
Submitted 26 November 2020
Accepted 21 September 2021
Published 15 October 2021

Corresponding author
Sung-Pyo Hur, hursp@kiost.ac.kr

Academic editor
Guillaume Rieucau

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj.12289

Copyright
2021 Hyeon et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Testis development in the Japanese eel
is affected by photic signals through
melatonin secretion
Ji-Yeon Hyeon1,2, Jun-Hwan Byun1,3, Eun-Su Kim1, Yoon-Seong Heo4,
Kodai Fukunaga8, Shin-Kwon Kim5, Satoshi Imamura3, Se-Jae Kim2,
Akihiro Takemura6 and Sung-Pyo Hur1,7

1 Jeju Marine Research Center, Korea Institute of Ocean Science and Technology, Jeju, Republic of Korea
2Department of Biology, Jeju National University, Jeju, Republic of Korea
3Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, Japan
4 LED-Marine Biology Convergence Technology Research Center, Pukyong National University, Busan,
Republic of Korea

5Aquaculture Research Division, National Institute of Fisheries Science, Busan, Republic of Korea
6Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus,
Okinawa, Japan

7Department of Ocean Science, University of Science and Technology, Daejeon, Republic of Korea
8Center for Strategic Research Project, University of the Ryukyus, Okinawa, Japan

ABSTRACT
Objective. According to reported spawning characteristics of Japanese eel, Anguilla
japonica, which exhibit spawning and migration patterns that are synchronized with
lunar cycles and photoperiod, we hypothesized that a close association exists between
specific photic signals (daylight, daylength, and moonlight) and endocrinological
regulation. Given the photic control in melatonin secretion, this hypothesis was tested
by investigating whether melatonin signals act as mediators relaying photic signals
during testis development in the eel.
Methods. We examined changes in melatonin-secretion patterns using time-resolved
fluorescence immunoassays in sexually immature andmature male Japanese eels under
the condition of a new moon (NM) and a full moon (FM).
Results. The eye and plasma melatonin levels exhibited a nocturnal pattern under a
12-h light: dark cycle (12L12D) or under constant darkness (DD), but not with constant
light (LL). Eye melatonin levels were similar under the 12L12D and short-day (9L15D)
conditions. In the long-day condition (15L9D), secreted plasma melatonin levels were
stable, whereas short-daymelatonin secretion beganwhendarkness commenced. Sexual
maturation began at 8 weeks following intraperitoneal injection of human chorionic
gonadotropin (hCG), and NM exposure led to significantly higher eye and plasma
melatonin levels compared with those detected under FM exposure.

Subjects Animal Behavior, Aquaculture, Fisheries and Fish Science, Zoology, Freshwater Biology
Keywords Japanese eel, Melatonin, Moonlight, Eel migration, Photoperiod, Photic signal

INTRODUCTION
Melatonin is an indoleamine hormone secreted during the night that regulates circadian
rhythms, and that is mainly synthesized and secreted from the pineal gland and retinas.
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Once secreted from the pineal gland, melatonin is transported via the bloodstream and
cerebrospinal fluid (CSF) to the central and peripheral tissues where it helps to regulate
physiological, biochemical, and behavioral processes (Klein et al., 1997; Falcón et al., 2010).
In contrast, melatonin secreted from the retinas influences retinomotor movements,
neurotransmitter release, and neuronal electrical activity (Falcón et al., 2010; Besseau et al.,
2006; Siu et al., 2006; Ping et al., 2008; Sauzet et al., 2008). Nonetheless, photo-sensors in
the retinas and pineal gland sense photic cues through commonphotoreceptor cells, thereby
directly participating in melatonin production (Cahill, Grace & Besharse, 1991; Falcón &
Collin, 1991). Thus, in both the retinas and pineal gland, photic signals are involved in
light sensing and in melatonin production and secretion (Iigo et al., 1994; Iigo et al., 2007;
Ekström &Meissl, 1997; Falcón, 1999). However, information regarding mechanisms that
regulate melatonin secretion from the eye induced by a photic signal remains insufficient.

