *** with p < 0.001 and
**** with p < 0.0001.
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4. Discussion

We present a fully automated neurite outgrowth quantification assay able for high
throughput screening. Our approach was developed using image data generated with
differentiated SH-SY5Y cells and MDN and is validated against a manual tracing method.
The widely used SH-SY5Y cells and MDN are established in disease modelling of PD [18].
To induce PD pathology, we employed a toxin-based model using the pesticide Rotenone.
It inhibits the complex I of the mitochondrial respiratory chain and leads to aggregation
of aSYN and induction of oxidative stress through reactive oxygen species [21,22]. The
effect of Rotenone toxicity was assessed by quantification of neurite outgrowth and a dose-
dependent reduction of neurite length was shown. In addition to neurite length, neurite
arborization quantified by our assay also was reduced depending on applied Rotenone
concentrations. Concentrations used in this work were in line with other studies that
have employed a Rotenone model on similarly differentiated SH-SY5Y cells [50,51] and on
MDN [15,52].

Current methods of neurite quantification that are extensively used in toxicological re-
search only enable the assessment of fluorescence images with low neurite density [26,38–40].
In our manuscript, we present an algorithm that is capable of high throughput screen-
ing for neurite outgrowth also in high density neuronal cultures. Using an algorithmic
based evaluation resulted in data acquisition that is independent of human bias and can
evaluate large datasets. The pipeline presented in this work, supports centralized ad-
justment of multiple parameters for every algorithm, making it flexible and adaptable to
changes in staining, exposure or magnification and even cell type. This renders the results
deterministic and reproducible.

With the implemented skeletonization algorithm from Durix et al. [36], the only param-
eter needed to adjust was ε and skeleton seeding was conducted fully automatically (see
Sections 2.6 and 2.7). This method is designed for discrete shapes and uses a propagation
approach to compute a pruned skeleton. Thereby avoiding propagation in directions of
noise and the creation of uninformative branches. The rigorous algorithmic foundation
and the simple parameter adjustment allowed for the development of an approach which
enables the adaption to image data with different morphological characteristics. This is
demonstrated by the highly sensitive quantification of neurite outgrowth in the different
cell cultures models used in this work. Other skeletonization and pruning methods have to
deal with certain drawbacks: They may not preserve the original topology, cannot distin-
guish between noise and small significant details or rely on unintuitive parameters [36]. The
algorithm of Bai et al. [53] was previously used in other bioimaging applications [28,46,54].
However, the approach by Bai et al. relies on a parameter that is mathematically less
rigorously defined than the pruning parameter ε of the skeleton approach by Durix et al.

Skeletoniziation using ‘thinning ’algorithms is employed by NeuriteTracer [38] and
NeurophologyJ [39]. This approach offers high sensitivity by eroding all structures into
one-pixel-width skeletons and thereby computes a highly complex skeleton. However,
the integration of artefacts and noise is a serious drawback. Thus, this method relies on
extensive preprocessing and thereby loses adaptability to different experimental setups.
Pani et al. (MorphoNeuroNet [40]) proposed a linear skeletonization using principal curves.
However, in preprocessing several smoothing operations have to be implemented due to
the susceptibility of generating additional branches on rough edges. The complexity of
the algorithm and the requirement of certain image characteristics are typical to this kind
of skeletonization.

Correspondingly, our propagated skeleton approach is more robust when dealing with
high-density neuron cultures, as compared to previous and less rigorous skeletonization
approaches, where it is in general difficult to determine the underlying parameters correctly
without user interaction or prior knowledge of the shape that is analyzed. We confirmed
the effective quantification of neurite outgrowth by our algorithm allowing for high con-
tent screening in neurodegenerative disease models. By examining the skeleton, a more
in-depth analysis can be achieved with characterizing different skeleton sections and quan-
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tification of the total skeleton area. An assessment of connectivity can be conducted through
detecting visual connections between cells and further analyzing the neurite arborization.

5. Conclusions

Our automated neurite outgrowth quantification algorithm allows for analysis of
dense neurite structures in a high throughput manner and is designed for annotation
of two-dimensional immunocytochemical microscopy images of neuronal cultures. We
show the successful quantification of neurite outgrowth in large data sets of fluorescently
labelled cells. Differentiated neuronal SH-SY5Y cells and MDN treated with different
concentrations of Rotenone can be effectively assessed indepently on neurite densitiy.
The algorithm shows high comparability with results from manual tracing methods and
confirms an effective performance of this method. In addition, the algorithm allows the
determination of additional morphological parameters such as cell nuclei, cell somata
or neurite branches to perform an in-depth analysis of neuronal cultures. This approach
provides a valuable tool for high throughput analysis of neurite outgrowth and allows to
avoid time consuming manual assessment.
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