Many animals sense photic cues that are used in physiological processes (Bromage, Porter
& Randall, 2001). Currently, the known key aspects of photic cues include exposure time
(duration) of daylight, intensity, and spectrum. Photoperiod changes occur periodically and
predictably, whereas the light quality is more difficult to predict, and different organisms
show varying degrees of photo-sensitivity depending on ecological conditions (Mazurais et
al., 2000;Migaud et al., 2006). Effects of photoperiodic changes can be described for species
inhabiting a temperate zone; however, such descriptions are limited for sub-tropical
and tropical zones. However, tropical fish are considered to use relatively invariable
photic signals and have different photo-sensing mechanisms from those of fish inhabiting
temperate zones. Previous studies indicated that themoonlight intensity influences gonadal
development and gamete release (Takemura et al., 2006; Takemura et al., 2004), along with
melatonin secretion from the pineal gland and retinas (Takemura et al., 2006;Rahman et al.,
2004) in goldlined spinefoot (Siganus guttatus) residing in sub-tropical and tropical zones.
Thus, the photoperiod and water temperature function as a zeitgeber that synchronizes the
reproductive rhythms of species living in aquatic environments in regions with relatively
little variability.

Japanese eel (Anguilla japonica) has a catadromous life cycle. Glass eels that transform
from the leptocephalus stage live in regions of northeast Asia after migrating to fresh water
areas where they spend most of their lives (approximately 5–17 years) (Kotake et al., 2007).
Yellow eels at the sexually immature stage also show locomotor behaviors based on the lunar
cycle (Baras et al., 1998). Japanese silver eels begin spawning migration between September
and November when puberty is initiated (Tsukamoto, 2009). Anguillids are nocturnal
species whose locomotor activities increase during the night (Japanese eel: Aoyama et al.,
2002; European eel: Tesch, 1978; Tesch, 1989; American eel A. rostrata:Helfman et al., 1983;
shortfinned eel A. australis and longfin eel A. dieffenbachii: Jellyman & Sykes, 2003). The
spawning period is suggested to be regulated by the lunar cycle at a site close to the West
Mariana Ridge where spawning occurs during the last days of the lunar month (Sudo &
Tsukamoto, 2015; Tsukamoto et al., 2003).

Previous studies have illustrated the importance of environmental factors for various
reproductive traits of anguillid species, such as the influence of photoperiod changes
on ovarian development in European eels (Parmeggiani et al., 2015), the influence

Hyeon et al. (2021), PeerJ, DOI 10.7717/peerj.12289 2/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.12289


of temperature on the spawning performance of artificially matured Japanese eels
(Dou et al., 2008), and the influence of swimming performance on ovarian development in
European eels (Palstra et al., 2007). These findings suggest that environmental factors may
also be closely correlated with endocrinological regulation in anguillids and further support
the possibility of a close correlation betweenmelatonin production and environmental cues.
However, no study has yet described the mechanism whereby environmental information
is sensed, or how it might regulate melatonin secretion in eel which are catadromous
fish. A study of the endogenous melatonin system based on environmental information
is important for understanding how external light signals are converted internally in
anguillids.

We hypothesized that a close association exists between specific photic signals and
physiological regulation, regarding previously reported spawning migration of eels
(Tsukamoto et al., 2003). This hypothesis could be tested by determiningwhethermelatonin
signals act as mediators relaying photic information as endocrine signals. To achieve
this purpose, the following parameters were investigated: (1) examined eye and plasma
melatonin levels of male Japanese eels for 24 h under conditions of a 12-h light: dark cycle
(12L12D), constant light (LL), and constant darkness (DD), (2) the pattern of melatonin
secretion under different photoperiod (short-day; 9L15D, long-day; 15L9D condition),
and (3) examined eye and plasma melatonin levels under natural moonlight conditions
[NM] and full moon [FM]) between immature and mature in Japanese eel males were
comparatively analyzed.

MATERIALS & METHODS
Animals and maintenance
The Japanese yellow eels (n= 234, 2-years old) used in this study were cultivated males
(body weight: 280–405 g) obtained from a commercial source in Gwangju Prefecture of
South Korea. The eels were reared in indoor circular tanks (1-metric ton capacity) at
20 ± 1 ◦C in the Lava-water Aquatic Animals Care Center (Jeju Techno-Park, Jeju, South
Korea) with continuously running fresh water under the artificial 12L12D condition (light
on at 07:00 h and light off at 19:00 h, 600 lx, PPFD = 10.0 µmol m−2s−1, λp = 545 nm)
or the artificial LL condition with a white light-emitting diode (LED) light (KRGB3, SS
Light, Co., Seoul, South Korea). No food was given to the fish during the experiments.
All experiments were conducted in compliance with the guidelines of the Institutional
Animal Care and Experimental Committee of Jeju National University that approved the
experimental protocol (No. 2016-0039).

Experiment 1: Variations of eye and plasma melatonin levels under
the 12L12D, LL, and DD conditions
To evaluate daily and circadian fluctuations in melatonin levels in the eye and plasma, fish
(42 individuals per tank) were housed in three fresh water tanks (1-metric ton capacity)
without a fish shelter under the 12L12D condition with a water temperature of 20 ± 1 ◦C.
Following a 1-week acclimation period, the fish were reared for 3 days under the 12L12D
(light on at 07:00 h and light off at 19:00 h) or LL condition with LED lights and a
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water temperature of 20 ± 1 ◦C. The light intensity at the water surface was adjusted
to approximately 600 lx (10.0 µmol m−2s−1, λp = 545 nm). Fish (5 individuals per
sampling time from one tank) were also held under the DD condition for comparison.
Fish were anesthetized with 150 mg L−1 MS-222 (Sigma-Aldrich, St. Louis, MO, USA) and
decapitated at 4 h intervals beginning at clock time (CT) 9.

Experiment 2: Variations in eye and plasma melatonin levels under
short- and long-day conditions
To examine the effects of photoperiodic changes on melatonin levels in the eyes and blood,
fish (24 per tank) were housed in two tanks (1-metric ton capacity) under the 12L12D
condition with a water temperature of 20 ± 1 ◦C for 1 week. After the 1-week acclimation
period, the photoperiod in the tanks was changed to the short-day (SD) condition (9L15D,
light on at 06:00 h and light off at 17:00 h) or the long-day (LD) condition (15L9D, light
on at 06:00 h and light off at 21:00 h) for 1 week. Fish (5 per sampling time from one tank)
were anesthetized and decapitated at 4-h intervals beginning at CT9.

Experiment 3: Moonlight experiments
We next compared the melatonin levels between the NM and FM periods according to
testis development. A total of 71 fish were housed in an indoor tank with recirculating,
aerated fresh water under the 12L12D condition at 20 ± 1 ◦C. Following acclimation for 1
week in fresh water, the salinity of each tank was gradually increased to the level in sea water
for 1 week. After acclimation to sea water, the fish were transferred to two outdoor acryl
tanks (3-metric ton capacity) to artificially induce testis development (Fig. 1). The rearing
tanks were maintained under a natural photoperiod condition (approximately 11L13D)
with recirculating water (20 ±1 ◦C), but without a cover on the tank, until the end of the
experiment. After anesthesia and weighing, the fish were intraperitoneally injected with
hCG at 1 IU/g body weight (hCG+ group) or injected with 0.6% NaCl (hCG– group)
once a week for a total of 8 weeks. Following initial sample collection under the fresh
water condition (n= 9) and after acclimation to sea water (n= 9), the fish were randomly
taken from the tank at 2400 h. Sample collections around the NM (hCG+; n= 9, hCG–;
n= 5) and the FM (hCG+; n= 8, hCG–; n= 5) periods were carried out on November 22,
2014 and December 6, 2014, respectively. On each sampling day, the fish were taken from
the tank at 2400 h, anesthetized, and then sacrificed by decapitation in accordance with
the guidelines mentioned above. After weighing, the eye on the left side was immediately
collected, frozen in liquid nitrogen, and stored at−80 ◦C until analysis. Blood was collected
from the caudal vein using a heparinized syringe, transferred into a microtube on ice, and
centrifuged at 8,000× g for 10 min at 4 ◦C to obtain plasma. The collected plasma was
stored at −80 ◦C until performing the time-resolved fluorescence immunoassay (TR-FIA)
to estimate melatonin levels. The gonads were harvested from the body cavity and weighed.
Gonad sections were fixed in Bouin’s solution for histological observation. All sample
collections at 2400 h were carried out under dim-light conditions (1.5 lx, 0.0 µmol m−2s−1

at 670 nm) using a red-light LED module. The gonadosomatic index (GSI) and eye index
(EI) (Pankhurst, 1982) were calculated as follows:

Hyeon et al. (2021), PeerJ, DOI 10.7717/peerj.12289 4/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.12289


New moon phase (NM)

Injected with hCG (hCG +), and saline (hCG-)
Once a week on the same day (totally 8 times)

Fresh water group (FW)
(sampled at 2400h; n=9)

Sea water group (SW)
(sampled at 2400h; n=9)

hCG + group
(sampled at 2400h, n=9)

 hCG - group
(sampled at 2400h, n=5)

Full moon phase (FM)
hCG + group

(sampled at 2400h, n=8)

 hCG - group
(sampled at 2400h, n=5)

Fresh water group (FW) Sea water group (SW)

Acclimated in fresh water and gradually 
increased in sea water for 1week, respectively

13. Sep. 2014 ~ 20. Sep. 2014 20. Sep. 2014 ~ 27. Sep. 2014
22. Nov. 2014

04. Oct. 2014 ~ 11. Oct. 201427. Sep. 2014 ~ 04. Oct. 2014
06. Dec. 2014

Figure 1 Experimental design for determining melatonin levels in ocular and plasma according to ex-
posure to an NM or an FM. The solid and open squares represent the NM and FM groups, respectively.
Following acclimation to fresh water for 1 week, the eels were gradually increased to a salinity approxi-
mating that of seawater for 1 week. After acclimation to seawater, the fish were transferred to two separate
outdoor tanks for inducing sexual maturation. The fish were weighed and intraperitoneally injected with
hCG (hCG+ group) or 0.6% saline (hCG– group) once a week on the same day (totally eight times) until
the sampling date (NM, November 22, 2014; FM, December 06, 2014).

Full-size DOI: 10.7717/peerj.12289/fig-1

GSI = (gonadal mass/body mass) ×100
EI = {[(A + B)/4) 2× π /TL (mm)]}
where A and B are the horizontal and vertical orbital diameter (mm), respectively.

Melatonin measurements
The eyes on the left side were homogenized in 1 ml of 20 mM phosphate-buffered
saline (pH 7.3) containing 0.5% bovine serum albumin (Sigma-Aldrich) and centrifuged
for 15 min (10,000× g at 4 ◦C). Each supernatant was separated and stored on ice.
Melatonin-containing fractions were extracted from each supernatant and plasma sample
using Sep-Pak Vac C18 cartridges (Waters Corporation, Milford, MA, USA), which were
activated with 1 ml of 100% methanol and then with 1 ml of distilled water (DW). After
applying the supernatant/plasma (500µl) and thenDW (500µl), each cartridge was washed
twice with 1 ml of 10% methanol and then with hexane. Melatonin levels were measured
by the TR-FIA as described by Takeuchi et al. (2014).

Histological procedures
Testis samples were fixed in Bouin’s fluid. The fixed samples were dehydrated through
an ethanol series, embedded in paraffin wax (Leica Biosystems, Richmond, IL, USA), and
sectioned at 8 µm. Sections were stained with Mayer’s hematoxylin and eosin to study
testis development.
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Data analysis
All statistical analyses were performed using GraphPad Prism 8.0 Software. Daily and
circadian variations of melatonin levels were compared by one-way analysis of variance
(ANOVA), followed by Tukey’s multiple-comparisons test. The GSI and EI values, and
melatonin levels during artificially induced sex maturation under different moonlight
conditions were compared by one-way ANOVA. Differences occurring under different
photoperiod conditions (SD vs. LD) at each CT were determined by one-way ANOVA with
an unpaired t -test. A P-value < 0.05 was considered to represent a statistically significant
difference.

RESULTS
Experiment 1: Variation of eye and plasma melatonin levels under the
12L12D, LL, and DD conditions
Variations in circadian levels of eye and plasma melatonin are shown in Fig. 2. A similar
pattern was exhibited for both eye and plasma melatonin levels under the 12L12D and
LL conditions. Both eye and plasma melatonin patterns under the 12L12D cycle showed
clear day–night changes, with levels peaking at CT1 and decreasing from CT5 (Figs.
2A, 2D) (P < 0.05). In contrast, under the LL condition, eye melatonin levels were
significantly higher at CT9 than at CT1 (Fig. 2C) (P < 0.05), and plasma melatonin levels
were significantly higher at CT1 than at CT13 (Fig. 2F) (P < 0.05); however, both tissues
showed lower melatonin levels under the LL condition compared with those measured
under the 12L12D and DD conditions. Fundamentally, the patterns of eye and plasma
melatonin levels in the 12L12D and DD conditions were similar: the levels of melatonin
increased during scotophase and decreased at photophase. However, different peak times
were exhibited under the DD condition in terms of the eye and plasma melatonin levels.
The levels of eye melatonin peaked significantly at CT5 (Fig. 2B) (P < 0.01), whereas the
levels of plasma melatonin peaked significantly at CT1 (Fig. 2E) (P < 0.05).

Experiment 2: Variation in eye and plasma melatonin levels under SD
and LD conditions
After 1 week of rearing, the eye melatonin levels under the SD condition increased
significantly and peaked from CT24 to CT4, whereas these levels peaked at CT4 under the
LD condition (15L9D) (Fig. 3). The daily plasma melatonin levels under the SD condition
increased slightly after the lights were turned off (CT16) and peaked at CT24, whereas low
daily plasma melatonin levels were maintained under the LD condition.

Experiment 3: Influence of moonlight on testis development and
melatonin levels
Histological observations
Histological observations revealed that the testes of acclimated eels reared in fresh water
(Fig. 4A) and sea water (Fig. 4B) were immature and contained both spermatogonia and
spermatocytes. Histological examination of the hCG– group at the FM and NM after 8
weeks revealed that the testes were still immature and contained both spermatogonia and
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Figure 2 Variations of daily and circadian eye and plasmamelatonin rhythms after 3 days of rearing
under the 12L12D (eye; A, plasma; D), DD (eye; B, plasma; E), and LL (eye; C, plasma; F) conditions.
The values shown for the melatonin levels represent the means± standard errors of the mean (SEMs)
(n = 5–6 fish per time point), where duplicate determinations were performed for each sampling time.
The open and solid bars of each graph represent the scotophase and photophase, respectively. Significant
differences between the means at each sampling time are indicated by different letters (one-way ANOVA,
A; F = 12.22, df = 33, B; F = 6.41, df = 33, C; F = 2.456, df = 33, D; F = 5.345, df = 30, E; F = 4.583,
df = 31, F; F = 2.702, df = 32, P < 0.05).

Full-size DOI: 10.7717/peerj.12289/fig-2

spermatocytes (Figs. 4C, 4D). By contrast, in the hCG+ group, the testes of eels in the FM
(Fig. 4E) and NM (Fig. 4F) groups were mature and fully contained spermatozoa after 8
weeks.

Changes in the GSI and EI values during artificially induced testis
development
Changes in the GSI and EI values of male Japanese eels are shown in Fig. 5. The GSI values
were low during acclimation to fresh water and sea water. After 8 weeks, no significant
differences were observed in the GSI values in the hCG– group at the NM and FM or in
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of each graph represent the scotophase and photophase, respectively. The asterisk indicates statistically dif-
ferent levels of melatonin observed between same sampling points (unpaired t -test, P < 0.05).

Full-size DOI: 10.7717/peerj.12289/fig-3

the groups acclimated to fresh water (FW) or sea water (SW). The GSI values of the hCG+
group were different in the NM and FM groups (Fig. 5A) (P < 0.05).
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A) Fresh water acclimation B) Sea water acclimation

C) Full moon (hCG-) D) New moon (hCG-)

E) Full moon (hCG+) F) New moon (hCG+)
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Figure 4 Histological observation of the testis development. Light-micrographs images of the testes
from the groups acclimated to FW (A) and SW (B). After an 8 weeks treatment with hCG or saline, his-
tological observations were performed to examine the testes from the FM (hCG–; C, hCG+; E) and NM
(hCG–; D, hCG+; F) groups. The testes were sectioned after paraffin embedding and stained with hema-
toxylin and eosin.

Full-size DOI: 10.7717/peerj.12289/fig-4

The EI values were not significantly different between the FW and SW groups. After 8
weeks, the EI values in the hCG– groups at both NM and FM were higher than those in
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Hyeon et al. (2021), PeerJ, DOI 10.7717/peerj.12289 10/20

https://peerj.com
https://doi.org/10.7717/peerj.12289/fig-5
http://dx.doi.org/10.7717/peerj.12289


FW and SW (P < 0.001). After 8 weeks, the EI values of the hCG– group at FM and NM
were significantly lower than those in the hCG+ group (P < 0.001), with no significant
difference between the NM and FM conditions (Fig. 5B).

Changes in eye and plasma melatonin levels between the NM and FM, ac-
cording to testis development
Next, we investigated the effects of moonlight on the eye and plasma melatonin levels,
according to the sexual maturity of male Japanese eels (Fig. 6). After a 1-week acclimation
period in SW, the eye melatonin levels were slightly higher than those in FW, although
the difference was not statistically significant. There was no significant difference in eye
melatonin levels at NM and FM in the hCG– group at 8 weeks, whereas significantly higher
melatonin levels were found at the NM than at the FM in the hCG+ group (P < 0.0001).
The plasma melatonin levels in the SW group were higher than those in the FW group;
however, no significant difference was found. In the hCG– group, the plasma melatonin
levels in the NM group were slightly higher than those in the FM group, but the difference
was not statistically significant. However, the plasma melatonin levels were significantly
higher at NM than at FM in the hCG+ group (P < 0.01).

DISCUSSION
In this study, we showed the plasma melatonin rhythms have similar fluctuation patterns
to eye melatonin rhythms. Studies in the sheep Ovis aries demonstrated that melatonin
produced by the pineal gland was released into the CSF, resulting in approximately 20-fold
higher CSF melatonin levels compared with those in the plasma (Skinner & Malpaux,
1999). Although melatonin is also detectable in the retina (Iigo et al., 2007) and in the
gastrointestinal tract (Vera et al., 2007), it remains unclear to what extent the melatonin
secreted by a non-pineal gland organ contributes to the plasma level. The fluctuation
patterns between eye and plasma melatonin in Japanese eel were similar under the 12L12D
and DD conditions employed in this study; however, a different fluctuation pattern was
observed under the LL condition. These findings imply a partial influence of eye melatonin
on plasma melatonin levels, although it is also possible that eye melatonin secreted in
the retinas does not directly move to the bloodstream. Unfortunately, this possibility
could not be verified in this study because we did not measure melatonin secretion from
the pineal gland. Nevertheless, melatonin receptors have been found in the retinas of
various vertebrates, including fish, demonstrating a role in dopamine release, horizontal
cell sensitivity, and in regulating physiological processes, as detected by electroretinogram
findings (Cahill, Grace & Besharse, 1991; Vera et al., 2007). These results certainly suggest
that high melatonin concentrations may also play a crucial neuromodulatory role in the
retinas in Japanese eels; however, this possibility remains to be verified.

Changes in the amounts of eye melatonin and plasma melatonin were observed in each
photoperiod tested in this study. Eye melatonin levels were similar under the 12L12D and
SD conditions; however, with a long photoperiod, themelatonin levels peaked at CT4.With
respect to plasma, different melatonin-secretion patterns were found between the 12L12D
condition and other conditions. With a short photoperiod, melatonin secretion began
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when the lights were turned off, whereas no difference in the daily amount of melatonin
was found in the LD condition. In a study conducted in turkey (Meleagris gallopavo), the
production period of retinal and pineal melatonin was found to be significantly longer with
a short photoperiod than with a regular photoperiod (Zawilska et al., 2006; Zawilska et al.,
2007). In particular, both tissues displayed amplitudes in melatonin production during
the short photoperiod. These findings imply that melatonin production is correlated with
light-exposure time based on the photoperiod. Although it is considered that secretion
of high melatonin concentrations by the retinas does not directly affect the plasma
concentration—which can explain the different retina and plasma melatonin-fluctuation
patterns found with photoperiodic changes—no detailed evidence has been found to
support this possibility. Nevertheless, it may be speculated that periodic changes are
involved. In general, melatonin signals act collectively as an important endocrine factor
in synchronizing the annual reproductive cycle in teleosts (Falcón et al., 2007). However,
Japanese eels spawn only once in their lifetime and undergo a photoperiodic change during
spawning migration because they migrate from a temperate zone to sub-tropical and
tropical zones. Thus, the influence of such photoperiodic changes and/or particular photic
signals on eel physiology, and the influence of cumulative changes over the preceding years
on synchronizing eel spawning migration should be taken into consideration.

In this study, we investigated changes in melatonin levels under natural moonlight
conditions (NM and FM). In the sexually mature, male hCG+ group under an NM, eye
melatonin and plasma melatonin levels were significantly higher than those detected in
the other treatment groups. These findings imply that the moonlight of the FM partially
inhibited melatonin synthesis. A similar pattern of inhibition was found in lunar melatonin
rhythms of golden rabbitfish inhabiting a tropical zone based in both in vivo and in
vitro assays (Takemura et al., 2004; Takemura et al., 2006). The plasma melatonin levels
of individuals in a tank exposed to the natural light from an FM at midnight were
markedly reduced compared with those in a covered tank (Takemura et al., 2004). In
numerous previous studies of teleosts, retina melatonin levels exhibited nocturnal patterns
that oscillated in a daily/circadian rhythm (Cahill, 1996; Iigo et al., 1997a; Iigo, Tabata
& Aida, 1997b; Iigo et al., 2006; Iigo et al., 2007; Rahman et al., 2004; Takeuchi et al., 2014).
Similarly, light from an FM led to inhibition of the eyemelatonin levels in seagrass rabbitfish
(Rahman et al., 2004). These studies in fish that can sense changes in moonlight suggest
that FM light can inhibit eye and plasma melatonin. However, in this study, we found no
significant difference in eye and plasma melatonin levels between sexually immature eels
exposed to an NM or FM.

Anguillids only spawn once in their lifetime. Moreover, sexual maturity occurs only
during the spawning migration period. Therefore, the concept of the annual reproductive
cycle does not apply for these species. Accordingly, it is likely that eels sense environmental
changes that occur repeatedly and use specific environmental signals to initiate reproductive
activity without synchronizing their spawning rhythms. In addition, Sébert et al. (2008)
revealed that 5-month melatonin implantation increased the mRNA expression of brain
tyrosine hydroxylase in sexually immature female European eels and inhibited the synthesis
and release of pituitary gonadotropin (follicle-stimulating hormoneβ and luteinizing
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hormoneβ). These findings raised the possibility that melatonin may have negative effects
during the early stages of sexual maturation and puberty. Nonetheless, these results could
not confirm the role of melatonin during the spawning period because sexually immature
females were used in the experiments. A notable difference inmelatonin secretionwas found
in the present study between sexually mature (hCG+ group) and immature (hCG– group)
eels. This finding suggests that changes in melatonin levels due to moonlight may be
involved in spawning, at least partially during the spawning period of sexually mature eels,
despite the negative or negligible influence of melatonin on the brain–pituitary–gonad axis
during the early stages of sexual maturation (puberty). The spawning period of Japanese
eels is estimated to occur toward the last days of the lunar month (Tsukamoto et al., 2011),
which appears to be correlated with melatonin production. However, it remains unclear
whether moonlight directly regulates melatonin, or if moonlight simply has a promoting
effect following the activation of other endocrine factors during sexual maturation.

Japanese eels exhibit diel vertical migration with repetitive rises and falls based on the
day–night cycle during spawning migration (nighttime: 100–500 m; daytime: 500–800 m)
(Chow et al., 2015; Manabe et al., 2011). This may be attributed to the eel moving deeper
into thewater to continuously be in relatively dark conditions, which likely helps to increases
melatonin secretion during sexual maturation (spawning migration). In addition, previous
reports have shown interesting results regarding the locomotor activity of Japanese eels in
relation to the lunar cycle. Monitoring eel behavior during spawning migration through
short-term tracking with an ultrasonic transmitter revealed that the rise to the upper
mesopelagic zone under an NM or a very small moon after sunset was contrasted by
the trend to fall deeper as the moon grew in size, followed by another rise to the upper
mesopelagic zone toward the moon set (Chow et al., 2015). These findings indicate a direct
correlation between the locomotor activities of eels and the sunlight or moonlight, in
which eels sense the moonlight through their retinas, while melatonin plays a crucial role
in promoting their locomotor activities.

In this study, we examined changes in the ocular and plasmamelatonin levels in Japanese
eels according to changes in moonlight and during the circadian cycle, photoperiod, and
spawning period. Our findings suggest that melatonin signaling results from the eels
sensing photic cues to regulate the physiology. Furthermore, eels are considered to sense
the moonlight during the spawning period and use it as a signal for oviposition (Tesch,
1978). According to Ikegami et al. (2014), fish species in tropical regions reside in a location
where temperature or photoperiod changes are relatively less frequent (i.e., a relatively
more stable aquatic environment) compared to fish species residing in temperate regions.
Consequently, the moonlight signal promotes synchronization during several biological
and physiological processes.

The spawning period of Japanese eel is estimated to occur around the NM (Tsukamoto
et al., 2003). These results suggest that lunar signals may serve as a key link in regulating
endocrine secretion in anguillids. Thus, further studies are need to evaluate the biological
activities of melatoninmediated by photic signals, as well as to identify the basic melatonin-
secretion patterns that depend on nocturnal eel behaviors. Anguillids may provide a useful
model for addressing even more intriguing topics given the limited knowledge of the
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endocrinology and ecology of these species, despite presumptions regarding their spawning
sites or reports on their spawning ecology (Aoyama et al., 2014; Tsukamoto et al., 2003).

CONCLUSIONS
Both eye and plasma melatonin levels were regulated by daylight cycling and circadian
oscillations, and melatonin was inhibited under natural moonlight exposure in sexually
mature Japanese male eels. Thus, photic cues from daylight and nocturnal moonlight may
correlate with nocturnal behavioral responses, including testis development and spawning
during the NM period.
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